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Abstract

A central problem in learning from sequential data is representing cumulative
history in an incremental fashion as more data is processed. We introduce a general
framework (HiPPO) for the online compression of continuous signals and discrete
time series by projection onto polynomial bases. Given a measure that specifies the
importance of each time step in the past, HiPPO produces an optimal solution to a nat-
ural online function approximation problem. As special cases, our framework yields
a short derivation of the recent Legendre Memory Unit (LMU) from first principles,
and generalizes the ubiquitous gating mechanism of recurrent neural networks
such as GRUs. This formal framework yields a new memory update mechanism
(HiPPO-LegS) that scales through time to remember all history, avoiding priors on
the timescale. HiPPO-LegS enjoys the theoretical benefits of timescale robustness,
fast updates, and bounded gradients. By incorporating the memory dynamics into
recurrent neural networks, HiPPO RNNs can empirically capture complex temporal
dependencies. On the benchmark permuted MNIST dataset, HiPPO-LegS sets a new
state-of-the-art accuracy of 98.3%. Finally, on a novel trajectory classification task
testing robustness to out-of-distribution timescales and missing data, HiPPO-LegS
outperforms RNN and neural ODE baselines by 25-40% accuracy.

1 Introduction

Modeling and learning from sequential data is a fundamental problem in modern machine learning,
underlying tasks such as language modeling, speech recognition, video processing, and reinforcement
learning. A core aspect of modeling long-term and complex temporal dependencies is memory,
or storing and incorporating information from previous time steps. The challenge is learning a
representation of the entire cumulative history using bounded storage, which must be updated online
as more data is received.

One established approach is to model a state that evolves over time as it incorporates more information.
The deep learning instantiation of this approach is the recurrent neural network (RNN), which is
known to suffer from a limited memory horizon [34, 38, 56] (e.g., the “vanishing gradients” problem).
Although various heuristics have been proposed to overcome this, such as gates in the successful LSTM
and GRU [16, 34], or higher-order frequencies in the recent Fourier Recurrent Unit [79] and Legendre
Memory Unit (LMU) [71], a unified understanding of memory remains a challenge. Furthermore,
existing methods generally require priors on the sequence length or timescale and are ineffective
outside this range [66, 71]; this can be problematic in settings with distribution shift (e.g. arising from
different instrument sampling rates in medical data [62, 63]). Finally, many of them lack theoretical
guarantees on how well they capture long-term dependencies, such as gradient bounds. To design
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a better memory representation, we would ideally (i) have a unified view of these existing methods, (ii)
be able to address dependencies of any length without priors on the timescale, and (iii) have a rigorous
theoretical understanding of their memory mechanism.

Our insight is to phrase memory as a technical problem of online function approximation where
a function f(t) : R+→R is summarized by storing its optimal coefficients in terms of some basis
functions. This approximation is evaluated with respect to a measure that specifies the importance
of each time in the past. Given this function approximation formulation, orthogonal polynomials (OPs)
emerge as a natural basis since their optimal coefficients can be expressed in closed form [14]. With
their rich and well-studied history [65], along with their widespread use in approximation theory [68]
and signal processing [57], OPs bring a library of techniques to this memory representation problem.
We formalize a framework, HiPPO (high-order polynomial projection operators), which produces
operators that project arbitrary functions onto the space of orthogonal polynomials with respect to
a given measure. This general framework allows us to analyze several families of measures, where this
operator, as a closed-form ODE or linear recurrence, allows fast incremental updating of the optimal
polynomial approximation as the input function is revealed through time.

By posing a formal optimization problem underlying recurrent sequence models, the HiPPO framework
(Section 2) generalizes and explains previous methods, unlocks new methods appropriate for sequential
data at different timescales, and comes with several theoretical guarantees. (i) For example, with a
short derivation we exactly recover as a special case the LMU [71] (Section 2.3), which proposes an
update rule that projects onto fixed-length sliding windows through time.2 HiPPO also sheds new
light on classic techniques such as the gating mechanism of LSTMs and GRUs, which arise in one
extreme using only low-order degrees in the approximation (Section 2.5). (ii) By choosing more
suitable measures, HiPPO yields a novel mechanism (Scaled Legendre, or LegS) that always takes
into account the function’s full history instead of a sliding window. This flexibility removes the
need for hyperparameters or priors on the sequence length, allowing LegS to generalize to different
input timescales. (iii) The connections to dynamical systems and approximation theory allows us
to show several theoretical benefits of HiPPO-LegS: invariance to input timescale, asymptotically
more efficient updates, and bounds on gradient flow and approximation error (Section 3).

We integrate the HiPPO memory mechanisms into RNNs, and empirically show that they outperform
baselines on standard tasks used to benchmark long-term dependencies. On the permuted MNIST
dataset, our hyperparameter-free HiPPO-LegS method achieves a new state-of-the-art accuracy
of 98.3%, beating the previous RNN SoTA by over 1 point and even outperforming models with
global context such as transformers (Section 4.1). Next, we demonstrate the timescale robustness of
HiPPO-LegS on a novel trajectory classification task, where it is able to generalize to unseen timescales
and handle missing data whereas RNN and neural ODE baselines fail (Section 4.2). Finally, we
validate HiPPO’s theory, including computational efficiency and scalability, allowing fast and accurate
online function reconstruction over millions of time steps (Section 4.3). Code for reproducing our
experiments is available at https://github.com/HazyResearch/hippo-code.

2 The HiPPO Framework: High-order Polynomial Projection Operators

We motivate the problem of online function approximation with projections as an approach to learning
memory representations (Section 2.1). Section 2.2 describes the general HiPPO framework to derive
memory updates, including a precise definition of the technical problem we introduce, and an overview
of our approach to solving it. Section 2.3 instantiates the framework to recover the LMU and yield
new memory updates (e.g. HiPPO-LagT), demonstrating the generality of the HiPPO framework.
Section 2.4 discusses how to convert the main continuous-time results into practical discrete versions.
Finally in Section 2.5 we show how gating in RNNs is an instance of HiPPO memory.

2.1 HiPPO Problem Setup

Given an input function f(t)∈R on t≥0, many problems require operating on the cumulative history
f≤t := f(x) |x≤t at every time t≥ 0, in order to understand the inputs seen so far and make future
predictions. Since the space of functions is intractably large, the history cannot be perfectly memorized

2The LMU was originally motivated by spiking neural networks in modeling biological nervous systems;
its derivation is not self-contained but a sketch can be pieced together from [71, 72, 73].
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and must be compressed; we propose the general approach of projecting it onto a subspace of bounded
dimension. Thus, our goal is to maintain (online) this compressed representation of the history. In
order to specify this problem fully, we require two ingredients: a way to quantify the approximation,
and a suitable subspace.

Function Approximation with respect to a Measure. Assessing the quality of an approximation
requires defining a distance in function space. Any probability measure µ on [0,∞) equips the space
of square integrable functions with inner product 〈f,g〉µ =

∫∞
0
f(x)g(x)dµ(x), inducing a Hilbert

space structureHµ and corresponding norm ‖f‖L2(µ) =〈f,f〉1/2µ .

Polynomial Basis Expansion. AnyN -dimensional subspace G of this function space is a suitable
candidate for the approximation. The parameter N corresponds to the order of the approximation,
or the size of the compression; the projected history can be represented by the N coefficients of its
expansion in any basis of G. For the remainder of this paper, we use the polynomials as a natural basis,
so that G is the set of polynomials of degree less than N . We note that the polynomial basis is very
general; for example, the Fourier basis sin(nx),cos(nx) can be seen as polynomials on the unit circle
(e2πix)n (cf. Appendix D.4). In Appendix C, we additionally formalize a more general framework
that allows different bases other than polynomials by tilting the measure with another function.

Online Approximation. Since we care about approximating f≤t for every time t, we also let the
measure vary through time. For every t, let µ(t) be a measure supported on (−∞,t] (since f≤t is only
defined up to time t). Overall, we seek some g(t)∈G that minimizes ‖f≤t−g(t)‖L2(µ(t)). Intuitively,
the measure µ controls the importance of various parts of the input domain, and the basis defines the
allowable approximations. The challenge is how to solve the optimization problem in closed form
given µ(t), and how these coefficients can be maintained online as t→∞.

2.2 General HiPPO framework

We provide a brief overview of the main ideas behind solving this problem, which provides a
surprisingly simple and general strategy for many measure families µ(t). This framework builds
upon a rich history of the well-studied orthogonal polynomials and related transforms in the signal
processing literature. Our formal abstraction (Definition 1) departs from prior work on sliding
transforms in several ways, which we discuss in detail in Appendix A.1. For example, our concept
of the time-varying measure allows choosing µ(t) more appropriately, which will lead to solutions with
qualitatively different behavior. Appendix C contains the full details and formalisms of our framework.

Calculating the projection through continuous dynamics. As mentioned, the approximated
function can be represented by the N coefficients of its expansion in any basis; the first key step is
to choose a suitable basis {gn}n<N of G. Leveraging classic techniques from approximation theory, a
natural basis is the set of orthogonal polynomials for the measure µ(t), which forms an orthogonal basis
of the subspace. Then the coefficients of the optimal basis expansion are simply c(t)n :=〈f≤t,gn〉µ(t) .

The second key idea is to differentiate this projection in t, where differentiating through the integral
(from the inner product 〈f≤t,gn〉µ(t)) will often lead to a self-similar relation allowing d

dtcn(t) to be
expressed in terms of (ck(t))k∈[N ] and f(t). Thus the coefficients c(t)∈RN should evolve as an ODE,
with dynamics determined by f(t).

The HiPPO abstraction: online function approximation.
Definition 1. Given a time-varying measure family µ(t) supported on (−∞,t], an N -dimensional
subspace G of polynomials, and a continuous function f : R≥0→ R, HiPPO defines a projection
operator projt and a coefficient extraction operator coeft at every time t, with the following properties:

(1) projt takes the function f restricted up to time t, f≤t :=f(x) |x≤t, and maps it to a polynomial
g(t)∈G, that minimizes the approximation error ‖f≤t−g(t)‖L2(µ(t)).

(2) coeft :G→RN maps the polynomial g(t) to the coefficients c(t)∈RN of the basis of orthogonal
polynomials defined with respect to the measure µ(t).
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Figure 1: Illustration of the HiPPO framework. (1) For any function f , (2) at every time t there is an optimal
projection g(t) of f onto the space of polynomials, with respect to a measure µ(t) weighing the past. (3) For an
appropriately chosen basis, the corresponding coefficients c(t)∈RN representing a compression of the history
of f satisfy linear dynamics. (4) Discretizing the dynamics yields an efficient closed-form recurrence for online
compression of time series (fk)k∈N.

The composition coef◦proj is called hippo, which is an operator mapping a function f :R≥0→R
to the optimal projection coefficients c :R≥0→RN , i.e. (hippo(f))(t)=coeft(projt(f)).

For each t, the problem of optimal projection projt(f) is well-defined by the above inner products,
but this is intractable to compute naively. Our derivations (Appendix D) will show that the coefficient
function c(t) = coeft(projt(f)) has the form of an ODE satisfying d

dtc(t) = A(t)c(t) +B(t)f(t)

for someA(t)∈RN×N ,B(t)∈RN×1. Thus our results show how to tractably obtain c(t) online by
solving an ODE, or more concretely by running a discrete recurrence. When discretized, HiPPO takes
in a sequence of real values and produces a sequence ofN -dimensional vectors.

Figure 1 illustrates the overall framework when we use uniform measures. Next, we give our main
results showing hippo for several concrete instantiations of the framework.

