
Appendix for "MomentumRNN: Integrating Momentum into Recurrent Neural Networks"

A Experimental Details
In this section, we describe the datasets used in our experiments and provide details on the model
implementation and training. MomentumLSTM, AdamLSTM, RMSPropLSTM, and SRLSTM, as
well as MomentumDTRIV, AdamDTRIV, RMSPropDTRIV, and SRDTRIV share the same settings
as their LSTM/DTRIV counterparts with the additional momentum µ, step size s, scheduled restart
F , and the coefficient β used for computing running averages of the squared gradients. Thus, we
only provide implementation and training details for the baseline LSTM and DTRIV for each task.
Values for additional hyperparameters in our momentum-based models are found by grid search and
reported in Table 7, 8, 9, and 10.

A.1 Pixel-by-Pixel MNIST
MNIST dataset [33] consists of 60K training images and 10K test images from 10 classes of hand-
written digits. Both training and test data are binary images of size 28 × 28. As mentioned in
Section 3.1, we flatten and process the image as a sequence of the length of 784 pixel-by-pixel. In
the unpermuted task (MNIST), the images are processed row-by-row, while in the permuted task
(PMNIST), a fixed permutation is applied to both training and test images.

LSTM. The baseline LSTM models consist of one LSTM cell with 128 and 256 hidden units.
Orthogonal initialization is used for input-to-hidden weights, while hidden-to-hidden weights are
initialized to identity matrices. The forget gate bias is initialized to 1 while all other bias scalars
are initialized to 0. We follow LSTM training in [34, 6] to train LSTM models for the MNIST and
PMNIST tasks. Gradient norms are clipped to 1 during training, and the smoothing constant α for
the RMSProp optimizer is set to 0.9. We provide other details on hyperparameters for the LSTM
training on (P)MNIST in Table 6 (top).

DTRIV. We use the best DTRIV models for each (P)MNIST task reported in [6] with Cayley
initialization [22]. The gradient norms are clipped to 1 during training. Other hyperparameter details
are provided in Table 6 (bottom).

A.2 TIMIT Speech Dataset
TIMIT speech dataset is a collection of real-world speech recordings [16] consisting of 3640 utter-
ances for the training set, 192 utterances for the validation set, and 400 utterances for the test set. We
follow the data preprocessing in [62, 6, 34, 22]. In particular, audio files in TIMIT are downsampled
to 8kHz. A short-time Fourier transform (STFT) is then applied with a Hann window of 256 samples
and a window hop of 128 samples (16 milliseconds) to yield sequences of 129 complex-valued
Fourier amplitudes. The log-magnitude of these sequences is fed into the models as the input data.
The task is to predict the next log-magnitude given the previous ones.

LSTM. The baseline LSTM models consist of one LSTM cell with 84, 120, and 158 hidden units.
Similar to (P)MNIST experiments, orthogonal initialization is used for input-to-hidden weights,
while hidden-to-hidden weights are initialized to identity matrices. However, the forget gate bias is
initialized to -4 while all other bias scalars are initialized to 0. We follow LSTM training in [34, 6] to
train LSTM models for the TIMIT tasks. We use the standard Adam optimizer in PyTorch [48] to
train the models without using gradient clipping. We provide other details on hyperparameters for the
LSTM training on TIMIT in Table 6 (top).

DTRIV. We use the best DTRIV models for each TIMIT task reported in [6] with Henaff initializa-
tion [23]. Other hyperparameter details are provided in Table 6 (bottom).

A.3 Word-Level Penn TreeBank
The Penn TreeBank (PTB) dataset is among the most popular datasets for experimenting with
language modeling. The dataset has 10,000 unique words and is preprocessed to not include capital
letters, numbers, or punctuation [39].

LSTM. The baseline are three-layer LSTM models with 1150 hidden units at each layer and an
embedding of size 400. We follow the LSTM implementation and training in [37]. We summarize
some important details in Table 6 (top).

A.4 Copying and Adding Tasks
We define the copying and adding tasks in Section 3.3 as follows.

