
A Proof of Theorem 1

We show that the n-round Bayes reward of a randomized explore-then-commit policy in 2-armed
Gaussian bandits is concave in the exploration horizon of the policy.
Theorem 1. Consider a 2-armed Gaussian bandit where the reward of arm i in round t is Yi,t ∼
N (µi, 1). Consider an explore-then-commit policy πh with parameter h ∈ W = [1, bn/2c] that
explores each arm h̄ = bhc+Z times for Z ∼ Ber(h−bhc). Then for any prior distribution P over
arm means µ ∈ R2, we have that r(n;πh) is concave in h.

Proof. We start with the explore-then-commit policy [37], which is parameterized by h ∈ [bn/2c]
and works as follows. In the first 2h rounds, it explores and pulls each arm h times. Let µ̂i,h be the
average reward of arm i after h pulls. Then, if µ̂1,h > µ̂2,h, arm 1 is pulled for the remaining n− 2h
rounds. Otherwise arm 2 is pulled.

Fix any problem instance P ∼ P . Without loss of generality, let arm 1 be optimal, that is µ1 > µ2.
Let ∆ = µ1 − µ2. The key observation is that the expected n-round reward in problem instance P
has a closed form

r(n, P ;πh) = µ1n−∆ [h+ P (µ̂1,h < µ̂2,h) (n− 2h)] , (6)

where

P (µ̂1,h < µ̂2,h) = P (µ̂1,h − µ̂2,h < 0) = P (µ̂1,h − µ̂2,h −∆ < −∆)

= Φ
(
−∆

√
h/2
)

=
1√
2π

∫ −∆
√
h/2

x=−∞
e−

x2

2 dx (7)

is the probability of committing to a suboptimal arm after the exploration phase. The third equality is
from the fact that µ̂1,h − µ̂2,h −∆ ∼ N (0, 2/h), where Φ(x) is the cumulative distribution function
of the standard normal distribution.

Our goal is to prove that r(n, P ;πh) is concave in h. We rely on the following property of convex
functions of a single parameter x. Let f(x) and g(x) be non-negative, decreasing, and convex in x.
Then f(x)g(x) is non-negative, decreasing, and convex in x. This follows from

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) ,

(f(x)g(x))′′ = f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x) .

It is easy to see that (7) is non-negative, decreasing, and convex in h. The same is true for n− 2h,
under our assumption that h ∈ [bn/2c]. As a result, P (µ̂1,h < µ̂2,h) (n − 2h) is convex in h, and
so is ∆[h+ P (µ̂1,h < µ̂2,h) (n− 2h)]. Therefore, (6) is concave in h. Finally, the Bayes reward is
concave in h because r(n;πh) = E [r(n, P ;πh)].

The last remaining issue is that parameter h in the explore-then-commit policy cannot be optimized
by GradBand, as it is discrete. To allow for optimization, we extend the explore-then-commit policy
to continuous h by randomized rounding.

The randomized explore-then-commit policy is parameterized by continuous h ∈ [1, bn/2c]. The
discrete h̄ is chosen as h̄ = bhc+ Z, where Z ∼ Ber(h− bhc). Then we execute the original policy
with h̄. The key property of the randomized policy is that its n-round Bayes reward is a piecewise
linear interpolation of that of the original policy,

(dhe − h) r(n;πbhc) + (h− bhc) r(n;πdhe) .

By definition, the above function is continuous and concave in h. This concludes the proof.

14

B Gradient Proofs

Theorem 2. Let bt : [K]t−1 × [0, 1]K×n → R be any function of previous t− 1 pulled arms and all
realized rewards, for any round t ∈ [n]. Then

∇wr(n;πw) =
n∑

t=1

E

[
∇w log πw(It | Ht)

(
n∑

s=t

YIs,s − bt(I1:t−1, Y)

)]
.

Proof. The proof has two parts. First, we show that

∇wr(n;πw) =
n∑

t=1

E

[
∇w log πw(It | Ht)

n∑

s=t

YIs,s

]
. (8)

The n-round Bayes reward can be expressed as r(n;πw) = E [E [
∑n
t=1 YIt,t |Y]], where the outer

expectation is over instances P and their realized rewards Y , which are independent of w. Thus

∇wr(n;πw) = E

[
n∑

t=1

∇wE [YIt,t |Y]

]
.