2.3 High Order Projection: Measure Families and HiPPO ODEs

Our main theoretical results are instantiations of HiPPO for various measure families µ(t). We provide
two examples of natural sliding window measures and the corresponding projection operators. The
unified perspective on memory mechanisms allows us to derive these closed-form solutions with
the same strategy, provided in Appendices D.1,D.2. The first explains the core Legendre Memory
Unit (LMU) [71] update in a principled way and characterizes its limitations, while the other is novel,
demonstrating the generality of the HiPPO framework. Appendix D contrasts the tradeoffs of these
measures (Fig. 5), contains proofs of their derivations, and derives additional HiPPO formulas for
other bases such as Fourier (recovering the Fourier Recurrent Unit [79]) and Chebyshev.

The translated Legendre (LegT) measures assign uniform weight to the most recent history [t−θ,t].
There is a hyperparameter θ representing the length of the sliding window, or the length of history
that is being summarized. The translated Laguerre (LagT) measures instead use the exponentially
decaying measure, assigning more importance to recent history.

LegT :µ(t)(x)=
1

θ
I[t−θ,t](x) LagT :µ(t)(x)=e−(t−x)I(−∞,t](x)=

{
ex−t if x≤ t
0 if x>t

Theorem 1. For LegT and LagT, the hippo operators satisfying Definition 1 are given by linear
time-invariant (LTI) ODEs d

dtc(t)=−Ac(t)+Bf(t), whereA∈RN×N ,B∈RN×1:

LegT:

Ank=
1

θ

{
(−1)n−k(2n+1) if n≥k
2n+1 if n≤k

, Bn=
1

θ
(2n+1)(−1)n

(1)

LagT:

Ank=

{
1 if n≥k
0 if n<k

, Bn=1 (2)
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Equation (1) proves the LMU update [71, equation (1)]. Additionally, our derivation (Appendix D.1)
shows that outside of the projections, there is another source of approximation. This sliding window
update rule requires access to f(t−θ), which is no longer available; it instead assumes that the current
coefficients c(t) are an accurate enough model of the function f(x)x≤t that f(t−θ) can be recovered.

2.4 HiPPO recurrences: from Continuous to Discrete Time with ODE Discretization

Since actual data is inherently discrete (e.g. sequences and time series), we discuss how the HiPPO
projection operators can be discretized using standard techniques, so that the continuous-time HiPPO
ODEs become discrete-time linear recurrences.

In the continuous case, these operators consume an input function f(t) and produce an output function
c(t). The discrete time case (i) consumes an input sequence (fk)k∈N, (ii) implicitly defines a function
f(t) where f(k ·∆t) = fk for some step size ∆t, (iii) produces a function c(t) through the ODE
dynamics, and (iv) discretizes back to an output sequence ck :=c(k ·∆t).

The basic method of discretizating an ODE d
dtc(t) = u(t, c(t), f(t)) chooses a step size ∆t and

performs the discrete updates c(t+ ∆t) = c(t) + ∆t · u(t,c(t),f(t)).3 In general, this process is
sensitive to the discretization step size hyperparameter ∆t.

Finally, we note that this provides a way to seamlessly handle timestamped data, even with missing
values: the difference between timestamps indicates the (adaptive) ∆t to use in discretization [13].
Appendix B.3 contains a full discussion of discretization.

2.5 Low Order Projection: Memory Mechanisms of Gated RNNs

As a special case, we consider what happens if we do not incorporate higher-order polynomials in the
projection problem. Specifically, ifN=1, then the discretized version of HiPPO-LagT (2) becomes
c(t+ ∆t) = c(t) + ∆t(−Ac(t) +Bf(t)) = (1−∆t)c(t) + ∆tf(t), since A=B = 1. If the inputs
f(t) can depend on the hidden state c(t) and the discretization step size ∆t is chosen adaptively (as a
function of input f(t) and state c(t)), as in RNNs, then this becomes exactly a gated RNN. For instance,
by stacking multiple units in parallel and choosing a specific update function, we obtain the GRU update
cell as a special case.4 In contrast to HiPPO which uses one hidden feature and projects it onto high
order polynomials, these models use many hidden features but only project them with degree 1. This
view sheds light on these classic techniques by showing how they can be derived from first principles.

3 HiPPO-LegS: Scaled Measures for Timescale Robustness

Exposing the tight connection between online function approximation and memory allows us to
produce memory mechanisms with better theoretical properties, simply by choosing the measure
appropriately. Although sliding windows are common in signal processing (Appendix A.1), a more
intuitive approach for memory should scale the window over time to avoid forgetting.

Our novel scaled Legendre measure (LegS) assigns uniform weight to all history [0,t]: µ(t) = 1
t I[0,t].

App D, Fig. 5 compares LegS, LegT, and LagT visually, showing the advantages of the scaled measure.

Simply by specifying the desired measure, specializing the HiPPO framework (Sections 2.2, 2.4)
yields a new memory mechanism (proof in Appendix D.3).
Theorem 2. The continuous- (3) and discrete- (4) time dynamics for HiPPO-LegS are:

d

dt
c(t)=−1

t
Ac(t)+

1

t
Bf(t) (3)

ck+1=

(
1−A

k

)
ck+

1

k
Bfk (4)

Ank=


(2n+1)1/2(2k+1)1/2 if n>k
n+1 if n=k
0 if n<k

, Bn=(2n+1)
1
2

We show that HiPPO-LegS enjoys favorable theoretical properties: it is invariant to input timescale,
is fast to compute, and has bounded gradients and approximation error. All proofs are in Appendix E.

3This is known as the Euler method, used for illustration here; our experiments use the more numerically stable
Bilinear and ZOH methods. Appendix B.3 provides a self-contained overview of our full discretization framework.

4The LSTM cell update is similar, with a parameterization known as “tied” gates [30].
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Timescale robustness. As the window size of LegS is adaptive, projection onto this measure is
intuitively robust to timescales. Formally, the HiPPO-LegS operator is timescale-equivariant: dilating
the input f does not change the approximation coefficients.
Proposition 3. For any scalar α>0, if h(t)=f(αt), then hippo(h)(t)=hippo(f)(αt).
In other words, if γ : t 7→αt is any dilation function, then hippo(f ◦γ)=hippo(f)◦γ.

Informally, this is reflected by HiPPO-LegS having no timescale hyperparameters; in particular,
the discrete recurrence (4) is invariant to the discretization step size.5 By contrast, LegT has a
hyperparameter θ for the window size, and both LegT and LagT have a step size hyperparameter ∆t
in the discrete time case. This hyperparameter is important in practice; Section 2.5 showed that ∆t
relates to the gates of RNNs, which are known to be sensitive to their parameterization [31, 39, 66].
We empirically demonstrate the benefits of timescale robustness in Section 4.2.

Computational efficiency. In order to compute a single step of the discrete HiPPO update, the
main operation is multiplication by the (discretized) square matrix A. More general discretization
specifically requires fast multiplication for any matrix of the form I+∆t ·A and (I−∆t ·A)−1 for
arbitrary step sizes ∆t. Although this is generically aO(N2) operation, LegS operators use a fixedA
matrix with special structure that turns out to have fast multiplication algorithms for any discretization.6

Proposition 4. Under any generalized bilinear transform discretization (cf. Appendix B.3), each step
of the HiPPO-LegS recurrence in equation (4) can be computed inO(N) operations.

Section 4.3 validates the efficiency of HiPPO layers in practice, where unrolling the discretized
versions of Theorem 2 is 10x faster than standard matrix multiplication as done in standard RNNs.

Gradient flow. Much effort has been spent to alleviate the vanishing gradient problem in RNNs [56],
where backpropagation-based learning is hindered by gradient magnitudes decaying exponentially
in time. As LegS is designed for memory, it avoids the vanishing gradient issue.
Proposition 5. For any times t0<t1, the gradient norm of HiPPO-LegS operator for the output at
time t1 with respect to input at time t0 is

∥∥∥ ∂c(t1)
∂f(t0)

∥∥∥=Θ(1/t1).

Approximation error bounds. The error rate of LegS decreases with the smoothness of the input.

Proposition 6. Let f : R+ → R be a differentiable function, and let g(t) = projt(f) be its
projection at time t by HiPPO-LegS with maximum polynomial degreeN−1. If f isL-Lipschitz then∥∥f≤t−g(t)

∥∥=O(tL/
√
N). If f has order-k bounded derivatives then

∥∥f≤t−g(t)
∥∥=O(tkN−k+1/2).

4 Empirical Validation

The HiPPO dynamics are simple recurrences that can be easily incorporated into various models. We
validate three claims that suggest that when incorporated into a simple RNN, these methods–especially
HiPPO-LegS–yield a recurrent architecture with improved memory capability. In Section 4.1, the
HiPPO-LegS RNN outperforms other RNN approaches in benchmark long-term dependency tasks for
RNNs. Section 4.2 shows that HiPPO-LegS RNN is much more robust to timescale shifts compared
to other RNN and neural ODE models. Section 4.3 validates the distinct theoretical advantages of
the HiPPO-LegS memory mechanism, allowing fast and accurate online function reconstruction over
millions of time steps. Experiment details and additional results are described in Appendix F.

Model Architectures. We first describe briefly how HiPPO memory updates can be incorporated
into a simple neural network architecture, yielding a simple RNN model reminiscent of the classic
LSTM. Given inputs xt or features thereof ft = u(xt) in any model, the HiPPO framework can be
used to memorize the history of features ft. Thus, given any RNN update function ht=τ(ht−1,xt),
we simply replace ht−1 with a projected version of the entire history of h, as described in Figure 2. The
output of each cell is ht, which can be passed through any downstream module (e.g. a classification
head trained with cross-entropy) to produce predictions. We map the vector ht−1 to 1D with a learned
encoding before passing to hippo (full architecture in App. F.1).

5(4) uses the Euler method for illustration; HiPPO-LegS is invariant to other discretizations (Appendix B.3).
6It is known that large families of structured matrices related to orthogonal polynomials are efficient [22].
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4.1 Long-range Memory Benchmark Tasks

Models and Baselines. We consider all of the HiPPO methods (LegT, LagT, and LegS). As we
show that many different update dynamics seem to lead to LTI systems that give sensible results
(Section 2.3), we additionally consider the Rand baseline that uses randomA andB matrices (nor-
malized appropriately) in its updates, to confirm that the precise derived dynamics are important. LegT
additionally considers an additional hyperparameter θ, which should be set to the timescale of the data
if known a priori; to show the effect of the timescale, we set it to the ideal value as well as values that are
too large and small. The MGU is a minimal gated architecture, equivalent to a GRU without the reset
gate. The HiPPO architecture we use is simply the MGU with an additional hippo intermediate layer.

We also compare to several RNN baselines designed for long-term dependencies, including the
LSTM [34], GRU [17], expRNN [48], and LMU [71].7

All methods have the same hidden size in our experiments. In particular, for simplicity and to reduce
hyperparameters, HiPPO variants tie the memory sizeN to the hidden state dimension d, so that all
methods and baselines have a comparable number of hidden units and parameters. A more detailed
comparison of model architectures is in Appendix F.1.

Sequential Image Classification on Permuted MNIST. The permuted MNIST (pMNIST) task
feeds inputs to a model pixel-by-pixel in the order of a fixed permutation. The model must process the
entire image sequentially – with non-local structure – before outputting a classification label, requiring
learning long-term dependencies.

