
~h
(t�1)
i

~y
(t�1)

µ
(t�1)
i

~z
(t)
i

~e
(t)
i

~h
(t)
i

⇧
(t�1)

⇧
(t)

~y
(t)

µ
(t)
i

~z
(t+1)
i

~e
(t+1)
i

~h
(t+1)
i

⇧
(t+1)

~y
(t+1)

µ
(t+1)
i

Figure 5: Detailed view of the dataflow within the PGN model, highlighting inputs ~e(t)i (outlined),
objects optimised against ground-truths (query answers ~y(t), masks µ(t)

i and pointers ⇧(t)) (shaded)
and all intermediate latent states (~z(t)i and ~h

(t)
i ). Solid lines indicate differentiable computation

with gradient flow in red, while dotted lines indicate non-differentiable opeations (teacher-forced

at training time). N.B. This computation graph should also include edges from ~z
(t)
i into the query

answers, masks and pointers (as it gets concatenated with ~h(t)
i )—we omit these edges for clarity.

Table 4: Summary of operation descriptions and supervision signals on the data structures considered.

Data structure
Operation descriptions, ~e

(t)
i

Supervision signals
and operation

Disjoint-set union [11]
query-union(u, v)

ri: randomly sampled priority of node i,
Ii=u_i=v: Is node i being operated on?

ŷ
(t): are u and v in the same set?,

µ̂
(t)
i : is node i visited by find(u)

or find(v)?,
⇧̂(t)

ij : is ⇡̂i = j after executing?
(asymmetric pointer)

Link/cut tree [38]
query-toggle(u, v)

ri: randomly sampled priority of node i,
Ii=u_i=v: Is node i being operated on?

ŷ
(t): are u and v connected?,

µ̂
(t)
i : is node i visited during

query-toggle(u, v)?,
⇧̂(t)

ij : is ⇡̂i = j after executing?
(asymmetric pointer)

A Pointer graph networks gradient computation

To provide a more high-level overview of the PGN model’s dataflow across all relevant variables (and
for realising its computational graph and differentiability), we provide the visualisation in Figure 5.

Most operations of the PGN are realised as standard neural network layers and are hence differentiable;
the two exceptions are the thresholding operations that decide the final masks µ(t)

i and pointers ⇧(t),
based on the soft coefficients computed by the masking network and the self-attention, respectively.
This makes no difference to the training algorithm, as the masks and pointers are teacher-forced, and
the soft coefficients are directly optimised against ground-truth values of µ̂(t)

i and ⇧̂
(t).

Further, note that our setup allows a clear path to end-to-end backpropagation (through the latent
vectors) at all steps, allowing the representation of ~h(t)

i to be optimised with respect to all predictions
made for steps t0 > t in the future.

14



B Summary of operation descriptions and supervision signals

To aid clarity, within Table 4, we provide an overview of all the operation descriptions and outputs
(supervision signals) for the data structures considered here (disjoint-set unions and link/cut trees).

Note that the manipulation of ground-truth pointers (⇡̂i) is not discussed for LCTs in the main text
for purposes of brevity; for more details, consult Appendix C.

C Link/cut tree operations

In this section, we provide a detailed overview of the link/cut tree (LCT) data structure [38], as well as
the various operations it supports. This appendix is designed to be as self-contained as possible, and
we provide the C++ implementation used to generate our dataset within the supplementary material.

Before covering the specifics of LCT operations, it is important to understand how it represents

the forest it models; namely, in order to support efficient O(log n) operations and path queries, the
pointers used by the LCT can differ significantly from the edges in the forest being modelled.

Preferred path decomposition Many design choices in LCTs follow the principle of “most-recent

access”: if a node was recently accessed, it is likely to get accessed again soon—hence we should
keep it in a location that makes it easily accessible.

The first such design is preferred path decomposition: the modelled forest is partitioned into preferred

paths, such that each node may have at most one preferred child: the child most-recently accessed
during a node-to-root operation. As we will see soon, any LCT operation on a node u will involve
looking up the path to its respective root ⇢u—hence every LCT operation will be be composed of
several node-to-root operations.

One example of a preferred path decomposition is demonstrated in Figure 6 (Left). Note how each
node may have at most one preferred child. When a node is not a preferred child, its parent edge is
used to jump between paths, and is hence often called a path-parent.

LCT pointers Each preferred path is represented by LCTs in a way that enables fast access—in a
binary search tree (BST) keyed by depth. This implies that the nodes along the path will be stored in
a binary tree (each node will potentially have a left and/or right child) which respects the following
recursive invariant: for each node, all nodes in its left subtree will be closer to the root, and all nodes
in its right subtree will be further from the root.