In the inner expectation, only the pulled arms are random. Therefore, for any t ∈ [n], we have

E [YIt,t |Y] =
∑

i1:t

P (I1:t = i1:t |Y)Yit,t .

The key to our derivations is that the joint probability distribution over pulled arms in the first t
rounds, conditioned on Y , decomposes by the chain rule of probabilities as

P (I1:t = i1:t |Y) =
t∏

s=1

P (Is = is | I1:s−1 = i1:s−1, Y) . (9)

Since the policy does not act based on future rewards, we have for any s ∈ [n] that

P (Is = is | I1:s−1 = i1:s−1, Y) = πw(is | i1:s−1, Yi1,1, . . . , Yis−1,s−1) . (10)

Finally, we use that ∇wf(w) = f(w)∇w log f(w) holds for any non-negative differentiable f . This
identity is known as the score-function identity [5] and is the basis of all policy-gradient methods.
We apply it to E [YIt,t |Y] and obtain

∇wE [YIt,t |Y] =
∑

i1:t

Yit,t∇wP (I1:t = i1:t |Y)

=
∑

i1:t

Yit,t P (I1:t = i1:t |Y)∇w logP (I1:t = i1:t |Y)

=
t∑

s=1

E [YIt,t∇w log πw(Is | Hs) |Y] ,

where the last equality follows from (9) and (10). Now we chain all equalities to obtain the reward
gradient

∇wr(n;πw) =
n∑

t=1

t∑

s=1

E [YIt,t∇w log πw(Is | Hs)] =
n∑

t=1

E

[
∇w log πw(It | Ht)

n∑

s=t

YIs,s

]
.

This concludes the first part of the proof.

Now we argue that bt does not change anything. Since bt depends only on I1:t−1 and Y ,

E [bt(I1:t−1, Y)∇w log πw(It | Ht)] = E [bt(I1:t−1, Y)E [∇w log πw(It | Ht) | I1:t−1, Y]] .

15

Now note that

E [∇w log πw(It | Ht) | I1:t−1, Y] =
K∑

i=1

P (It = i | I1:t−1, Y)∇w log πw(i | Ht)

=
K∑

i=1

πw(i | Ht)∇w log πw(i | Ht)

= ∇w
K∑

i=1

πw(i | Ht) = 0 .

The last equality follows from
∑K
i=1 πw(i | Ht) = 1, which is a constant independent of w. This

concludes the proof.

Lemma 3. Define πi,t as in (4). Let η = w/K, Vi,t = exp[wSi,t/K], and Vt =
∑K
j=1 Vj,t. Then

∇w log πi,t =
1

πi,t

Vi,t
Vt

(1− w)

Si,t
K
−

K∑

j=1

Vj,t
Vt

Sj,t
K

− 1

+

1

K

 .

Proof. First, we express the derivative of log πi,t with respect to w as

∇w log πi,t =
1

πi,t
∇wπi,t =

1

πi,t

[
(1− w)∇w

Vi,t
Vt
− Vi,t

Vt
+

1

K

]
.

Conditioned on the history, Si,t is a constant independent of w, and thus we have

∇w
Vi,t
Vt

=
1

Vt
∇wVi,t + Vi,t∇w

1

Vt
=
Vi,tSi,t
VtK

− Vi,t
V 2
t

K∑

j=1

Vj,t
Sj,t
K

=
Vi,t
Vt

Si,t
K
−

K∑

j=1

Vj,t
Vt

Sj,t
K

 .

This concludes the proof.

16

C Analysis of SoftElim

We informally justify SoftElim in Appendix C.1. Then we bound its regret in Appendix C.2.