Table 1 shows the validation accuracy on the pMNIST task for the instantiations of our framework
and baselines. We highlight that LegS has the best performance of all models. While LegT is close
at the optimal hyperparameter θ, its performance can fall off drastically for a mis-specified window
length. LagT also performs well at its best hyperparameter ∆t.

Table 1 also compares test accuracy of our methods against reported results from the literature, where
the LMU was the state-of-the-art for recurrent models. In addition to RNN-based baselines, other
sequence models have been evaluated on this dataset, despite being against the spirit of the task because
they have global receptive field instead of being strictly sequential. With a test accuracy of 98.3%,
HiPPO-LegS sets a true state-of-the-art accuracy on the permuted MNIST dataset.

⌧
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Figure 2: HiPPO incorporated into a simple
RNN model. hippo is the HiPPO memory
operator which projects the history of the ft
features depending on the chosen measure.

Method Val. acc. (%)

-LegS 98.34
-LagT 98.15
-LegT θ=200 98.0
-LegT θ=20 91.75
-Rand 69.93

LMU 97.08
ExpRNN 94.67
GRU 93.04
MGU 89.37
RNN 52.98

Model Test acc.

HiPPO-LegS 98.3

LSTM [31] 95.11
r-LSTM [69] 95.2
Dilated RNN [10] 96.1
IndRNN [49] 96.0
URLSTM [31] 96.96
LMU [71] 97.15

Transformer [69] 97.9
TCN [5] 97.2
TrellisNet [6] 98.13

Table 1: (Left) pMNIST validation, average over 3 seeds. Top:
Our methods. Bottom: RNN baselines. (Right) Reported test
accuracies from previous works. Top: Our methods. Middle:
Recurrent models. Bottom: Non-recurrent models requiring
global receptive field.

Copying task. This standard RNN task [3] directly tests memorization, where models must
regurgitate a sequence of tokens seen at the beginning of the sequence. It is well-known that standard
models such as LSTMs struggle to solve this task. Appendix F shows the loss for the Copying task
with lengthL=200. Our proposed update LegS solves the task almost perfectly, while LegT is very
sensitive to the window length hyperparameter. As expected, most baselines make little progress.

7In our experiments, LMU refers to the architecture in [71] while LegT uses the one described in Fig. 2.
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4.2 Timescale Robustness of HiPPO-LegS

Timescale priors. Sequence models generally benefit from priors on the timescale, which take the
form of additional hyperparameters in standard models. Examples include the “forget bias” of LSTMs
which needs to be modified to address long-term dependencies [39, 66], or the discretization step
size ∆t of HiPPO-Lag and HiPPO-LegT (Section 2.4). The experiments in Section 4.1 confirm their
importance. Fig. 7 (Appendix) and Table 1 ablate these hyperparameters, showing that for example the
sliding window length θ must be set correctly for LegT. Additional ablations for other hyperparameters
are in Appendix F.

Distribution shift in trajectory classification. Recent trends in ML have stressed the importance
of understanding robustness under distribution shift, when training and testing distributions are not i.i.d.
For time series data, for example, models may be trained on EEG data from one hospital, but deployed at
another using instruments with different sampling rates [62, 63]; or a time series may involve the same
trajectory evolving at different speeds. Following Kidger et al. [40], we consider the Character Trajec-
tories dataset [4], where the goal is to classify a character from a sequence of pen stroke measurements,
collected from one user at a fixed sampling rate. To emulate timescale shift (e.g. testing on another
user with slower handwriting), we consider two standard time series generation processes: (1) In the
setting of sampling an underlying sequence at a fixed rate, we change the test sampling rate; crucially,
the sequences are variable length so the models are unable to detect the sampling rate of the data. (2)
In the setting of irregular-sampled (or missing) data with timestamps, we scale the test timestamps.

Recall that the HiPPO framework models the underlying data as a continuous function and inter-
acts with discrete input only through the discretization. Thus, it seamlessly handles missing or
irregularly-sampled data by simply evolving according to the given discretization step sizes (details in
Appendix B.3). Combined with LegS timescale invariance (Prop. 3), we expect HiPPO-LegS to work
automatically in all these settings. We note that the setting of missing data is a topic of independent in-
terest and we compare against SOTA methods, including the GRU-D [11] which learns a decay between
observations, and neural ODE methods which models segments between observations with an ODE.

Table 2 validates that standard models can go catastrophically wrong when tested on sequences at
different timescales than expected. Though all methods achieve near-perfect accuracy (≥ 95%) without
distribution shift, aside from HiPPO-LegS, no method is able to generalize to unseen timescales.

Table 2: Test set accuracy on Character Trajectory classification on out-of-distribution timescales.

Model LSTM GRU GRU-D ODE-RNN NCDE LMU HiPPO-LegS

100Hz→ 200Hz 31.9 25.4 23.1 41.8 44.7 6.0 88.8
200Hz→ 100Hz 28.2 64.6 25.5 31.5 11.3 13.1 90.1

Missing values upsample 24.4 28.2 5.5 4.3 63.9 39.3 94.5
Missing values downsample 34.9 27.3 7.7 7.7 69.7 67.8 94.9

4.3 Theoretical Validation and Scalability

We empirically show that HiPPO-LegS can scale to capture dependencies across millions of time steps,
and its memory updates are computationally efficient (processing up to 470,000 time steps/s).

Long-range function approximation. We test the ability of different memory mechanisms in
approximating an input function, as described in the problem setup in Section 2.1. The model only
consists of the memory update (Section 3) and not the additional RNN architecture. We choose random
samples from a continuous-time band-limited white noise process, with length 106. The model is
to traverse the input sequence, and then asked to reconstruct the input, while maintaining no more than
256 units in memory (Fig. 3). This is a difficult task; the LSTM fails with even sequences of length
1000 (MSE ≈ 0.25). As shown in Table 3, both the LMU and HiPPO-LegS are able to accurately
reconstruct the input function, validating that HiPPO can solve the function approximation problem
even for very long sequences. Fig. 3 illustrates the function and its approximations, with HiPPO-LegS
almost matching the input function while LSTM unable to do so.
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Speed. HiPPO-LegS operator is computationally efficient both in theory (Section 3) and in practice.
We implement the fast update in C++ with Pytorch binding and show in Table 3 that it can perform
470,000 time step updates per second on a single CPU core, 10x faster than the LSTM and LMU.8

Method Error Speed
(MSE) (elements / sec)

LSTM 0.25 35,000
LMU 0.05 41,000
HiPPO-LegS 0.02 470,000

Table 3: Function approximation error after
1 million time steps, with 256 hidden units.

0 1Time (normalized)

1

0

1

HiPPO-LegS
LSTM
Input function f

Figure 3: Input function and its reconstructions.

4.4 Additional Experiments

We validate that the HiPPO memory updates also perform well on more generic sequence prediction
tasks not exclusively focused on memory. Full results and details for these tasks are in Appendix F.

Sentiment classification task on the IMDB movie review dataset. Our RNNs with HiPPO
memory updates perform on par with the LSTM, while other long-range memory approaches such
as expRNN perform poorly on this more generic task (Appendix F.6).

Mackey spin glass prediction. This physical simulation task tests the ability to model chaotic
dynamical systems. HiPPO-LegS outperforms the LSTM, LMU, and the best hybrid LSTM+LMU
model from [71], reducing normalized MSE by 30% (Appendix F.7).

5 Conclusion

We address the fundamental problem of memory in sequential data by proposing a framework (HiPPO)
that poses the abstraction of optimal function approximation with respect to time-varying measures.
In addition to unifying and explaining existing memory approaches, HiPPO unlocks a new method
(HiPPO-LegS) that takes a first step toward timescale robustness and can efficiently handle depen-
dencies across millions of time steps. We anticipate that the study of this core problem will be useful in
improving a variety of sequence models, and are excited about future work on integrating our memory
mechanisms with other models in addition to RNNs. We hope to realize the benefits of long-range
memory on large-scale tasks such as speech recognition, video processing, and reinforcement learning.

Broader Impact

Our work seeks to understand the foundation of memory in modeling sequential data, which may
improve a wide range of applications, each with their own potential benefits and harms. For example,
incorporating longer context in language modeling may improve the quality of automated customer
services, helpdesks, and personal assistants, but might also facilitate spreading misinformation. Better
video processing may produce more coherent video summary for visually impaired users, but might
also make automatic surveillance easier.

Our framework presents a principled way to study memory of machine learning models. We speculate
that this new representation could be a tool to study how potential biases in training data can get
incorporated into the model. This in turn may give us a better handle on how to identify and potentially
mitigate the effect of such biases in machine learning models. Though we currently do not have
concrete ideas along this line, we encourage future investigation to better understand these learned
representations to address fairness issues.

8The LMU is only known to be fast with the simple forward Euler discretization [71], but not with more
sophisticated methods such as bilinear and ZOH that are required to reduce numerical errors for this task.
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A Related Work

Our work touches on a variety of topics and related work, which we explore in detail.

A.1 Signal Processing and Orthogonal Polynomials

A.1.1 Sliding transforms

The technical contributions in this work build on a rich history of approximation theory in signal
processing. Our main framework – orthogonalizing functions with respect to time-varying measures
(Section 2) – are related to “online” versions of classical signal processing transforms. In short,
these methods compute specific transforms on sliding windows of discrete sequences. Concretely,
they calculate cn,k =

∑N−1
i=0 fk+iψ(i,n) given signal (fk), where {ψ(i,n)} is a discrete orthogonal

transform. Our technical problem differs in several key aspects:

Specific discrete transforms Examples of sliding transforms considered in the literature include
the sliding DFT [26, 28, 36, 37], sliding DCT [43], sliding discrete (Walsh-)Hadamard
transform [54, 55, 75], Haar [51], sliding discrete Hartley transform [44], and sliding discrete
Chebyshev moments [12]. While each of these address a specific transform, we present a
general approach (Section 2) that addresses several transforms at once. Furthermore, we
are unaware of sliding transform algorithms for the OPs we consider here, in particular
the Legendre and Laguerre polynomials. Our derivations in Appendix D cover Legendre,
(generalized) Laguerre, Fourier, and Chebyshev continuous sliding transforms.

Fixed-length sliding windows All mentioned works operate in the sliding window setting, where
a fixed-size context window on the discrete signal is taken into account. Our measure-based
abstraction for approximation allows considering a new type of scaled measure where the
window size increases over time, leading to methods with qualitatively different theoretical
(Section 3) and empirical properties (Section 4.2). We are not aware of any previous works
addressing this scaled setting.

Discrete vs. continuous time Even in the fixed-length sliding window case, our solutions to the
“translated measure” problems (e.g., HiPPO-LegT Appendix D.1) solve a continuous-time
sliding window problem on an underlying continuous signal, then discretize.
On the other hand, the sliding transform problems calculate transforms directly on a discrete
stream. Discrete transforms are equivalent to calculating projection coefficients on a measure
(equation (18)) by Gaussian quadrature, which assumes the discrete input is subsampled
from a signal at the quadrature nodes [14]. However, since these nodes are non-uniformly
spaced in general, the sliding discrete transform is not consistent with a discretization of an
underlying continuous signal.
Thus, our main abstraction (Definition 1) has a fundamentally different interpretation than
standard transforms, and our approach of first calculating the dynamics of the underlying
continuous-time problem (e.g. equation (20)) is correspondingly new.
We remark that our novel scaled measures are fundamentally difficult to address with a
standard discrete-time based approach. These discrete sliding methods require a fixed-size
context in order to have consistent transform sizes, while the scaled measure would require
solving transforms with an increasing number of input points over time.