14

Copying task. In the copying task, we consider a set A of N alphabet, e.g. A =
{ak}Nk=1, and let <start> and <blank> be two symbols not contained in A. For a sequence

Copying	Task

MomentumLSTM vs. LSTM: Copying Task

Iteration
Tr

ai
n

Lo
ss

Te
st

 Lo
ss

Iteration

Tr
ai

n
Lo

ss

Iteration

Te
st

 Lo
ss

Iteration

MomentumLSTM AdamLSTM RMSPropLSTM SRLSTM LSTM

Sequence of Length 1K Sequence of Length 2K

Input:				14221--------------------:----

Output:	-------------------------14221

1.	Consider	set	A	of	N	alphabets,	e.g.	A	=	{1,2,3,4},	N=4

2.	The	alphabet	character	sequence	of	length	K	is	sampled	i.i.d.	

uniformly	from	A,	e.g.	14221,	K=5

3.	The	input	is	the	character	sequence	followed	by	L	“blank”	

characters,	a	“start”	character,	and	then	K-1	“blank”	characters.

Task: output	a	sequence	containing	K	+	L	“blank”	characters	
followed	by	the	alphabet	character	sequence,	e.g.	14211

L	<blank> K-1	<blank>

L	+	K	<blank>

:	<start>

Figure 8: An example of input and out-
put in the copying task.

of K ordered characters sampled i.i.d. uniformly from
A and a spacing length L, the input sequence is the K
characters followed by L <blank> characters, a <start>
character, and thenK−1 <blank> characters. The task is
to output a sequence containingK+L <blank> characters
followed by the alphabet character sequence of length
K. For example, let A = {1, 2, 3, 4}, K = 5, L = 20,
<start> =:, and <blank> = −, an input sequence and
its corresponding output sequence is given in Figure 8.

Adding task. We follow the adding problem as proposed in [1], which is a variation of the similar
problem in [24]. In particular, in this task, two sequences of length T are concurrently passed into
an RNN. The first sequence consists of ordered digits sampled uniformly from a half-open interval
U [0, 1]. The second sequence contains all zeros except for two entries that are marked by 1. The
location of the first and second 1 is uniformly chosen within the interval [1, T/2] and [T/2, T],
respectively. We label each pair of sequences by the sum of the two entries in the first sequence that
are marked by 1’s in the second sequence.

LSTM. The baseline LSTM models for the copying and adding tasks consist of one LSTM cell with
190 and 128 hidden units, respectively. Orthogonal initialization is used for input-to-hidden weights,
while hidden-to-hidden weights are initialized to identity matrices. The forget gate bias is initialized
to 1 while all other bias scalars are initialized to 0. We follow LSTM training in [34] and [35] to train
LSTM models for the copying and adding tasks, respectively. We provide details on hyperparameters
for the LSTM training on the copying task in Table 6 (top).

A.5 Momentum Cells can Avoid Vanishing Gradient Issue

To confirm that MomentumRNN can alleviate vanishing gradients, we train a MomentumDTRIV
and its corresponding baseline DTRIV for the PMNIST classification task. We plot ‖∂L/∂ht‖2 for
each time step t at each training iteration, as shown in Figure 2. Both MomentumDTRIV and DTRIV
models used in this experiment contains one cell of 170 hidden units. The model implementation
and training details are similar to those in Section A.1 above. Note that DTRIV is also an RNN with
additional orthogonality constraint.

B Backpropagation Through Time – A Review
In this section, we give a short review of the backpropagation through time, which is a major algorithm
for training RNNs. We consider the standard recurrent cell (1), and for any given training sample
(x,y) with x = (x1, · · · ,xT) being an input sequence of length T and y = (y1, · · · , yT) being the
sequence of labels 4. Let Lt be the loss at the time step t and the total loss on the whole sequence is

L =

T∑

t=1

Lt. (16)

For any 1 ≤ t ≤ T , we can compute the gradient of the loss Lt with respect to the parameter U as

∂Lt

∂U
=

t∑

k=1

∂hk

∂U
· ∂Lt

∂ht
· ∂ht

∂hk
=

t∑

k=1

∂hk

∂U
· ∂Lt

∂ht
·
t−1∏

k=1

∂hk+1

∂hk
, (17)

where ∂hk+1

∂hk
= DkUT with Dk = diag(σ′(Uhk + Wxk+1 + b)). Similarly, we can compute

∂Lt/∂W and ∂Lt/∂b.