C.1 Informal Analysis

We start with an informal argument in a 2-armed bandit. Let arm 1 be optimal, that is µ1 > µ2. Let
∆ = µ1 − µ2 be the gap. Fix any round t by which arm 2 has been pulled “often”, so that we get
T2,t−1 = Ω(∆−2 log n) and µ̂2,t−1 ≤ µ2 + ∆/3 with a high probability. Let

µ̂max,t = max {µ̂1,t, µ̂2,t} .

Now consider two cases. First, when µ̂max,t−1 = µ̂1,t−1, arm 1 is pulled with probability of at least
0.5, by the definition of π1,t. Second, when µ̂max,t−1 = µ̂2,t−1, we have

π1,t = exp[−2(µ̂2,t−1 − µ̂1,t−1)2T1,t−1]π2,t ≥ exp[−2(µ1 − µ̂1,t−1)2T1,t−1]π2,t ,

where the last inequality follows from µ̂1,t−1 ≤ µ̂2,t−1 ≤ µ2 + ∆/3 ≤ µ1 and holds with a high
probability. This means that arm 1 is pulled “sufficiently often” relative to arm 2, proportionally
to the deviation of µ̂1,t−1 from µ1. Therefore, SoftElim eventually enters a regime where arm 1
has been pulled “often”, so that T1,t−1 = Ω(∆−2 log n) and µ̂1,t−1 ≥ µ1 −∆/3 holds with a high
probability. Then both S1,t = 0 and S2,t = Ω(log n) hold with a high probability, and arm 2 is
unlikely to be pulled.

C.2 Regret Bound

We bound the n-round regret of SoftElim below.

Theorem 4. Let P be any K-armed bandit problem where arm 1 is optimal, that is µ1 > maxi>1 µi.
Let ∆i = µ1 − µi and w =

√
8. Then R(n, P ;πw) ≤∑K

i=2(2e+ 1)
(
16∆−1

i log n+ ∆i

)
+ 5∆i.

Proof. Each arm is initially pulled once. Therefore,

R(n, P ;πw) =
K∑

i=2

∆i

(
n∑

t=K+1

P (It = i) + 1

)
.

Now we decompose the probability of pulling each arm i as

n∑

t=K+1

P (It = i) =
n∑

t=K+1

P (It = i, Ti,t−1 ≤ m) +

n∑

t=K+1

P (It = i, Ti,t−1 > m,T1,t−1 ≤ m) +

n∑

t=K+1

P (It = i, Ti,t−1 > m,T1,t−1 > m) ,

where m is chosen later. In the rest of the proof, we bound each above term separately. To simplify
notation, use γ = 1/w2 in instead of w2.

C.3 Upper Bound on Term 1

Fix suboptimal arm i. Since Ti,t = Ti,t−1 + 1 on event It = i and arm i is initially pulled once, we
have

n∑

t=K+1

P (It = i, Ti,t−1 ≤ m) ≤ m− 1 . (11)

17

C.4 Upper Bound on Term 3

Fix suboptimal arm i and round t. Let

E1,t =

{
µ̂1,t−1 > µ1 −

∆i

4

}
, Ei,t =

{
µ̂i,t−1 < µi +

∆i

4

}
,

be the events that empirical means of arms 1 and i, respectively, are “close” to their means. Then

P (It = i, Ti,t−1 > m,T1,t−1 > m)

≤ P (It = i, Ti,t−1 > m,E1,t) + P
(
Ē1,t, T1,t−1 > m

)

≤ P (It = i, Ti,t−1 > m,E1,t, Ei,t) + P
(
Ē1,t, T1,t−1 > m

)
+ P

(
Ēi,t, Ti,t−1 > m

)
.

Let m =
⌈
16∆−2

i log n
⌉
. By the union bound and Hoeffding’s inequality, we get

P
(
Ē1,t, T1,t−1 > m

)
≤

n∑

s=m+1

P
(
µ1 − µ̂1,t−1 ≥

∆i

4
, T1,t−1 = s

)
< n exp

[
−2

∆2
i

16
m

]
= n−1 ,

P
(
Ēi,t, Ti,t−1 > m

)
≤

n∑

s=m+1

P
(
µ̂i,t−1 − µi ≥

∆i

4
, Ti,t−1 = s

)
< n exp

[
−2

∆2
i

16
m

]
= n−1 .