A.1.2 OPs in ML

More broadly, orthogonal polynomials and orthogonal polynomial transforms have recently found
applications in various facets of machine learning. For example, Dao et al. [19] leverage the connection
between orthogonal polynomials and quadrature to derive rules for computing kernel features in ma-
chine learning. More directly, [67] apply parametrized families of structured matrices directly inspired
by orthogonal polynomial transforms ([22]) as layers in neural networks. Some particular families of
orthogonal polynomials such as the Chebyshev polynomials have desirable approximation properties
that find many well-known classical uses in numerical analysis and optimization. More recently, they
have been applied to ML models such as graph convolutional neural networks[24], and generalizations
such as Gegenbauer and Jacobi polynomials have been used to analyze optimization dynamics[7, 76].
Generalization of orthogonal polynomials and Fourier transform, expressed as products of butterfly
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matrices, have found applications in automatic algorithm design [20], model compression [1], and
replacing hand-crafted preprocessing in speech recognition [21]. Orthogonal polynomials are known
to have various efficiency results [22], and we conjecture that Proposition 4 on the efficiency of HiPPO
methods can be extended to arbitrary measures besides the ones considered in this work.

A.2 Memory in Machine Learning

Memory in sequence models Sequential or temporal data in areas such as language, reinforcement
learning, and continual learning can involve increasingly long dependencies. However, direct
parametric modeling cannot handle inputs of unknown and potentially unbounded lengths. Many
modern solutions such as attention [70] and dilated convolutions [5], are functions on finite windows,
thus sidestepping the need for an explicit memory representation. While this suffices for certain
tasks, these approaches can only process a finite context window instead of an entire sequence.
Naively increasing the window length poses significant compute and memory challenges. This has
spurred various approaches to extend this fixed context window subjected to compute and storage
constraints [6, 15, 18, 42, 59, 60, 64, 74].

We instead focus on the core problem of online processing and memorization of continuous and
discrete signals, and anticipate that the study of this foundational problem will be useful in improving
a variety of models.

Recurrent memory Recurrent neural networks are a natural tool for modeling sequential data online,
with the appealing property of having unbounded context; in other words they can summarize history in-
definitely. However, due to difficulties in the optimization process (vanishing/exploding gradients [56]),
particular care must be paid to endow them with longer memory. The ubiquitous LSTM [34] and simpli-
fications such as the GRU [17] control the update with gates to smooth the optimization process. With
more careful parametrization, the addition of gates alone make RNNs significantly more robust and able
to address long-term dependencies [31]. Tallec and Ollivier [66] show that gates are in fact fundamental
for recurrent dynamics by allowing time dilations. Many other approaches to endowing RNNs with
better memory exist, such as noise injection [32] or non-saturating gates [9], which can suffer from insta-
bility issues. A long line of work controls the spectrum of the recurrent updates with (nearly-) orthogonal
matrices to control gradients [3], but have been found to be less robust across different tasks [33].

A.3 Directly related methods

LMU The main result of the Legendre Memory Unit [71, 72, 73] is a direct instantiation of our
framework using the LegT measure (Section 2.3). The original LMU is motivated by neurobiological
advances and approaches the problem from the opposite direction as us: it considers approximating
spiking neurons in the frequency domain, while we directly solve an interpretable optimization
problem in the time domain. More specifically, they consider time-lagged linear time invariant
(LTI) dynamical systems and approximate the dynamics with Padé approximants; Voelker et al. [71]
observes that the result also has an interpretation in terms of Legendre polynomials, but not that it
is the optimal solution to a natural projection problem. This approach involves heavier machinery,
and we were not able to find a complete proof of the update mechanism [71, 72, 73].

In contrast, our approach directly poses the relevant online signal approximation problem, which
ties to orthogonal polynomial families and leads to simple derivations of several related memory
mechanisms (Appendix D). Our interpretation in time rather than frequency space, and associated
derivation (Appendix D.1) for the LegT measure, reveals a different set of approximations stemming
from the sliding window, which is confirmed empirically (Appendix F.8).

As the motivations of our work are substantially different from Voelker et al. [71], yet finds the same
memory mechanism in a special case, we highlight the potential connection between these sequence
models and biological nervous systems as an area of exploration for future work, such as alternative
interpretations of our methods in the frequency domain.

We remark that the term LMU in fact refers to a specific recurrent neural network architecture, which
interleaves the projection operator with other specific neural network components. By contrast, we use
HiPPO to refer to the projection operator in isolation (Theorem 1), which is a function-to-function or
sequence-to-sequence operator independent of model. HiPPO is integrated into an RNN architecture
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in Section 4, with slight improvements to the LMU architecture, as ablated in Appendices F.2 and F.3.
As a standalone module, HiPPO can be used as a layer in other types of models.

Fourier Recurrent Unit The Fourier Recurrent Unit (FRU) [79] uses Fourier basis (cosine and sine)
to express the input signal, motivated by the discrete Fourier transform. In particular, each recurrent
unit computes the discrete Fourier transform of the input signal for a randomly chosen frequency. It
is not clear how discrete transform with respect to other bases (e.g., Legendre, Laguerre, Chebyshev)
can in turn yield similar memory mechanisms. We show that FRU is also an instantiation of the HiPPO
framework (Appendix D.4), where the Fourier basis can be viewed as orthogonal polynomials zn
on the unit circle {z : |z|=1}.
Zhang et al. [79] prove that if a timescale hyperparameter is chosen appropriately, FRU has bounded
gradients, thus avoiding vanishing and exploding gradients. This essentially follows from the fact that
(1−∆t)T =Θ(1) if the discretization step size ∆t=Θ( 1

T ) is chosen, if the time horizon T is known
(cf. Appendices B.3 and E). It is easily shown that this property is not intrinsic to the FRU but to sliding
window methods, and is shared by all of our translated measure HiPPO methods (all but HiPPO-LegS
in Appendix D). We show the stronger property that HiPPO-LegS, which uses scaling rather than
sliding windows, also enjoys bounded gradient guarantees, without needing a well-specified timescale
hyperparameter (Proposition 5).

Neural ODEs HiPPO produces linear ODEs that describe the dynamics of the coefficients. Recent
work has also incorporated ODEs into machine learning models. Chen et al. [13] introduce neural
ODEs, employing general nonlinear ODEs parameterized by neural networks in the context of
normalizing flows and time series modeling. Neural ODEs have shown promising results in modeling
irregularly sampled time series [40], especially when combined with RNNs [61]. Though neural
ODEs are expressive [27, 78], due to their complex parameterization, they often suffer from slow
training [29, 53, 58] because of their need for more complicated ODE solvers. On the other hand,
HiPPO ODEs are linear and are fast to solve with classical discretization techniques in linear systems,
such as Euler method, Bilinear method, and Zero-Order Hold (ZOH) [35].

B Technical Preliminaries

We collect here some technical background that will be used in presenting the general HiPPO
framework and in deriving specific HiPPO update rules.

B.1 Orthogonal Polynomials

Orthogonal polynomials are a standard tool for working with function spaces [14, 65]. Every measure
µ induces a unique (up to a scalar) sequence of orthogonal polynomials (OPs) P0(x), P1(x), ...
satisfying deg(Pi) = i and 〈Pi,Pj〉µ :=

∫
Pi(x)Pj(x)dµ(x) = 0 for all i 6= j. This is the sequence

found by orthogonalizing the monomial basis {xi}with Gram-Schmidt with respect to 〈·,·〉µ. The fact
that OPs form an orthogonal basis is useful because the optimal polynomial g of degree deg(g)<N
that approximates a function f is then given by

N−1∑
i=0

ciPi(x)/‖Pi‖2µ where ci=〈f,Pi〉µ=

∫
f(x)Pi(x)dµ(x).

Classical OPs families comprise Jacobi (which include Legendre and Chebyshev polynomials as
special cases), Laguerre, and Hermite polynomials. The Fourier basis can also be interpreted as OPs
on the unit circle in the complex plane.

B.1.1 Properties of Legendre Polynomials

Legendre polynomials Under the usual definition of the canonical Legendre polynomial Pn, they
are orthogonal with respect to the measure ωleg =1[−1,1]:

2n+1

2

∫ 1

−1

Pn(x)Pm(x)dx=δnm (5)
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Also, they satisfy
Pn(1)=1

Pn(−1)=(−1)n.

Shifted and Scaled Legendre polynomials We will also consider scaling the Legendre polynomials
to be orthogonal on the interval [0,t]. A change of variables on (5) yields

(2n+1)

∫ t

0

Pn

(
2x

t
−1

)
Pm

(
2x

t
−1

)
1

t
dx=(2n+1)

∫
Pn

(
2x

t
−1

)
Pm

(
2x

t
−1

)
ωleg

(
2x

t
−1

)
1

t
dx

=
2n+1

2

∫
Pn(x)Pm(x)ωleg(x)dx

=δnm.

Therefore, with respect to the measure ωt = 1[0,t]/t (which is a probability measure for all t), the
normalized orthogonal polynomials are

(2n+1)1/2Pn

(
2x

t
−1

)
.

Similarly, the basis

(2n+1)1/2Pn

(
2
x−t
θ

+1

)
is orthonormal for the uniform measure 1

θ I[t−θ,t].

In general, the orthonormal basis for any uniform measure consists of (2n + 1)
1
2 times the

corresponding linearly shifted version of Pn.

Derivatives of Legendre polynomials We note the following recurrence relations on Legendre
polynomials ([2, Chapter 12]):

(2n+1)Pn=P ′n+1−P ′n−1

P ′n+1 =(n+1)Pn+xP ′n
The first equation yields

P ′n+1 =(2n+1)Pn+(2n−3)Pn−2+..., (6)
where the sum stops at P0 or P1.

These equations directly imply
P ′n=(2n−1)Pn−1+(2n−5)Pn−3+... (7)

and
(x+1)P ′n(x)=P ′n+1+P ′n−(n+1)Pn

=nPn+(2n−1)Pn−1+(2n−3)Pn−2+.... (8)
These will be used in the derivations of the HiPPO-LegT and HiPPO-LegS updates, respectively.

B.1.2 Properties of Laguerre Polynomials

The standard Laguerre polynomials Ln(x) are defined to be orthogonal with respect to the weight
function e−x supported on [0,∞), while the generalized Laguerre polynomials (also called associated
Laguerre polynomials)L(α)

n are defined to be orthogonal with respect to the weight function xαe−x
also supported on [0,∞): ∫ ∞

0

xαe−xL(α)
n (x)L(α)

m (x)dx=
(n+α)!

n!
δn,m. (9)

Also, they satisfy

L(α)
n (0)=

(
n+α

n

)
=

Γ(n+α+1)

Γ(n+1)Γ(α+1)
. (10)

The standard Laguerre polynomials correspond to the case of α = 0 of generalized Laguerre
polynomials.
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Derivatives of generalized Laguerre polynomials We note the following recurrence relations on
generalized Laguerre polynomials ([2, Chapter 13.2]):

d

dx
L(α)
n (x)=−L(α+1)

n−1 (x)

L(α+1)
n (x)=

n∑
i=0

L
(α)
i (x).

These equations imply

d

dt
L(α)
n (x)=−L(α)

0 (x)−L(α)
1 (x)−···−L(α)

n−1(x).

B.1.3 Properties of Chebyshev polynomials

Let Tn be the classical Chebyshev polynomials (of the first kind), defined to be orthogonal with respect
to the weight function (1−x2)1/2 supported on [−1,1], and let pn be the normalized version of Tn
(i.e, with norm 1):

ωcheb =(1−x2)−1/2I(−1,1),

pn(x)=

√
2

π
Tn(x) for n≥1,

p0(x)=
1√
π
.