4Without loss of generality, we consider the sequence to sequence modeling.

15

Table 6: Hyperparameters for the Baseline LSTM and DTRIV Training.

LSTM

Dataset Optimizer Learning Rate Batch Size #Epochs

MNIST RMSProp 0.001 128 150
PMNIST RMSProp 0.001 128 150
TIMIT Adam 0.0001 32 700
PTB SGD 30 (initial learning rate) 20 500
Copying RMSprop 0.0002 128 7000
Adding Adam 0.0002 50 1200

DTRIV

Dataset Size DTRIV Optimizer Learning Orthogonal Orthogonal Batch #Epochs
Opt. Rate Optimizer Learning Size

Step (K) Rate

MNIST 170 1 0.001 0.0001 128 150
MNIST 360 ∞ RMSProp 0.0005 RMSProp 0.0001 128 150
MNIST 512 100 0.0005 0.0001 128 150

PMNIST 170 1 0.0007 0.0002 128 150
PMNIST 360 ∞ RMSProp 0.0007 RMSProp 0.00005 128 150
PMNIST 512 ∞ 0.0003 0.00007 128 150

TIMIT 224 ∞ Adam 0.001 RMSProp 0.0002 128 700
TIMIT 322 ∞ 0.001 0.0002 128 700

Table 7: Hyperparameters for MomentumLSTM and MomentumDTRIV Training

MomentumLSTM

Dataset Momentum µ Step Size s Optimizer Learning Rate Batch Size #Epochs

MNIST 0.6 0.6 RMSProp 0.001 128 150
PMNIST 0.6 1.0 RMSProp 0.001 128 150
TIMIT 0.3 0.1 Adam 0.0001 32 700
PTB 0.0 0.6 SGD 30 (initial learning rate) 20 500
Copying (sequence length 1K) 0.6 0.9 RMSprop 0.0002 128 7000
Copying (sequence length 2K) 0.9 2.0 RMSprop 0.0002 128 7000
Adding 0.9 2.0 Adam 0.0002 50 1200

MomentumDTRIV

Dataset Size DTRIV Momentum Step Size Optimizer Learning Orthogonal Orthogonal Batch #Epochs
Opt. µ s Rate Optimizer Learning Size

Step (K) Rate

PMNIST 170 1 0.6 0.9 0.0007 0.0002 128 150
PMNIST 360 ∞ 0.3 0.3 RMSProp 0.0007 RMSProp 0.00005 128 150
PMNIST 512 ∞ 0.3 0.3 0.0003 0.00007 128 150

TIMIT 224 ∞ 0.3 0.1 Adam 0.001 RMSProp 0.0002 128 700
TIMIT 322 ∞ 0.3 0.1 0.001 0.0002 128 700

Table 8: Hyperparameters for AdamLSTM and AdamDTRIV Training

AdamLSTM

Dataset Optimizer Momentum µ Step Size s β Learning Rate Batch Size #Epochs

MNIST RMSProp 0.6 0.6 0.1 0.001 128 150
PMNIST RMSProp 0.6 1.0 0.01 0.001 128 150
TIMIT Adam 0.3 0.1 0.999 0.0001 32 700
Copying (sequence length 1K) RMSprop 0.6 2.0 0.999 0.0002 128 7000
Copying (sequence length 2K) RMSprop 0.6 2.0 0.999 0.0002 128 7000
Adding Adam 0.6 2.0 0.999 0.0002 50 1200

AdamDTRIV

Dataset Size DTRIV Momentum Step Size β Optimizer Learning Orthogonal Orthogonal Batch #Epochs
Opt. µ s Rate Optimizer Learning Size