It follows that

P (It = i, Ti,t−1 > m,T1,t−1 > m) ≤ P (It = i, Ti,t−1 > m,E1,t, Ei,t) + 2n−1 .

Now note that µ̂1,t−1 − µ̂i,t−1 ≥ ∆i/2 on events E1,t and Ei,t. Let

µ̂max,t−1 = max
i∈[K]

µ̂i,t−1 (12)

be the highest empirical mean in round t. Since µ̂max,t−1 ≥ µ̂1,t−1, we have µ̂max,t−1 − µ̂i,t−1 ≥
∆i/2. Therefore, on event Ti,t−1 > m, we get

pi,t ≤ exp[−2γ(µ̂max,t−1 − µ̂i,t−1)2Ti,t−1] ≤ exp

[
−2γ

∆2
i

4
m

]
≤ n−8γ . (13)

Finally, we chain all inequalities over all rounds and get that term 3 is bounded as
n∑

t=K+1

P (It = i, Ti,t−1 > m,T1,t−1 > m) ≤ n1−8γ + 2 . (14)

C.5 Upper Bound on Term 2

Fix suboptimal arm i and round t. First, we apply Hoeffding’s inequality to arm i, as in Appendix C.4,
and get

P (It = i, Ti,t−1 > m,T1,t−1 ≤ m) ≤ P (It = i, Ti,t−1 > m,T1,t−1 ≤ m,Ei,t) + n−1

= E [pi,t1{Ti,t−1 > m,T1,t−1 ≤ m,Ei,t}] + n−1 .

Let µ̂max,t−1 be defined as in (12). Now we bound pi,t from above using p1,t. We consider two
cases. First, suppose that µ̂max,t−1 > µ1 − ∆i/4. Then we have (13). On the other hand, when
µ̂max,t−1 ≤ µ1 −∆i/4, we have

pi,t =
exp[−2γ(µ̂max,t−1 − µ̂i,t−1)2Ti,t−1]

exp[−2γ(µ̂max,t−1 − µ̂1,t−1)2T1,t−1]
p1,t ≤ exp[2γ(µ1 − µ̂1,t−1)2T1,t−1]p1,t . (15)

It follows that

pi,t ≤ exp[2γ(µ1 − µ̂1,t−1)2T1,t−1]p1,t + n−8γ ,

and we further get that

E [pi,t1{Ti,t−1 > m,T1,t−1 ≤ m,Ei,t}]
≤ E

[
exp[2γ(µ1 − µ̂1,t−1)2T1,t−1]p1,t1{T1,t−1 ≤ m}

]
+ n−8γ

= E
[
exp[2γ(µ1 − µ̂1,t−1)2T1,t−1]1{It = 1, T1,t−1 ≤ m}

]
+ n−8γ .

18

With a slight abuse of notation, let µ̂1,s denote the average reward of arm 1 after s pulls. Then, since
T1,t = T1,t−1 + 1 on event It = 1, we have

n∑

t=K+1

E
[
exp[2γ(µ1 − µ̂1,t−1)2T1,t−1]1{It = 1, T1,t−1 ≤ m}

]
≤

m∑

s=1

E
[
exp[2γ(µ1 − µ̂1,s)

2s]
]
.

Now fix the number of pulls s and note that

E
[
exp[2γ(µ1 − µ̂1,s)

2s]
]
≤
∞∑

`=0

P
(
`+ 1√
s
> |µ1 − µ̂1,s| ≥

`√
s

)
exp[2γ(`+ 1)2]

≤
∞∑

`=0

P
(
|µ1 − µ̂1,s| ≥

`√
s

)
exp[2γ(`+ 1)2]

≤ 2
∞∑

`=0

exp[2γ(`+ 1)2 − 2`2] ,

where the last step is by Hoeffding’s inequality. The above sum can be easily bounded for any γ < 1.
In particular, for γ = 1/8, the bound is

∞∑

`=0

exp

[
(`+ 1)2

4
− 2`2

]
≤ e 1

4 +
∞∑

`=1

2−` ≤ e .