Note that ωcheb is not normalized (it integrates to π).

Derivatives of Chebyshev polynomials The chebyshev polynomials satisfy

2Tn(x)=
1

n+1

d

dx
Tn+1(x)− 1

n−1

d

dx
Tn−1(x) n=2,3,....

By telescoping this series, we obtain

1

n
T ′n=

{
2(Tn−1+Tn−3+···+T2)+T0 n odd
2(Tn−1+Tn−3+···+T1) n even

. (11)

Translated Chebyshev polynomials We will also consider shifting and scaling the Chebyshev
polynomials to be orthogonal on the interval [t−θ,t] for fixed length θ.

The normalized (probability) measure is

ω(t,x)=
2

θπ
ωcheb

(
2(x−t)
θ

+1

)
=

1

θπ

(
x−t
θ

+1

)−1/2(
−x−t

θ

)−1/2

I(t−θ,t).

The orthonormal polynomial basis is

pn(t,x)=
√
πpn

(
2(x−t)
θ

+1

)
.

In terms of the original Chebyshev polynomials, these are

pn(t,x)=
√

2Tn

(
2(x−t)
θ

+1

)
for n≥1,

p
(t)
0 =T0

(
2(x−t)
θ

+1

)
.

B.2 Leibniz Integral Rule

As part of our standard strategy for deriving HiPPO update rules (Appendix C), we will differentiate
through integrals with changing limits. For example, we may wish to differentiate with respect to t the
expression

∫
f(t,x)µ(t,x)dx=

∫ t
0
f(t,x) 1

t dxwhen analyzing the scaled Legendre (LegS) measure.
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Differentiating through such integrals can be formalized by the Leibniz integral rule, the basic version
of which states that

∂

∂t

∫ β(t)

α(t)

f(x,t)dx=

∫ β(t)

α(t)

∂

∂t
f(x,t)dx−α′(t)f(α(t),t)+β′(t)f(β(t),t).

We elide over the formalisms in our derivations (Appendix D) and instead use the following trick.
We replace integrand limits with an indicator function; and using the Dirac delta function δ when
differentiating (i.e., using the formalism of distributional derivatives). For example, the above formula
can be derived succinctly with this trick:

∂

∂t

∫ β(t)

α(t)

f(x,t)dx=
∂

∂t

∫
f(x,t)I[α(t),β(t)](x)dx

=

∫
∂

∂t
f(x,t)I[α(t),β(t)](x)dx+

∫
f(x,t)

∂

∂t
I[α(t),β(t)](x)dx

=

∫
∂

∂t
f(x,t)I[α(t),β(t)](x)dx+

∫
f(x,t)(β′(t)δβ(t)(x)−α′(t)δα(t))(x)dx

=

∫ β(t)

α(t)

∂

∂t
f(x,t)dx−α′(t)f(α(t),t)+β′(t)f(β(t),t).

B.3 ODE Discretization

In our framework, time series inputs will be modeled with a continuous function and then discretized.
Here we provide some background on ODE discretization methods, including a new discretization
that applies to a specific type of ODE that our new method encounters.

The general formulation of an ODE is d
dtc(t)=f(t,c(t)). We will also focus on the linear time-invariant

ODE of the form d
dtc(t)=Ac(t)+Bf(t) for some input function f(t), as a special case. The general

methodology for discretizing the ODE, for step size ∆t, is to rewrite the ODE as

c(t+∆t)−c(t)=

∫ t+∆t

t

f(s,c(s))ds, (12)

then approximate the RHS integral.

Many ODE discretization methods corresponds to different ways to approximate the RHS integral:

Euler (aka forward Euler). To approximate the RHS of equation (12), keep the left endpoint
∆tf(t,c(t)). For the linear ODE, we get:

c(t+∆t)=(I+∆tA)c(t)+∆tBf(t).

Backward Euler. To approximate the RHS of equation (12), keep the right endpoint
∆tf(t+∆t,c(t+∆t)). For the linear ODE, we get the linear equation and the update:

c(t+∆t)−∆tAc(t+∆t)=c(t)+∆tBf(t)

c(t+∆t)=(I−∆tA)−1c(t)+∆t(I−∆tA)−1Bf(t).

Bilinear (aka Trapezoid rule, aka Tustin’s method). To approximate the RHS of equation (12),
average the endpoints ∆t f(t,c(t))+f(t+∆t,c(t+∆t))

2 . For the linear ODE, again we get a linear equation
and the update:

c(t+∆t)−∆t

2
Ac(t+∆t)=(I+∆t/2A)c(t)+∆tBf(t)

c(t+∆t)=(I−∆t/2A)−1(I+∆t/2A)c(t)+∆t(I−∆t/2A)−1Bf(t).
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Generalized Bilinear Transformation (GBT). This method [77] approximates the RHS of equa-
tion (12) by taking a weighted average of the endpoints ∆t[(1−α)f(t,c(t))+αf(t+∆t,c(t+∆t))],
for some parameter α∈ [0,1]. For the linear ODE, again we get a linear equation and the update:

c(t+∆t)−∆tαAc(t+∆t)=(I+∆t(1−α)A)c(t)+∆tBf(t)

c(t+∆t)=(I−∆tαA)−1(I+∆t(1−α)A)c(t)+∆t(I−∆tαA)−1Bf(t). (13)

GBT generalizes the three methods mentioned above: forward Euler corresponds to α=0, backward
Euler to α=1, and bilinear to α=1/2.

We also note another method called Zero-order Hold (ZOH) [23] that specializes to linear ODEs. The
RHS of equation (12) is calculated in closed-form assuming constant input f between t and t+∆t.
This yields the update c(t+ ∆t) = e∆tAc(t) +

(∫∆t

τ=0
eτAdτ

)
Bf(t). If A is invertible, this can be

simplified as c(t+∆t)=e∆tAc(t)+A−1(e∆tA−I)Bf(t).

HiPPO-LegS invariance to discretization step size. In the case of HiPPO-LegS, we have a linear
ODE of the form d

dtc(t) = 1
tAc(t)+ 1

tBf(t). Adapting the GBT discretization (which generalizes
forward/backward Euler and bilinear) to this linear ODE, we obtain:

c(t+∆t)−∆tα
1

t+∆t
Ac(t+∆t)=

(
I+∆t(1−α)

1

t
A

)
c(t)+∆t

1

t
Bf(t)

c(t+∆t)=

(
I− ∆t

t+∆t
αA

)−1(
I+

∆t

t
(1−α)A

)
c(t)+

∆t

t

(
I− ∆t

t+∆t
αA

)−1

Bf(t).

We highlight that this system is invariant to the discretization step size ∆t. Indeed, if c(k) :=c(k∆t)
and fk :=f(k∆t) then we have the recurrence

c(k+1) =

(
I− 1

k+1
αA

)−1(
I+

1

k
(1−α)A

)
c(k)+

1

k

(
I− 1

k+1
αA

)−1

Bfk,

which does not depend on ∆t.

Ablation: comparison between different discretization methods To understand the impact of
approximation error in discretization, in Fig. 4, we show the absolute error for the HiPPO-LegS updates
in function approximation (Appendix F.8) for different discretization methods: forward Euler, back-
ward Euler, and bilinear. The bilinear method generally provide sufficiently accurate approximation.
We will use bilinear as the discretization method for the LegS updates for the experiments.
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Figure 4: Absolute error for different discretization methods. Forward and backward Euler are generally not
very accurate, while bilinear yields more accurate approximation.

C General HiPPO Framework

We present the general HiPPO framework, as described in Section 2, in more details. We also
generalize it to include bases other than polynomials.
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Given a time-varying measure family µ(t) supported on (−∞, t], a sequence of basis functions
G=span{g(t)

n }n∈[N ], and a continuous function f : R≥0→R, HiPPO defines an operator that maps
f to the optimal projection coefficients c :R≥0→RN , such that

g(t) :=argming∈G‖f≤t−g‖µ(t) , and g(t) =

N−1∑
n=0

cn(t)g(t)
n .

The first step refers to the projt operator and the second the coeft operator in Definition 1.

We focus on the case where the coefficients c(t) has the form of a linear ODE satisfying
d
dtc(t)=A(t)c(t)+B(t)f(t) for someA(t)∈RN×N ,B(t)∈RN×1.

We first describe the parameters of the hippo operator (a measure and basis) in more detail in
Appendix C.1. We define the projection projt and coefficient coeft operators in Appendix C.2. Then
we give a general strategy to calculate these coefficients c(t), by deriving a differential equation that
governs the coefficient dynamics (Appendix C.3). Finally we discuss how to turn the continuous hippo
operator into a discrete one that can be applied to sequence data (Appendix C.4).

C.1 Measure and Basis

We describe and motivate the ingredients of HiPPO in more detail here. Recall that the high level
goal is online function approximation; this requires both a set of valid approximations and a notion
of approximation quality.

Approximation Measures At every t, the approximation quality is defined with respect to a measure
µ(t) supported on (−∞,t]. We seek some polynomial g(t) of degree at most N−1 that minimizes
the error ‖fx≤t−g(t)‖L2(µ(t)). Intuitively, this measure µ(t) governs how much to weigh every time in
the past. For simplicity, we assume that the measures µ(t) are sufficiently smooth across their domain
as well as in time; in particular, they have densities ω(t,x) := dµ(t)

dλ (x) with respect to the Lebesgue
measure dλ(x) := dx such that ω is C1 almost everywhere. Thus integrating against dµ(t)(x) can
be rewritten as integrating against ω(t,x)dx.

We also assume for simplicity that the measures µ(t) are normalized to be probability measures;
arbitrary scaling does not affect the optimal projection.

Orthogonal polynomial basis Let {Pn}n∈N denote a sequence of orthogonal polynomials with
respect to some base measure µ. Similarly define {P (t)

n }n∈N to be a sequence of orthogonal
polynomials with respect to the time-varying measure µ(t). Let p(t)

n be the normalized version of P (t)
n

(i.e., have norm 1), and define
pn(t,x)=p(t)

n (x). (14)

Note that the P (t)
n are not required to be normalized, while the p(t)

n are.

Tilted measure and basis Our goal is simply to store a compressed representation of functions, which
can use any basis, not necessarily OPs. For any scaling function

χ(t,x)=χ(t)(x), (15)

the functions pn(x)χ(x) are orthogonal with respect to the density ω/χ2 at every time t. Thus, we
can choose this alternative basis and measure to perform the projections.

To formalize this tilting with χ, define ν(t) to be the normalized measure with density proportional
to ω(t)/(χ(t))2. We will calculate the normalized measure and the orthonormal basis for it. Let

ζ(t)=

∫
ω

χ2
=

∫
ω(t)(x)

(χ(t)(x))2
dx (16)

be the normalization constant, so that ν(t) has density ω(t)

ζ(t)(χ(t))2
. Ifχ(t,x)=1 (no tilting), this constant

is ζ(t)=1. In general, we assume that ζ is constant for all t; if not, it can be folded into χ directly.
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Next, note that (dropping the dependence on x inside the integral for shorthand)∥∥∥ζ(t)
1
2 p(t)
n χ(t)

∥∥∥2

ν(t)
=

∫ (
ζ(t)

1
2 p(t)
n χ(t)

)2 ω(t)

ζ(t)(χ(t))2

=

∫
(p(t)
n )2ω(t)

=
∥∥∥p(t)

n

∥∥∥2

µ(t)
=1.