Step (K) Rate

PMNIST 512 ∞ 0.3 0.3 0.8 RMSProp 0.0003 RMSProp 0.00007 128 150

16

Table 9: Hyperparameters for RMSPropLSTM and RMSPropDTRIV Training

RMSPropLSTM

Dataset Optimizer Momentum µ Step Size s β Learning Rate Batch Size #Epochs

MNIST RMSProp 0.0 0.6 0.9 (sizeN = 256) 0.001 128 150
0.99 (sizeN = 128)

PMNIST RMSProp 0.0 1.0 0.01 0.001 128 150
TIMIT Adam 0.0 0.1 0.999 0.0001 32 700
Copying (sequence length 1K) RMSprop 0.0 2.0 0.999 0.0002 128 7000
Copying (sequence length 2K) RMSprop 0.0 2.0 0.999 0.0002 128 7000
Adding Adam 0.0 2.0 0.999 0.0002 50 1200

RMSPropDTRIV

Dataset Size DTRIV Momentum Step Size β Optimizer Learning Orthogonal Orthogonal Batch #Epochs
Opt. µ s Rate Optimizer Learning Size

Step (K) Rate

PMNIST 512 ∞ 0.0 0.3 0.9 RMSProp 0.0003 RMSProp 0.00007 128 150

Table 10: Hyperparameters for SRLSTM and SRDTRIV Training

SRLSTM

Dataset Optimizer Scheduled Step Size s Learning Rate Batch Size #Epochs
Restart (F)

MNIST RMSProp 2 1.0 0.001 128 150
PMNIST RMSProp 40 (sizeN = 256) 0.9 (sizeN = 256) 0.001 128 150

6 (sizeN = 128) 0.01 (sizeN = 128)
TIMIT Adam 2 0.1 0.0001 32 700
PTB SGD 2 0.6 30 (initial learning rate) 20 500
Copying RMSprop 100 0.9 0.0002 128 7000
(sequence length 1K)
Copying RMSprop 100 0.9 0.0002 128 7000
(sequence length 2K)
Adding Adam 100 0.9 0.0002 50 1200

SRDTRIV

Dataset Size DTRIV Scheduled Step Size Optimizer Learning Orthogonal Orthogonal Batch #Epochs
Opt. Restart (F) s Rate Optimizer Learning Size

Step (K) Rate

PMNIST 512 ∞ 2 0.3 RMSProp 0.0003 RMSProp 0.00007 128 150

C More Experimental Results
We conduct more comprehensive experiments for the Adam principled and NAG principled RNNs. In
particular, we perform (P)MNIST and TIMIT experiments using the AdamLSTM, RMSPropLSTM,
and SRLSTM of 128 and 120 hidden units, respectively. For (P)MNIST task, RMSPropLSTM
achieves the best test accuracy and converges the fastest. For the TIMIT task, MomentumLSTM and
SRLSTM outperform the other models while converging faster. We summarize our results in Table 11
and 12, as well as in Figure 9. Note that in the main text, we conduct the same experiments using the
same models but with different numbers of hidden units (i.e. 256 hidden units for the (P)MNIST task
and 158 hidden units for the TIMIT task).

Furthermore, we provide additional results on copying task for sequences of length 1K in comparison
with those for sequences of length 2K as in the main text. In addition to training losses, we also
include test losses in in Figure 10.

Finally, we apply our Adam and NAG principled designing methods on a DTRIV, an orthogonal
RNN [6], for the PMNIST classification task. We observe that AdamDTRIV, RMSPropDTRIV, and
SRDTRIV outperform the baseline DTRIV while converging faster. SRDTRIV also outperforms
MomentumDTRIV. We summarize our results in Table 13 and Figure 11. Hyperparameter values for
this experiment can be found in Table 8, 9, and 10 (bottom).

17

Table 11: Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline results
reported in [22], [62], [60]. All of our proposed models outperform the baseline LSTM. Among the
models using N = 128 hidden units, RMSPropLSTM yields the best results in both tasks.