For now, it is sufficient to recall the invariant above—the specific implementation of binary search
trees used in LCTs will be discussed towards the end of this section. It should be apparent that these
trees should be balanced: for each node, its left and right subtree should be of (roughly) comparable
sizes, recovering an optimal lookup complexity of O(log n), for a BST of n nodes.

Each of the preferred-path BSTs will specify its own set of pointers. Additionally, we still need to
include the path-parents, to allow recombining information across different preferred paths. While
we could keep these links unchanged, it is in fact canonical to place the path-parent in the root node
of the path’s BST (N.B. this node may be different from the top-of-path node5!).

As we will notice, this will enable more elegant operation of the LCT, and further ensures that each
LCT node will have exactly one parent pointer (either in-BST parent or path-parent, allowing for
jumping between different path BSTs), which aligns perfectly with our PGN model assumptions.

The ground-truth pointers of LCTs, ⇧̂(t), are then recovered as all the parent pointers contained
within these binary search trees, along with all the path-parents. Similarly, ground-truth masks, µ̂(t)

i ,
will be the subset of LCT nodes whose pointers may change during the operation at time t. We
illustrate how a preferred path decomposition can be represented with LCTs within Figure 6 (Right).

LCT operations Now we are ready to cover the specifics of how individual LCT operations
(find-root(u), link(u, v), cut(u) and evert(u)) are implemented.

5The top-of-path node is always the minimum node of the BST, obtained by recursively following left-children,
starting from the root node, while possible.

15



a

b c d e

f g h i j

k l m

n o

p

q

b

a f

g

l c j

e md p

h

i o q

k

n

Figure 6: Left: Rooted tree modelled by LCTs, with its four preferred paths indicated by solid lines.
The most-recently accessed path is f ! b ! a. Right: One possible configuration of LCT pointers
which models the tree. Each preferred path is stored in a binary search tree (BST) keyed by depth

(colour-coded to match the LHS figure), and path-parents (dashed) emanate from the root node of
each BST—hence their source node may changed (e.g. d ⇣ a is represented as l ⇣ a).

All of these operations rely on an efficient operation which exposes the path from a node u to its root,
making it preferred—and making u the root of the entire LCT (i.e. the root node of the top-most
BST). We will denote this operation as expose(u), and assume its implementation is provided to
us for now. As we will see, all of the interesting LCT operations will necessarily start with calls to
expose(u) for nodes we are targeting.

Before discussing each of the LCT operations, note one important invariant after running expose(u):
node u is now the root node of the top-most BST (containing the nodes on the path from u to ⇢u),
and it has no right children in this BST—as it is the deepest node in this path.

As in the main document, we will highlight in blue all changes to the ground-truth LCT pointers ⇡̂u,
which will be considered as the union of ground-truth BST parents p̂u and path-parents p̂pu. Note
that each node u will either have p̂u or p̂pu; we will denote unused pointers with NIL. By convention,
root nodes, ⇢, of the entire LCT will point to themselves using a BST parent; i.e. p̂⇢ = ⇢, p̂p⇢ = NIL.

• find-root(u) can be implemented as follows: first execute expose(u). This guarantees
that u is in the same BST as ⇢u, the root of the entire tree. Now, since the BST is keyed by
depth and ⇢u is the shallowest node in the BST’s preferred path, we just follow left children

while possible, starting from u: ⇢u is the node at which this is no longer possible. We
conclude with calling expose on ⇢u, to avoid pathological behaviour of repeatedly querying
the root, accumulating excess complexity from following left children.

16



FIND-ROOT(u)

1 EXPOSE(u)
2 ⇢u = u

3 while left⇢u 6= NIL // While currently considered node has left child
4 ⇢u = left⇢u // Follow left child links
5 EXPOSE(⇢u) // Re-expose to avoid pathological complexity
6 return ⇢u

• link(u, v) has the precondition that u must be the root node of its respective tree (i.e.
u = ⇢u), and u and v are not in the same tree. We start by running expose(u) and
expose(v). Attaching the edge u ! v extends the preferred path from v to its root, ⇢v , to
incorporate u. Given that u can have no left children in its BST (it is a root node, hence
shallowest), this can be done simply by making v a left child of u (given v is shallower than
u on the path u ! v ! . . . ! ⇢v).

LINK(u, v)

1 EXPOSE(u)
2 EXPOSE(v)
3 leftu = v // u cannot have left-children before this, as it is the root of its tree
4 p̂v = u // v cannot have parents before this, as it has been exposed

• cut(u), as above, will initially execute expose(u). As a result, u will retain all the nodes
that are deeper than it (through path-parents pointed to by u), and can just be cut off from
all shallower nodes along the preferred path (contained in u’s left subtree, if it exists).