Now we combine all above inequalities and get that term 2 is bounded as
n∑

t=K+1

P (It = i, Ti,t−1 > m,T1,t−1 ≤ m) ≤ 2em+ n1−8γ + 1 . (16)

Finally, we chain (11), (14), and (16); and use that m ≤ 16∆−2
i log n+ 1.

19

0 20 40 60 80 100
GradBand iteration `

1

2

4

8

16

Ba
ye

s r
eg

re
t

(a) Beta bandit (K = 2, ¢ = 0.2)

Exp3
SoftElim
TS
Gittins

0 20 40 60 80 100
GradBand iteration `

8

16

32

64

128

256

Ba
ye

s r
eg

re
t

(b) Bernoulli bandit (K = 10, beta prior)

Exp3
SoftElim
TS

0 20 40 60 80 100
GradBand iteration `

8

16

32

64

128

256

Ba
ye

s r
eg

re
t

(c) Beta bandit (K = 10, beta prior)

Exp3
SoftElim
TS

Figure 4: The Bayes regret of Exp3 and SoftElim policies, as a function of GradBand iterations.
We report the average over 20 runs.

100 200 500 1000
Batch size m

5

10

15

20

25

30

Ba
ye

s r
eg

re
t

(a) Scaling with batch size

Bernoulli
Beta

200 500 1000 2000
Horizon n

5

10

15

20

25

30

Ba
ye

s r
eg

re
t

(b) Scaling with horizon n

Bernoulli
Beta

1 2 3 4 5 6 7 8 9
Train Beta(®, 10 - ®)

10
20
30
40
50
60
70
80

Ba
ye

s r
eg

re
t

(c) Prior misspecification

Test Beta(1, 9)
Test Beta(3, 7)
Test Beta(5, 5)
Test Beta(7, 3)
Test Beta(9, 1)

Figure 5: Robustness to batch size m, horizon n, and prior misspecification.

D Supplementary Experiments

We conduct additional experiments in this section.

D.1 More Complex Problems

Now we apply GradBand to three additional problems. The first problem is a beta bandit, where the
rewards of arm i are drawn from Beta(vµi, v(1− µi)) and v = 4 controls the variance of rewards.
The remaining parameters of the problem are set as in the Bernoulli bandit in Section 6.2. The
remaining two problems are variants of Bernoulli and beta bandits, where the number of arms is
K = 10, their mean rewards are drawn as µi ∼ Beta(1, 1), and the horizon is n = 1 000. These
problems are more challenging variants of our earlier problems, with 2 arms and a fixed gap.

The regret of our policies is reported in Figure 4. In all problems, the regret of SoftElim is lower
than that of TS, which is a highly competitive baseline. The most significant improvements are in
beta bandits, where SoftElim adapts to the lower variance of rewards. The poor performance of TS
is due to the Bernoulli rounding in the algorithm (Section 6.2), which replaces low-variance beta
rewards with high-variance Bernoulli rewards. As observed earlier, tuned Exp3 is not competitive.

D.2 Robustness to Model and Algorithm Parameters

This section presents three experiments, which show the robustness of SoftElim to the setting of its
parameters and model misspecification. These experiments are conducted on the larger Bernoulli and
beta problems in Appendix D.1.

In Figure 5a, we report the n-round regret of tuned SoftElim as a function of batch size m in
GradBand. We observe that the mean regret, across all runs, is relatively stable as we decrease the
batch size from 1000 to 100. The variance increases though. Setting m = 100 reduces the run time
of GradBand ten fold, when compared to m = 1 000 used in our earlier experiments.

In Figure 5b, we report the n-round regret of tuned SoftElim as we vary the horizon n, from 200
to 2 000 rounds. We observe that the regret is roughly linear in log n. This scaling is theoretically
optimal. We expect it when the variance of gradients does not dominate GradBand, and thus
GradBand can equally well optimize policies at shorter and longer horizons.