MODEL N # PARAMS MNIST PMNIST

LSTM 128 ≈ 68K 98.70[22],97.30 [60] 92.00 [22],92.62 [60]

MOMENTUMLSTM 128 ≈ 68K 99.04± 0.04 93.40± 0.25

ADAMLSTM 128 ≈ 68K 98.98± 0.08 93.75± 0.25
RMSPROPLSTM 128 ≈ 68K 99.09± 0.05 94.32± 0.43
SRLSTM 128 ≈ 68K 98.89± 0.08 93.65± 0.56

Table 12: Test and validation MSEs at the end of the epoch with the lowest validation MSE for
the TIMIT task. All of our proposed models outperform the baseline LSTM. Among models using
N = 120 hidden units, MomentumLSTM performs the best.

MODEL N # PARAMS VAL. MSE TEST MSE

LSTM 120 ≈ 135K 11.77± 0.14 (13.93 [22, 34]) 11.83± 0.12 (12.95 [22, 34])

MOMENTUMLSTM 120 ≈ 135K 8.00± 0.30 8.04± 0.30

ADAMLSTM 120 ≈ 135K 10.91± 0.08 10.96± 0.08
RMSPROPLSTM 120 ≈ 135K 11.83± 0.20 11.90± 0.19
SRLSTM 120 ≈ 135K 8.15± 0.26 8.21± 0.26

MomentumLSTM vs. LSTM: Loss (N=128, 120)

Iteration

T
ra

in
 L

o
s
s MNIST

T
e

s
t

L
o

s
s

Epoch

MNIST

T
ra

in
 L

o
s
s

Iteration

TIMIT

T
e

s
t

L
o

s
s

Epoch

TIMIT

MomentumLSTM AdamLSTM RMSPropLSTM SRLSTM LSTM

Figure 9: Train and test loss of MomentumLSTM (blue), AdamLSTM (green), RMSPropLSTM
(orange), SRLSTM (cyan), and LSTM (red) using N = 128 hidden units for MNIST (left two panels)
and using N = 120 hidden units for TIMIT (right two panels) tasks. MomentumLSTM converges
faster than LSTM in both tasks. RMSPropLSTM and MomentumLSTM/SRLSTM converge the
fastest for MNIST and TIMIT tasks, respectively.

Copying	Task

MomentumLSTM vs. LSTM: Copying Task

Iteration

Tr
ai

n
Lo

ss

Te
st

 Lo
ss

Iteration

Tr
ai

n
Lo

ss

Iteration

Te
st

 Lo
ss

Iteration

MomentumLSTM AdamLSTM RMSPropLSTM SRLSTM LSTM

Sequence of Length 1K Sequence of Length 2K

Input:				14221--------------------:----

Output:	-------------------------14221

1.	Consider	set	A	of	N	alphabets,	e.g.	A	=	{1,2,3,4},	N=4

2.	The	alphabet	character	sequence	of	length	K	is	sampled	i.i.d.	

uniformly	from	A,	e.g.	14221,	K=5

3.	The	input	is	the	character	sequence	followed	by	L	“blank”	

characters,	a	“start”	character,	and	then	K-1	“blank”	characters.

Task: output	a	sequence	containing	K	+	L	“blank”	characters	
followed	by	the	alphabet	character	sequence,	e.g.	14211

L	“blank” K-1	“blank”

L	+	K	“blank”

:	“start”

Figure 10: Train test loss vs. iteration for copying task with sequence length 1K (left) and 2K
(right). AdamLSTM and RMSPropLSTM converge faster and to better final losses than other models.
MomentumLSTM and SRLSTM converge to similar losses as LSTM.

18

Table 13: Best test accuracy on the PMNIST tasks (%) for MomentumDTRIV and the baseline DTRIV,
as well as for AdamDTRIV, RMSPropDTRIV, and SRDTRIV. We provide both our reproduced
baseline results and those reported in [6]. All of our momentum-based models outperform the baseline
DTRIV. When using N = 512 hidden units, SRDTRIV yields the best result.