CUT(u)

1 EXPOSE(u)
2 if leftu 6= NIL
3 p̂leftu = leftu // Cut off u from left child, making it a root node of its component
4 leftu = NIL

• evert(u), as visualised in Figure 3, needs to isolate the path from u to ⇢u, and flip the
direction of all edges along it. The first part is already handled by calling expose(u), while
the second is implemented by recursively flipping left and right subtrees within the entire
BST containing u (this makes shallower nodes in the path become deeper, and vice-versa).
This is implemented via lazy propagation: each node u stores a flip bit, �u (initially set
to 0). Calling evert(u) will toggle node u’s flip bit. Whenever we process node u, we
further issue a call to a special operation, release(u), which will perform any necessary
flips of u’s left and right children, followed by propagating the flip bit onwards. Note
that release(u) does not affect parent-pointers ⇡̂u—but it may affect outcomes of future
operations on them.

RELEASE(u)

1 if u 6= NIL and �u = 1
2 SWAP(leftu, rightu) // Perform the swap of u’s left and right subtrees
3 if leftu 6= NIL
4 �leftu = �leftu � 1 // Propagate flip bit to left subtree
5 if rightu 6= NIL
6 �rightu = �rightu � 1 // Propagate flip bit to right subtree
7 �u = 0

EVERT(u)

1 EXPOSE(u)
2 �u = �u � 1 // Toggle u’s flip bit (� is binary exclusive OR)
3 RELEASE(u) // Perform lazy propagation of flip bit from u

Implementing expose(u) It only remains to provide an implementation for expose(u), in order
to specify the LCT operations fully.

17



w

v

u

A

B C

D

w

u

v

A

B

C D

u

w v

A B C D

Figure 7: A schematic of a zig-zag rotation: first, node u is rotated around node v; then, node u is
rotated around node w, bringing it two levels higher in the BST without breaking invariants.

LCTs use splay trees as the particular binary search tree implementation to represent each preferred
path. These trees are also designed with “most-recent access” in mind: nodes recently accessed in a
splay tree are likely to get accessed again, therefore any accessed node is turned into the root node of
the splay tree, using the splay(u) operation. The manner in which splay(u) realises its effect is,
in turn, via a sequence of complex tree rotations; such that rotate(u) will perform a rotation that
brings u one level higher in the tree.

We describe these three operations in a bottom-up fashion: first, the lowest-level rotate(u), which
merely requires carefully updating all the pointer information. Depending on whether u is its parent’s
left or right child, a zig or zag rotation is performed—they are entirely symmetrical. Refer to Figure 7
for an example of a zig rotation followed by a zag rotation (often called zig-zag for short).

ROTATE(u)

1 v = p̂u

2 w = p̂v

3 if leftv = u // Zig rotation
4 leftv = rightu
5 if rightu 6= NIL
6 p̂rightu = v

7 rightu = v

8 else // Zag rotation
9 rightv = leftu

10 if leftu 6= NIL
11 p̂leftu = v

12 leftu = v

13 p̂pu = p̂pv
14 p̂v = u

15 p̂pv = NIL
16 if w 6= NIL // Adjust grandparent
17 if leftw = v

18 leftw = u

19 else

20 rightw = u

21 p̂u = w

Armed with the rotation primitive, we may define splay(u) as a repeated application of zig, zig-zig

and zig-zag rotations, until node u becomes the root of its BST6. We also repeatedly perform lazy

propagation by calling release(u) on any encountered nodes.

6Note: this exact sequence of operations is required to achieve optimal amortised complexity.

18



SPLAY(u)

1 while p̂u 6= NIL // Repeat while u is not BST root
2 v = p̂u

3 w = p̂v

4 RELEASE(w) // Lazy propagation
5 RELEASE(v)
6 RELEASE(u)
7 if w = NIL // zig or zag rotation
8 ROTATE(u)
9 if (leftw = v) = (leftv = u) // zig-zig or zag-zag rotation

10 ROTATE(v)
11 ROTATE(u)
12 else // zig-zag or zag-zig rotation
13 ROTATE(u)
14 ROTATE(u)
15 RELEASE(u) // In case u was root node already

Finally, we may define expose(u) as repeatedly interchanging calls to splay(u) (which will render
u the root of its preferred-path BST) and appropriately following path-parents, p̂pu, to fuse u with
the BST above. This concludes the description of the LCT operations.