Thus we define the orthogonal basis for ν(t)

g(t)
n =λnζ(t)

1
2 p(t)
n χ(t), n∈N. (17)

We let each element of the basis be scaled by a λn scalar, for reasons discussed soon, since arbitrary
scaling does not change orthogonality:

〈g(t)
n , g(t)

m 〉ν(t) =λ2
nδn,m

Note that when λn =±1, the basis {g(t)
n } is an orthonormal basis with respect to the measure ν(t),

at every time t. Notationally, let gn(t,x) :=g
(t)
n (x) as usual.

We will only use this tilting in the case of Laguerre (Appendix D.2 and Chebyshev (Appendix D.5).

Note that in the case χ=1 (i.e., no tilting), we also have ζ=1 and gn=λnpn (for all t,x).

C.2 The Projection and Coefficients

Given a choice of measures and basis functions, we next see how the coefficients c(t) can be computed.

Input: Function We are given aC1-smooth function f : [0,∞)→R which is seen online, for which
we wish to maintain a compressed representation of its history f(x)≤t=f(x)x≤t at every time t.

Output: Approximation Coefficients The function f can be approximated by storing its
coefficients with respect to the basis {gn}n<N . For example, in the case of no tilting χ = 1, this
encodes the optimal polynomial approximation of f of degree less than N . In particular, at time t
we wish to represent f≤t as a linear combination of polynomials g(t)

n . Since the g(t)
n are orthogonal

with respect to the Hilbert space defined by 〈·,·〉ν(t) , it suffices to calculate coefficients

cn(t)=〈f≤t,g(t)
n 〉ν(t)

=

∫
fg(t)

n

ω(t)

ζ(t)(χ(t))2

=ζ(t)−
1
2λn

∫
fp(t)

n

ω(t)

χ(t)
.

(18)

Reconstruction At any time t, f≤t can be explicitly reconstructed as

f≤t≈g(t) :=

N−1∑
n=0

〈f≤t,g(t)
n 〉ν(t)

g
(t)
n

‖g(t)
n ‖2ν(t)

=

N−1∑
n=0

λ−2
n cn(t)g(t)

n

=

N−1∑
n=0

λ−1
n ζ

1
2 cn(t)p(t)

n χ(t).

(19)

Equation (19) is the projt operator; given the measure and basis parameters, it defines the optimal
approximation of f≤t.

The coeft operator simply extracts the vector of coefficients c(t)=(cn(t))n∈[N ].
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C.3 Coefficient Dynamics: the hippo Operator

For the purposes of end-to-end models consuming an input function f(t), the coefficients c(t) are
enough to encode information about the history of f and allow online predictions. Therefore, defining
c(t) to be the vector of cn(t) from equation (18), our focus will be on how to calculate the function
c :R≥0→RN from the input function f :R≥0→R.

In our framework, we will compute these coefficients over time by viewing them as a dynamical
system. Differentiating (18),

d

dt
cn(t)=ζ(t)−

1
2λn

∫
f(x)

(
∂

∂t
pn(t,x)

)
ω

χ
(t,x)dx

+

∫
f(x)

(
ζ−

1
2λnpn(t,x)

)( ∂

∂t

ω

χ
(t,x)

)
dx.

(20)

Here we have made use of the assumption that ζ is constant for all t.

Let c(t)∈RN−1 denote the vector of all coefficients (cn(t))0≤n<N .

The key idea is that if ∂
∂tPn and ∂

∂t
ω
χ have closed forms that can be related back to the polynomials Pk,

then an ordinary differential equation can be written for c(t). This allows these coefficients c(t) and
hence the optimal polynomial approximation to be computed online. Since d

dtP
(t)
n is a polynomial (in

x) of degree n−1, it can be written as linear combinations ofP0,...,Pn−1, so the first term in Eq. (20) is
a linear combination of c0,...,cn−1. For many weight functions ω, we can find scaling function χ such
that ∂

∂t
ω
χ can also be written in terms of ωχ itself, and thus in those cases the second term of Eq. (20)

is also a linear combination of c0,...,cN−1 and the input f . Thus this often yields a closed-form linear
ODE for c(t).

Normalized dynamics Our purpose of defining the free parameters λn was threefold.

1. First, note that the orthonormal basis is not unique, up to a±1 factor per element.
2. Second, choosing λn can help simplify the derivations.
3. Third, although choosing λn=±1 will be our default, since projecting onto an orthonormal

basis is most sensible, the LMU [71] used a different scaling. Appendix D.1 will recover
the LMU by choosing different λn for the LegT measure.

Suppose that equation (20) reduced to dynamics of the form

d

dt
c(t)=−A(t)c(t)+B(t)f(t).

Then, letting Λ=diagn∈[N ]{λn},

d

dt
Λ−1c(t)=−Λ−1A(t)ΛΛ−1c(t)+Λ−1B(t)f(t).

Therefore, if we reparameterize the coefficients (Λ−1c(t)→ c(t)) then the normalized coefficients
projected onto the orthonormal basis satisfy dynamics and associated reconstruction

d

dt
c(t)=−(Λ−1A(t)Λ)c(t)+(Λ−1B(t))f(t) (21)

f≤t≈g(t) =

N−1∑
n=0

ζ
1
2 cn(t)p(t)

n χ(t) (22)

These are the hippo and projt operators.

C.4 Discretization

As defined here, hippo is a map on continuous functions. However, as hippo defines a closed-form
ODE of the coefficient dynamics, standard ODE discretization methods (Appendix B.3) can be applied
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Figure 5: Illustration of HiPPO measures. At time t0, the history of a function f(x)x≤t0 is summarized by
polynomial approximation with respect to the measure µ(t0) (blue), and similarly for time t1 (purple). (Left)
The Translated Legendre measure (LegT) assigns weight in the window [t−θ,t]. For small t, µ(t) is supported on
a region x<0 where f is not defined. When t is large, the measure is not supported near 0, causing the projection
of f to forget the beginning of the function. (Middle) The Translated Laguerre (LagT) measure decays the past
exponentially. It does not forget, but also assigns weight on x<0. (Right) The Scaled Legendre measure (LegS)
weights the entire history [0,t] uniformly.

to turn this into discrete memory updates. Thus we overload these operators, i.e. hippo either defines
an ODE of the form

d

dt
c(t)=A(t)c(t)+B(t)f(t)

or a recurrence
ct=Atct−1+Btft,

whichever is clear from context.

Appendix F.5 validates the framework by applying (20) and (19) to approximate a synthetic function.

D Derivations of HiPPO Projection Operators

We derive the memory updates associated with the translated Legendre (LegT) and translated Laguerre
(LagT) measures as presented in Section 2.3, along with the scaling Legendre (LegS) measure
(Section 3). To show the generality of the framework, we also derive memory updates with Fourier
basis (recovering the Fourier Recurrent Unit [79]) and with Chebyshev basis.

The majority of the work has already been accomplished by setting up the projection framework, and
the proof simply requires following the technical outline laid out in Appendix C. In particular, the
definition of the coefficients (18) and reconstruction (19) does not change, and we only consider how
to calculate the coefficients dynamics (20).

For each case, we follow the general steps:

Measure and Basis define the measure µ(t) or weight ω(t,x) and basis functions pn(t,x),
Derivatives compute the derivatives of the measure and basis functions,
Coefficient Dynamics plug them into the coefficient dynamics (equation (20)) to derive the ODE

that describes how to compute the coefficients c(t),
Reconstruction provide the complete formula to reconstruct an approximation to the function f≤t,

which is the optimal projection under this measure and basis.

The derivations in Appendices D.1 and D.2 prove Theorem 1, and the derivations in Appendix D.3
prove Theorem 2. Appendices D.4 and D.5 show additional results for Fourier-based bases.

Figure 5 illustrates the overall framework when we use Legendre and Laguerre polynomials as the
basis, contrasting our main families of time-varying measures µ(t).

D.1 Derivation for Translated Legendre (HiPPO-LegT)

This measure fixes a window length θ and slides it across time.
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Measure and Basis We use a uniform weight function supported on the interval [t−θ,t] and pick
Legendre polynomials Pn(x), translated from [−1,1] to [t−θ,t], as basis functions:

ω(t,x)=
1

θ
I[t−θ,t]

pn(t,x)=(2n+1)1/2Pn

(
2(x−t)
θ

+1

)
gn(t,x)=λnpn(t,x).

Here, we have used no tilting so χ=1 and ζ=1 (equations (15) and (16)). We leave λn unspecified
for now.

At the endpoints, these basis functions satisfy

gn(t,t)=λn(2n+1)
1
2

gn(t,t−θ)=λn(−1)n(2n+1)
1
2 .

Derivatives The derivative of the measure is

∂

∂t
ω(t,x)=

1

θ
δt−

1

θ
δt−θ.

The derivative of Legendre polynomials can be expressed as linear combinations of other Legendre
polynomials (cf. Appendix B.1.1).

∂

∂t
gn(t,x)=λn(2n+1)

1
2 · −2

θ
P ′n

(
2(x−t)
θ

+1

)
=λn(2n+1)

1
2
−2

θ

[
(2n−1)Pn−1

(
2(x−t)
θ

+1

)
+(2n−5)Pn−3

(
2(x−t)
θ

+1

)
+...

]
=−λn(2n+1)

1
2

2

θ

[
λ−1
n−1(2n−1)

1
2 gn−1(t,x)+λ−1

n−3(2n−3)
1
2 gn−3(t,x)+...

]
.

We have used equation (7) here.

Sliding Approximation As a special case for the LegT measure, we need to consider an
approximation due to the nature of the sliding window measure.

When analyzing d
dtc(t) in the next section, we will need to use the value f(t−θ). However, at time

t this input is no longer available. Instead, we need to rely on our compressed representation of the
function: by the reconstruction equation (19), if the approximation is succeeding so far, we should have

f≤t(x)≈
N−1∑
k=0

λ−1
k ck(t)(2k+1)

1
2Pk

(
2(x−t)
θ

+1

)

f(t−θ)≈
N−1∑
k=0

λ−1
k ck(t)(2k+1)

1
2 (−1)k.

Coefficient Dynamics We are ready to derive the coefficient dynamics.
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Plugging the derivatives of this measure and basis into equation (20) gives
d

dt
cn(t)=

∫
f(x)

(
∂

∂t
gn(t,x)

)
ω(t,x)dx

+

∫
f(x)gn(t,x)

(
∂

∂t
ω(t,x)

)
dx

=−λn(2n+1)
1
2

2

θ

[
λ−1
n−1(2n−1)

1
2 cn−1(t)+λ−1

n−3(2n−5)
1
2 cn−3(t)+...

]
+

1

θ
f(t)gn(t,t)− 1

θ
f(t−θ)gn(t,t−θ)

≈−λn
θ

(2n+1)
1
2 ·2
[
(2n−1)

1
2
cn−1(t)

λn−1
+(2n−5)

1
2
cn−3(t)

λn−3
+...

]
+(2n+1)

1
2
λn
θ
f(t)−(2n+1)

1
2
λn
θ

(−1)n
N−1∑
k=0

(2k+1)
1
2
ck(t)

λk
(−1)k

=−λn
θ

(2n+1)
1
2 ·2
[
(2n−1)

1
2
cn−1(t)

λn−1
+(2n−5)

1
2
cn−3(t)

λn−3
+...

]
−(2n+1)

1
2
λn
θ

N−1∑
k=0

(−1)n−k(2k+1)
1
2
ck(t)

λk
+(2n+1)

1
2
λn
θ
f(t)

=−λn
θ

(2n+1)
1
2

N−1∑
k=0

Mnk(2k+1)
1
2
ck(t)

λk
+(2n+1)

1
2
λn
θ
f(t),

where

Mnk=

{
1 if k≤n
(−1)n−k if k≥n.