MODEL N # PARAMS PMNIST

DTRIV 170 ≈ 16K 95.21± 0.10 (95.20 [6])
DTRIV 360 ≈ 69K 96.45± 0.10 (96.50 [6])
DTRIV 512 ≈ 137K 96.62± 0.12 (96.80 [6])

MOMENTUMDTRIV 170 ≈ 16K 95.37± 0.09
MOMENTUMDTRIV 360 ≈ 69K 96.73± 0.08
MOMENTUMDTRIV 512 ≈ 137K 96.89± 0.08

ADAMDTRIV 512 ≈ 137K 96.77± 0.21
RMSPROPDTRIV 512 ≈ 137K 96.75± 0.12
SRDTRIV 512 ≈ 137K 97.02± 0.09

MomentumDTRIV vs. DTRIV: Loss

Iteration

T
ra

in
 L

o
s
s PMNIST

T
e

s
t

L
o

s
s

Epoch

PMNIST

MomentumDTRIV AdamDTRIV

RMSPropDTRIV SRDTRIV DTRIV

Figure 11: Train and test loss of MomentumDTRIV (blue), AdamDTRIV (green), RMSPropDTRIV
(orange), SRDTRIV (cyan), and DTRIV (red) for PMNIST task. Our momentum-based models
converge faster than the baseline DTRIV.

D Computational Time and Memory Cost: RNN vs. MomentumRNN
We provide the computation time and memory cost per sample at training and evaluation of Momen-
tumLSTM, AdamLSTM, RMSPropLSTM, and SRLSTM in comparison with LSTM for PMNIST
classification task using 256 hidden units in Table 14 and 15, respectively.

Table 14: Computation time per sample at training and evaluation for PMNIST classification task
using models with 256 hidden units.

MODEL TRAINING TIME (µs/SAMPLE) EVALUATION TIME (µs/SAMPLE)

LSTM 6.18 2.52

MOMENTUMLSTM 7.43 3.16
ADAMLSTM 10.34 4.07
RMSPROPLSTM 9.94 3.96
SRLSTM 8.34 3.16

Table 15: Memory cost per sample at training and evaluation for PMNIST classification task using
models with 256 hidden units.

MODEL TRAINING MEMORY (MB/SAMPLE) EVALUATION MEMORY (MB/SAMPLE)

LSTM 15.93 7.51

MOMENTUMLSTM 15.95 7.51
ADAMLSTM 25.13 7.52
RMSPROPLSTM 25.13 7.52
SRLSTM 15.95 7.51

19

Table 16: Total computation time to reach the same 92.29% test accuracy of LSTM (see Tab. 1) for
PMNIST classification task using models with 256 hidden units.

MODEL TIME (min)

LSTM 767

MOMENTUMLSTM 551
ADAMLSTM 225
RMSPROPLSTM 416
SRLSTM 348

E Additional Information about the Figures in the Main Text
In Figure 3, the MNIST plots are for models with 256 hidden units, and the TIMIT plots are for
models with 158 hidden units.

In Figure 6, the PMNIST plots are for models with 512 hidden units, and the TIMIT plots are for
models with 322 hidden units.

F MomentumLSTM Cell Implementation in Pytorch
i m p o r t t o r c h
i m p o r t t o r c h . nn as nn
from t o r c h . nn i m p o r t f u n c t i o n a l a s F

c l a s s MomentumLSTMCell (nn . Module) :

" " "
An i m p l e m e n t a t i o n o f MomentumLSTM C e l l

Args :
i n p u t _ s i z e : The number o f e x p e c t e d f e a t u r e s i n t h e i n p u t ‘ x ’
h i d d e n _ s i z e : The number o f f e a t u r e s i n t h e h i dd en s t a t e ‘ h ’
mu : momentum c o e f f i c i e n t i n MomentumLSTM C e l l
s : s t e p s i z e i n MomentumLSTM C e l l
b i a s : I f ‘ ‘ F a l s e ’ ’ , t h e n t h e l a y e r does n o t use b i a s w e i g h t s ‘

b_ ih ’ and ‘ b_hh ’ . D e f a u l t : ‘ ‘ True ’ ’