EXPOSE(u)

1 do

2 SPLAY(u) // Make u root of its BST
3 if rightu 6= NIL // Any deeper nodes than u along preferred path are no longer preferred
4 p̂rightu = NIL // They get cut off into their own BST
5 p̂prightu

= u // This generates a new path-parent into u

6 rightu = NIL
7 w = p̂pu // u is either LCT root or it has gained a path-parent by splaying
8 if w 6= NIL // Attach u into w’s BST
9 SPLAY(w) // First, splay w to simplify operation

10 if rightw 6= NIL // Any deeper nodes than w are no longer preferred; detach them
11 p̂rightw = NIL
12 p̂prightw

= w

13 rightw = u // Convert u’s path-parent into a parent
14 p̂u = w

15 p̂pu = NIL
16 while p̂u 6= u // Repeat until u is root of its LCT

It is worth reflecting on the overall complexity of individual LCT operations, taking into account the
fact they’re propped up on expose(u), which itself requires reasoning about tree rotations, followed
by appropriately leveraging preferred path decompositions. This makes the LCT modelling task
substantially more challenging than DSU.

Remarks on computational complexity and applications As can be seen throughout the analysis,
the computational complexity of all LCT operations can be reduced to the computational complexity
of calling expose(u)—adding only a constant overhead otherwise. splay(u) has a known amortised
complexity of O(log n), for n nodes in the BST; it seems that the ultimate complexity of exposing is
this multiplied by the worst-case number of different preferred-paths encountered.

However, detailed complexity analysis can show that splay trees combined with preferred path
decomposition yield an amortised time complexity of exactly O(log n) for all link/cut tree operations.
The storage complexity is highly efficient, requiring O(1) additional bookkeeping per node.

Finally, we remark on the utility of LCTs for performing path aggregate queries. When calling
expose(u), all nodes from u to the root ⇢u become exposed in the same BST, simplifying com-
putations of important path aggregates (such as bottlenecks, lowest-common ancestors, etc). This
can be augmented into an arbitrary path(u, v) operation by first calling evert(u) followed by
expose(v)—this will expose only the nodes along the unique path from u to v within the same BST.

19



Figure 8: Credit assignment study results for the DSU setup, for the baseline GNN (Top) and the
PGN (Bottom), arranged left-to-right by test graph size. PGNs learn to put larger emphasis on both
the two nodes being operated on (blue) and the nodes on their respective paths-to-roots (green).

Figure 9: Credit assignment study results for the LCT setup, following same convention as Figure 8.

D Credit assignment analysis

Firstly, recall how our decoder network, g, is applied to the latent state (~z(t)i , ~h(t)
i ), in order to derive

predicted query answers, ~y(t)i (Equation 3). Knowing that the elementwise maximisation aggregator
performed the best as aggregation function, we can rewrite Equation 3 as follows:

~y
(t) = g

⇣
max

i
~z
(t)
i ,max

i
~h
(t)
i

⌘
(9)

This form of max-pooling readout has a unique feature: each dimension of the input vectors to g will
be contributed to by exactly one node (the one which optimises the corresponding dimension in ~z

(t)
i

or ~h(t)
i ). This provides us with opportunity to perform a credit assignment study: we can verify how

often every node has propagated its features into this vector—and hence, obtain a direct estimate of
how “useful” this node is for the decision making by any of our considered models.

We know from the direct analysis of disjoint-set union (Section 3) and link/cut tree (Appendix C)
operations that only a subset of the nodes are directly involved in decision-making for dynamic

20



connectivity. These are exactly the nodes along the paths from u and v, the two nodes being operated
on, to their respective roots in the data structure. Equivalently, these nodes directly correspond to the
nodes tagged by ground-truth masks (nodes i for which µ̂

(t)
i = 0).

With the above hindsight, we compare a trained baseline GNN model against a PGN model, in terms
of how much credit is assigned to these “important” nodes, throughout the rollout. The results of this
study are visualised in Figures 8 (for DSU) and 9 (for LCT), visualising separately the credit assigned
to the two nodes being operated on (blue) and the remaining nodes along their paths-to-roots (green).

From these plots, we can make several direct observations:

• In all settings, the PGN amplifies the overall credit assigned to these relevant nodes.
• On the DSU setup, the baseline GNN is likely suffering from oversmoothing effects: at larger

test set sizes, it seems to hardly distinguish the paths-to-root (which are often very short
due to path compression) from the remainder of the neighbourhoods. The PGN explicitly
encodes the inductive bias of the structure, and hence more explicitly models such paths.

• As ground-truth LCT pointers are not amenable to path compression, paths-to-root may more
significantly grow in lengthwith graph size increase. Hence at this point the oversmoothing
effect is less pronounced for baselines; but in this case, LCT operations are highly centered
on the node being operated on. The PGN learns to provide additional emphasis to the nodes
operated on, u and v.

In all cases, it appears that through a careful and targeted constructed graph, the PGN is able to
significantly overcome the oversmoothing issues with fully-connected GNNs, providing further
encouragement for applying PGNs in problem settings where strong credit assignment is required,
one example of which are search problems.

21