Now we consider two instantiations for λn. The first one is the more natural λn=1, which turns gn
into an orthonormal basis. We then get

d

dt
c(t)=−1

θ
Ac(t)+

1

θ
Bf(t)

Ank=(2n+1)
1
2 (2k+1)

1
2

{
1 if k≤n
(−1)n−k if k≥n

Bn=(2n+1)
1
2 .

The second case takes λn=(2n+1)
1
2 (−1)n. This yields

d

dt
c(t)=−1

θ
Ac(t)+

1

θ
Bf(t)

Ank=(2n+1)

{
(−1)n−k if k≤n
1 if k≥n

Bn=(2n+1)(−1)n.

This is exactly the LMU update equation.

Reconstruction By equation (19), at every time twe have

f(x)≈g(t)(x)=
∑
n

λ−1
n cn(t)(2n+1)

1
2Pn

(
2(x−t)
θ

+1

)
.

D.2 Derivation for Translated Laguerre (HiPPO-LagT)

We consider measures based on the generalized Laguerre polynomials. For a fixed α ∈ R,
these polynomials L(α)(t − x) are orthogonal with respect to the measure xαe−x on [0,∞) (cf.
Appendix B.1.2). This derivation will involve tilting the measure governed by another parameter β.
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The result in Theorem 1 for HiPPO-LagT is for the case α = 0,β = 1, corresponding to the basic
Laguerre polynomials and no tilting.

Measure and Basis We flip and translate the generalized Laguerre weight function and polynomials
from [0,∞) to (−∞,t]. The normalization is found using equation (9).

ω(t,x)=

{
(t−x)αex−t if x≤ t
0 if x>t

=(t−x)αe−(t−x)I(−∞,t]

pn(t,x)=
Γ(n+1)

1
2

Γ(n+α+1)
1
2

L(α)
n (t−x)

Tilted Measure We choose the following tilting χ

χ(t,x)=(t−x)αexp

(
−1−β

2
(t−x)

)
I(−∞,t]

for some fixed β∈R. The normalization is (constant across all t)

ζ=

∫
ω

χ2
=

∫
(t−x)−αe−β(t−x)I(−∞,t]dx

=Γ(1−α)βα−1,

so the tilted measure has density

ζ(t)−1 ω(t)

(χ(t))2
=Γ(1−α)−1β1−α(t−x)−αexp(−β(t−x))I(−∞,t].

We choose

λn=
Γ(n+α+1)

1
2

Γ(n+1)
1
2

to be the norm of the generalized Laguerre polynomial L(α)
n , so that λnp

(t)
n = L

(α)
n (t − x), and

(following equation (17)) the basis for ν(t) is

g(t)
n =λnζ

1
2 p(t)
n χ(t)

=ζ
1
2χ(t)L(α)

n (t−x)
(23)

Derivatives We first calculate the density ratio

ω

χ
(t,x)=exp

(
−1+β

2
(t−x)

)
I(−∞,t].

and its derivative

∂

∂t

ω

χ
(t,x)=−

(
1+β

2

)
ω

χ
(t,x)+exp

(
−
(

1+β

2

)
(t−x)

)
δt.

The derivative of Laguerre polynomials can be expressed as linear combinations of other Laguerre
polynomials (cf. Appendix B.1.2).

∂

∂t
λnpn(t,x)=

∂

∂t
L(α)
n (t−x)

=−L(α)
0 (t−x)−···−L(α)

n−1(t−x)

=−λ0p0(t,x)−···−λn−1pn−1(t,x)
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Coefficient Dynamics Plugging these derivatives into equation (20) (obtained from differentiating
the coefficient equation (18)), where we suppress the dependence on x for convenience:

d

dt
cn(t)=ζ−

1
2

∫
f ·
(
∂

∂t
λnp

(t)
n

)
ω(t)

χ(t)

+

∫
f ·
(
ζ−

1
2λnp

(t)
n

)( ∂

∂t

ω(t)

χ(t)

)
=−

n−1∑
k=0

∫
f ·
(
ζ−

1
2λkp

(t)
k χ(t)

) ω(t)

(χ(t))2

−
(

1+β

2

)∫
f ·
(
ζ−

1
2λnp

(t)
n

)ω(t)

χ(t)
+f(t)·ζ− 1

2L(α)
n (0)

=−
n−1∑
k=0

ck(t)−
(

1+β

2

)
cn(t)+Γ(1−α)−

1
2 β

1−α
2

(
n+α

n

)
f(t).

We then get
d

dt
c(t)=−Ac(t)+Bf(t)

A=


1+β

2 0 ... 0

1 1+β
2 ... 0

...
. . .

1 1 ... 1+β
2



B=ζ−
1
2 ·


(
α
0

)
...(

N−1+α
N−1

)


(24)

Reconstruction By equation (19), at every time t, for x≤ t,

f(x)≈g(t)(x)=

N−1∑
n=0

λ−1
n ζ

1
2 cn(t)p(t)

n χ(t)

=
∑
n

n!

(n+α)!
ζ

1
2 cn(t)·L(α)

n (t−x)·(t−x)αe(
β−1
2 )(t−x).

Normalized Dynamics Finally, following equations (21) and (22) to convert these to dynamics on the
orthonormal basis of the normalized (probability) measure ν(t) leads to the following hippo operator

d

dt
c(t)=−Ac(t)+Bf(t)

A=−Λ−1


1+β

2 0 ... 0

1 1+β
2 ... 0

...
. . .

1 1 ... 1+β
2

Λ

B=Γ(1−α)−
1
2 β

1−α
2 ·Λ−1


(
α
0

)
...(

N−1+α
N−1

)


Λ= diag
n∈[N ]

{
Γ(n+α+1)

1
2

Γ(n+1)
1
2

}

(25)

and correspondingly a projt operator:

f(x)≈g(t)(x)=Γ(1−α)
1
2 β−

1−α
2

∑
n

cn(t)· Γ(n+1)
1
2

Γ(n+α+1)
1
2

·L(α)
n (t−x)·(t−x)αe(

β−1
2 )(t−x). (26)
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D.3 Derivation for Scaled Legendre (HiPPO-LegS)

As discussed in Section 3, the scaled Legendre is our only method that uses a measure with varying
width.

Measure and Basis We instantiate the framework in the case

ω(t,x)=
1

t
I[0,t] (27)

gn(t,x)=pn(t,x)=(2n+1)
1
2Pn

(
2x

t
−1

)
(28)

Here, Pn are the basic Legendre polynomials (Appendix B.1.1). We use no tilting, i.e. χ(t,x) = 1,
ζ(t)=1, and λn=1 so that the functions gn(t,x) are an orthonormal basis.

Derivatives We first differentiate the measure and basis:

∂

∂t
ω(t,·)=−t−2I[0,t]+t−1δt= t−1(−ω(t)+δt)

∂

∂t
gn(t,x)=−(2n+1)

1
2 2xt−2P ′n

(
2x

t
−1

)
=−(2n+1)

1
2 t−1

(
2x

t
−1+1

)
P ′n

(
2x

t
−1

)
.

Now define z= 2x
t −1 for shorthand and apply the properties of derivatives of Legendre polynomials

(equation (8)).

∂

∂t
gn(t,x)=−(2n+1)

1
2 t−1(z+1)P ′n(z)

=−(2n+1)
1
2 t−1[nPn(z)+(2n−1)Pn−1(z)+(2n−3)Pn−2(z)+...]

=−t−1(2n+1)
1
2

[
n(2n+1)−

1
2 gn(t,x)+(2n−1)

1
2 gn−1(t,x)+(2n−3)

1
2 gn−2(t,x)+...

]
Coefficient Dynamics Plugging these into (20), we obtain

d

dt
cn(t)=

∫
f(x)

(
∂

∂t
gn(t,x)

)
ω(t,x)dx+

∫
f(x)gn(t,x)

(
∂

∂t
ω(t,x)

)
dx

=−t−1(2n+1)
1
2

[
n(2n+1)−

1
2 cn(t)+(2n−1)

1
2 cn−1(t)+(2n−3)

1
2 cn−2(t)+...

]
−t−1cn(t)+t−1f(t)gn(t,t)

=−t−1(2n+1)
1
2

[
(n+1)(2n+1)−

1
2 cn(t)+(2n−1)

1
2 cn−1(t)+(2n−3)

1
2 cn−2(t)+...

]
+t−1(2n+1)

1
2 f(t)

where we have used gn(t,t)=(2n+1)
1
2Pn(1)=(2n+1)

1
2 . Vectorizing this yields equation (3):

d

dt
c(t)=−1

t
Ac(t)+

1

t
Bf(t) (29)

Ank=


(2n+1)1/2(2k+1)1/2 if n>k
n+1 if n=k

0 if n<k
,

Bn=(2n+1)
1
2

Alternatively, we can write this as

d

dt
c(t)=−t−1D

[
MD−1c(t)+1f(t)

]
, (30)
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whereD :=diag
[
(2n+1)

1
2

]N−1

n=0
, 1 is the all ones vector, and the state matrixM is

M=



1 0 0 0 ... 0
1 2 0 0 ... 0
1 3 3 0 ... 0
1 3 5 4 ... 0
...

...
...

...
. . .

...
1 3 5 7 ... N

, that is, Mnk=


2k+1 if k<n
k+1 if k=n

0 if k>n

Equation (29) is a linear dynamical system, except dilated by a time-varying factor t−1, which arises
from the scaled measure.

Reconstruction By equation (19), at every time twe have

f(x)≈g(t)(x)=
∑
n

cn(t)gn(t,x).

=
∑
n

cn(t)(2n+1)
1
2Pn

(
2x

t
−1

)
.

D.4 Derivation for Fourier Bases

In the remainder of Appendix D, we consider some additional bases which are analyzable under the
HiPPO framework. These use measures and bases related to various forms of the Fourier transform.

D.4.1 Translated Fourier

Similar to the LMU, the sliding Fourier measure also has a fixed window length θ parameter and slides
it across time.

Measure The Fourier basis e2πinx (for n=0,...,N−1) can be seen as an orthogonal polynomials
basis zn with respect to the uniform measure on the unit circle {z : |z|=1}. By a change of variable
z→ e2πix (and thus changing the domain from the unit circle to [0,1]), we obtain the usual Fourier
basis e2πinx. The complex inner product 〈f,g〉 is defined as

∫ 1

0
f(x)g(x)dx. Note that the basis e2πinx

is orthonormal.

For each t, we will use a sliding measure uniform on [t−θ,t] and rescale the basis as e2πin t−xθ (so
they are still orthonormal, i.e., have norm 1):

ω(t,x)=
1

θ
I[t−θ,t]

pn(t,x)=e2πin t−xθ .

We sue no tilting (i.e., χ(t,x)=1).

Derivatives
∂

∂t
ω(t,x)=

1

θ
δt−

1

θ
δt−θ

∂

∂t
pn(t,x)=

2πin

θ
e2πin t−xθ =

2πin

θ
pn(t,x).

Coefficient Updates Plugging into equation (20) yields

d

dt
cn(t)=

2πin

θ
cn(t)+

1

θ
f(t)pn(t,t)− 1

θ
f(t−θ)pn(t,t−θ)

=
2πin

θ
cn(t)+

1

θ
f(t)− 1

θ
f(t−θ).
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Note that pn(t,t) =pn(t,t−θ) = 1. Additionally, we no longer have access to f(t−θ) at time t, but
this is implicitly represented in our compressed representation of the function: f=

∑N−1
k=0 ck(t)pk(t).