I n p u t s : i n p u t , h idden0 =(h_0 , c_0) , v0
− i n p u t o f shape ‘ (ba tch , i n p u t _ s i z e) ’ : t e n s o r c o n t a i n i n g i n p u t

f e a t u r e s
− h_0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e

i n i t i a l h idd en s t a t e f o r each e l e m e n t i n t h e b a t c h .
− c_0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e

i n i t i a l c e l l s t a t e f o r each e l e m e n t i n t h e b a t c h .
− v0 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e

i n i t i a l momentum s t a t e f o r each e l e m e n t i n t h e b a t c h

O u t p u t s : h1 , (h_1 , c_1) , v1
− h_1 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e n e x t

h i dd en s t a t e f o r each e l e m e n t i n t h e b a t c h
− c_1 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e n e x t

c e l l s t a t e f o r each e l e m e n t i n t h e b a t c h
− v_1 of shape ‘ (ba tch , h i d d e n _ s i z e) ’ : t e n s o r c o n t a i n i n g t h e n e x t

momentum s t a t e f o r each e l e m e n t i n t h e b a t c h
" " "

d e f _ _ i n i t _ _ (s e l f , i n p u t _ s i z e , h i d d e n _ s i z e , mu , s , b i a s =True) :
s u p e r (MomentumLSTMCell , s e l f) . _ _ i n i t _ _ ()
s e l f . i n p u t _ s i z e = i n p u t _ s i z e
s e l f . h i d d e n _ s i z e = h i d d e n _ s i z e
s e l f . b i a s = b i a s
s e l f . x2h = nn . L i n e a r (i n p u t _ s i z e , 4 ∗ h i d d e n _ s i z e , b i a s = b i a s)
s e l f . h2h = nn . L i n e a r (h i d d e n _ s i z e , 4 ∗ h i d d e n _ s i z e , b i a s = b i a s)

20

f o r momentumnet
s e l f . mu = mu
s e l f . s = s

s e l f . r e s e t _ p a r a m e t e r s (h i d d e n _ s i z e)

d e f r e s e t _ p a r a m e t e r s (s e l f , h i d d e n _ s i z e) :
nn . i n i t . o r t h o g o n a l _ (s e l f . x2h . we ig h t)
nn . i n i t . eye_ (s e l f . h2h . we ig h t)
nn . i n i t . z e r o s _ (s e l f . x2h . b i a s)
s e l f . x2h . b i a s . d a t a [h i d d e n _ s i z e : (2 ∗ h i d d e n _ s i z e)] . f i l l _ (1 . 0)
nn . i n i t . z e r o s _ (s e l f . h2h . b i a s)
s e l f . h2h . b i a s . d a t a [h i d d e n _ s i z e : (2 ∗ h i d d e n _ s i z e)] . f i l l _ (1 . 0)

d e f f o r w a r d (s e l f , x , h idden , v) :

hx , cx = h id de n

x = x . view (−1 , x . s i z e (1))
v = v . view (−1 , v . s i z e (1))

vy = s e l f . mu ∗ v + s e l f . s ∗ s e l f . x2h (x)

g a t e s = vy + s e l f . h2h (hx)

g a t e s = g a t e s . s q u e e z e ()

i n g a t e , f o r g e t g a t e , c e l l g a t e , o u t g a t e = g a t e s . chunk (4 , 1)

i n g a t e = F . s igmoid (i n g a t e)
f o r g e t g a t e = F . s igmoid (f o r g e t g a t e)
c e l l g a t e = F . t a n h (c e l l g a t e)
o u t g a t e = F . s igmoid (o u t g a t e)

cy = t o r c h . mul (cx , f o r g e t g a t e) + t o r c h . mul (i n g a t e , c e l l g a t e)

hy = t o r c h . mul (o u t g a t e , F . t a n h (cy))

r e t u r n hy , (hy , cy) , vy

21

	Experimental Details
	Pixel-by-Pixel MNIST
	TIMIT Speech Dataset
	Word-Level Penn TreeBank
	Copying and Adding Tasks
	Momentum Cells can Avoid Vanishing Gradient Issue

	Backpropagation Through Time – A Review
	More Experimental Results
	Computational Time and Memory Cost: RNN vs. MomentumRNN
	Additional Information about the Figures in the Main Text
	MomentumLSTM Cell Implementation in Pytorch