20

Figure 2c 4a 4b 4c 3a 3b
Gittins index 3.89± 0.07 3.89± 0.07 x x 3.89± 0.07 2.26± 0.04
TS 5.47± 0.05 5.47± 0.05 28.06± 0.45 28.06± 0.45 5.47± 0.05 3.50± 0.03
UCB1 9.95± 0.03 9.95± 0.03 129.09± 0.60 129.09± 0.60 9.95± 0.03 8.52± 0.03
UCB-V 15.79± 0.03 289.82± 1.90 276.07± 1.65 15.79± 0.03 19.03± 0.10

Table 1: The Bayes regret of baseline bandit algorithms in Figures 2, 3 and 4. The crosses mark
computationally-prohibitive experiments.

In Figure 5c, we investigate the robustness of tuned SoftElim to prior misspecification. In particular,
we tune SoftElim on a Bernoulli bandit where µi ∼ Beta(α, 11 − α) for α ∈ [10] and measure
its n-round regret on a Bernoulli bandit with another α. We observe that the regret increases when
we train and test on different problems. For instance, when we train and test on µi ∼ Beta(1, 9),
the regret is about 30. However, when we train on µi ∼ Beta(9, 1), the regret increases to about 50.
Nevertheless, we do not observe catastrophic failures, which would happen if the regret increased by
an order of magnitude. We conclude that GradBand is relatively robust to prior misspecification.

21

E RNN Implementation

We carry out the RNN experiments using PyTorch framework. In this paper, we restrict ourselves
to binary 0/1 rewards. For all experiments, our policy network is a single layer LSTM followed by
LeakyRELU non-linearity and a fully connected layer. We use the fixed LSTM latent state dimension
of 50, irrespective of numbers of arms. The implementation of the policy network is provided in the
code snippet below:

1 class RecurrentPolicyNet(nn.Module):
2 def __init__(self, K=2, d=50):
3 super(RecurrentPolicyNet, self).__init__()
4 self.action_size = K # Number of arms
5 self.hidden_size = d
6 self.input_size = 2*d
7

8 self.arm_emb = nn.Embedding(K, self.hidden_size) # Number of arms
9 self.reward_emb = nn.Embedding(2, self.hidden_size) # For 0 reward

or 1 reward
10 self.rnn = nn.LSTMCell(input_size=self.input_size,
11 hidden_size=self.hidden_size)
12 self.relu = nn.LeakyReLU()
13 self.linear = nn.Linear(self.hidden_size, self.action_size)
14

15 self.hprev = None
16

17 def reset(self):
18 self.hprev = None
19

20 def forward(self, action, reward):
21 arm = self.arm_emb(action)
22 rew = self.rew_emb(reward)
23

24 inp = torch.cat((arm, rew), 1)
25 h = self.rnn(inp, self.hprev)
26 self.hprev = h
27

28 h = self.relu(h[0])
29 y = self.linear(h)
30

31 return y

Listing 1: Policy Network

To train the policy we use the proposed GradBand algorithm as presented in Alg. 1. We used a
batch-size m = 500 for all experiments. Along with theoretically motivated steps, we had to apply a
few practical tricks:

• Instead of SGD, we used adaptive optimizers like Adam or Yogi [63].

• We used an exponential decaying learning rate schedule. We start with a learning rate of
0.001 and decay every step by a factor of 0.999.

• We used annealing over the probability to play an arm. This encourages exploration in early
phase of training. In particular we used temperature = 1/(1 − exp(−5i/L)), where i is
current training iteration and L is the total number of training iterations.

• We applied curriculum learning as described in Section 6.4.

Our training procedure is highlighted in the code snippet below.

1 optimizer = torch.optim.Adam(policy.parameters(), lr=0.001)
2 scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.999)
3

4 ...
5

6 probs = rnn_policy_network(previous_action, previous_reward)

22

7 m = Categorical(probs/temperature) # probability over K arms with
temperature

8 action = m.sample() # select one arm
9 reward = bandit.play(action) # receive reward

10

11 ...
12

13 loss = -m.log_prob(action) * (cummulative_reward - baseline) # Eq (3)
14 loss.backward() # Eq (9)
15 optimizer.step()
16 scheduler.step()
17

18 ...

Listing 2: Training overview

23