Thus we approximate f(t−θ) by
∑N−1
k=0 ck(t)pk(t,t−θ)=

∑N−1
k=0 ck(t). Finally, this yields

d

dt
cn(t)=

2πin

θ
cn(t)+

1

θ
f(t)− 1

θ

N−1∑
k=0

ck(t).

Hence d
dtc(t)=Ac(t)+Bf(t) where

Ank=

{
−1/θ if k 6=n

(2πin−1)/θ if k=n
, Bn=

1

θ
.

Reconstruction At every time step t, we have

f(x)≈
∑
n

cn(t)pn(t,x)=
∑
n

cn(t)e2πi t−xθ .

D.4.2 Fourier Recurrent Unit

Using the HiPPO framework, we can also derive the Fourier Recurrent Unit (FRU) [79].

Measure For each t, we will use a sliding measure uniform on [t−θ,t] and the basis e2πin xθ :

ω(t,x)=
1

θ
I[t−θ,t]

pn(t,x)=e2πin xθ .

In general the basis is not orthogonal with respect to the measure ω(t,x), but orthogonality holds at
the end where t=θ.

Derivatives
∂

∂t
ω(t,x)=

1

θ
δt−

1

θ
δt−θ

∂

∂t
pn(t,x)=0.

Coefficient Updates Plugging into equation 20 yields

d

dt
cn(t)=

1

θ
f(t)pn(t,t)− 1

θ
f(t−θ)pn(t,t−θ)

=
1

θ
e2πin tθ f(t)− 1

θ
e2πin tθ f(t−θ).

We no longer have access to f(t−θ) at time t, but we can approximate by ignoring this term (which
can be justified by assuming that the function f is only defined on [0,θ] and thus f(x) can be set to
zero for x<0). Finally, this yields

d

dt
cn(t)=

e2πin tθ

θ
f(t).

Applying forward Euler discretization (with step size = 1), we obtain:

cn(k+1)=cn(k)+
e2πin tθ

θ
f(t).

Taking the real parts yields the Fourier Recurrent Unit updates [79].

Note that the recurrence is independent in each n, so we don’t have the pick n= 0,1,...,N−1. We
can thus pick random frequencies n as done in Zhang et al. [79].

32



D.5 Derivation for Translated Chebyshev

The final family of orthogonal polynomials we analyze under the HiPPO framework are the Chebyshev
polynomials. The Chebyshev polynomials can be seen as the purely real analog of the Fourier basis;
for example, a Chebyshev series is related to a Fourier cosine series through a change of basis [8].

Measure and Basis The basic Chebyshev measure is ωcheb =(1−x2)−1/2 on (−1,1). Following
Appendix B.1.3, we choose the following measure and orthonormal basis polynomials in terms of
the Chebyshev polynomials of the first kind Tn.

ω(t,x)=
2

θπ
ωcheb

(
2(x−t)
θ

+1

)
I(t−θ,t)

=
1

θπ

(
x−t
θ

+1

)−1/2(
−x−t

θ

)−1/2

I(t−θ,t)

pn(t,x)=
√

2Tn

(
2(x−t)
θ

+1

)
for n≥1,

p0(t,x)=T0

(
2(x−t)
θ

+1

)
.

Note that at the endpoints, these evaluate to

pn(t,t)=

{√
2Tn(1)=

√
2 n≥1

Tn(1)=1 n=0

pn(t,t−θ)=

{√
2Tn(−1)=

√
2(−1)n n≥1

Tn(−1)=1 n=0

Tilted Measure Now we choose

χ(t) =8−1/2θπω(t),

So

ω

χ2
=

1
θ2π2

8 ω
=

8

θπ

(
x−t
θ

+1

)1/2(
−x−t

θ

)1/2

I(t−θ,t)

which integrates to 1.

We also choose λn=1 for the canonical orthonormal basis, so

g(t) =p(t)
n χ(t)

Derivatives The derivative of the density is

∂

∂t

ω

χ
=
∂

∂t

81/2

θπ
I(t−θ,t) =

81/2

θπ
(δt−δt−θ).

We consider differentiating the polynomials separately forn=0,n even, andn odd, using equation (11).
Defined z= 2(x−t)

θ +1 for convenience. First, for n even,

∂

∂t
pn(t,x)=−2

3
2

θ
T ′n

(
2(x−t)
θ

+1

)
=−2

3
2

θ
T ′n(z)

=−2
3
2

θ
·2n(Tn−1(z)+Tn−3(z)+···+T1(z))

=−4n

θ
(pn−1(t,x)+pn−3(t,x)+···+p1(t,x))
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For n odd,

∂

∂t
pn(t,x)=−2

3
2

θ
T ′n

(
2(x−t)
θ

+1

)
=−2

3
2

θ
T ′n(z)

=−2
3
2

θ
·2n
(
Tn−1(z)+Tn−3(z)+···+T1(z)+

1

2
T0(z)

)
=−4n

θ

(
pn−1(t,x)+pn−3(t,x)+···+2−

1
2 p0(t,x)

)
And

∂

∂t
p0(t,x)=0.

Coefficient Dynamics

cn(t)=

∫
f(x)pn(t,x)

23/2

θπ
I(t−θ,t)dx

d

dt
cn(t)=

∫
f(x)

∂

∂t
pn(t,x)

23/2

θπ
I(t−θ,t)dx+

23/2

θπ
f(t)pn(t,t)− 23/2

θπ
f(t−θ)pn(t,t−θ)

=−4n

θ
(cn−1+cn−3+...)+

23/2

θπ
f(t)

{√
2 n≥1

1 n=0
,

where we take f(t−θ)=0 as we no longer have access to it (this holds when t<θ as well).

In the usual way, we can write this as linear dynamics

d

dt
c(t)=−1

θ
Ac(t)+

1

θ
Bf(t)

A=4


0 ...

2−
1
2 0

0 2 0 ...

2−
1
2 ·3 0 3 0

. . . . . .



B=
23/2

π


1√
2√
2√
2

...



Reconstruction In the interval (t−θ,t),

f(x)≈
N−1∑
n=0

cn(t)pn(t,x)χ(t,x).
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E HiPPO-LegS Theoretical Properties

E.1 Timescale equivariance

Proof of Proposition 3. Let f̃(t)=f(αt). Let c=projf and c̃=projf̃ . By the HiPPO equation (18)
update and the basis instantiation for LegS (equation (28)),

c̃n(t)=〈f̃ ,g(t)
n 〉µ(t)

=

∫
f̃(t)(2n+1)

1
2Pn

(
2
x

t
−1
)1

t
I[0,1]

(x
t

)
dx

=

∫
f(αt)(2n+1)

1
2Pn

(
2
x

t
−1
)1

t
I[0,1]

(x
t

)
dx

=

∫
f(αt)(2n+1)

1
2Pn

(
2
x

αt
−1
) 1

αt
I[0,1]

( x
αt

)
dx

=cn(αt).

The second-to-last equality uses the change of variables x 7→ x
α .

E.2 Speed

In this section we work out the fast update rules according to the forward Euler, backward Euler,
bilinear, or generalized bilinear transform discretizations (cf. Appendix B.3). Recall that we must
be able to perform matrix-vector multiplication by I+δA and (I−δA)−1 where δ is some multiple
of the step size ∆t (equation (13)).

It is easily seen that the LegS update rule involves a matrix A of the following form (Theorem 2):
A=D1(L+D0)D2, whereL is the all 1 lower triangular matrix andD0,D1,D2 are diagonal. Clearly,
I+δA is efficient (only requiringO(N) operations), as it only involves matrix-vector multiplication
by diagonalsD0,D1,D2, or multiplication byLwhich is the cumsum operation.

Now we consider multiplication by the inverse (I+δA)−1 (the minus sign can be absorbed into δ).
Write

(I+δD1(L+D0)D2)−1 =
(
D1(D−1

1 D−1
2 +δ(L+D0))D2

)−1

=δ−1D−1
2

(
δ−1D−1

1 D−1
2 +D0+L

)−1
D−1

1

Since diagonal multiplication is efficient, the crucial operation is inversion multiplication by a matrix
of the formL+D.

Consider solving the equation (L+D)x= y. This implies x0 + ···+xk−1 = yk− (1+dk)xk. The
solution is

x0 =
y0

1+d0

xk=
yk−x0−···−xk−1

1+dk

Define sk=x0+···+xk. Then

sk=sk−1+xk=sk−1+
yk−sk−1

1+dk
=
yk+dksk−1

1+dk
=

dk
1+dk

sk−1+
yk

1+dk
.

Finally, consider how to calculate a recurrence of the following form efficiently.
x0 =β0,xk=αkxk−1+βk.

This update rule can also be written
xk

αk...α1
=

xk−1

αk−1...α1
+

βk
αk...α1

.

Evidently x can be computed in a vectorized way as
x=cumsum(β/cumprod(α))·cumprod(α).

This is anO(N) computation.
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E.3 Gradient Norms

We analyze the discrete time case under the Euler discretization (Appendix B.3), where the
HiPPO-LegS recurrent update is equation (4), restated here for convenience:

ck+1 =

(
1−A

k

)
ck+

1

k
Bfk.

These gradient asymptotics hold under other discretizations.

We will show that

Proposition 7. For any times k < `, the gradient norm of the HiPPO-LegS operator for the output
at time `+1 with respect to input at time k is

∥∥∥∂c`+1

∂fk

∥∥∥=Θ(1/`).

Proof. We takeN to be a constant.

Without loss of generality assume k > 2, as the gradient change for a single initial step is bounded.
By unrolling the recurrence (4), the dependence of c`+1 on ck and fk,...,f` can be made explicit:

c`+1 =

(
I−A

`

)
...

(
I−A

k

)
ck

+

(
I−A

`

)
...

(
I− A

k+1

)
B

k
fk

+

(
I−A

`

)
...

(
I− A

k+2

)
B

k+1
fk+1

...

+

(
I−A

`

)
B

`−1
f`−1

+
B

`
f`.

Therefore

∂c`+1

∂fk
=

(
I−A

`

)
...

(
I− A

k+1

)
B

k
.

Notice that A has distinct eigenvalues 1,2,...,N , since those are the elements of its diagonal and A
is triangular (Theorem 2). Thus the matrices I− A

` ,...,I−
A
k+1 are diagonalizable with a common

change of basis. The gradient then has the form PDP−1B for some invertible matrix P and some
diagonal matrixD. Its norm is therefore bounded from below (up to constant) by the smallest singular
value of P and ‖P−1B‖, both of which are nonzero constants, and the largest diagonal entry of D.
It thus suffices to bound this largest diagonal entry ofD, which is the largest eigenvalue of this product,

ρ=

(
1− 1

`

)
...

(
1− 1

k+1

)
1

k
.

The problem reduces to showing that ρ=Θ(1/l).

We will use the following facts about the function log
(
1− 1

x

)
. First, it is an increasing function, so

log

(
1− 1

x

)
≥
∫ x

x−1

log

(
1− 1

λ

)
dλ.

Second, its antiderivative is∫
log

(
1− 1

x

)
=

∫
log(x−1)−log(x)=(x−1)log(x−1)−xlog(x)=xlog

(
1− 1

x

)
−log(x−1).
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Therefore, we have

log

(
1− 1

`

)
...

(
1− 1

k+1

)
=
∑̀
i=k+1

log(1− 1

i
)

≥
∑̀
i=k+1

∫ i

i−1

log

(
1− 1

x

)
dx

=

∫ `

k

log

(
1− 1

x

)
dx

=[(x−1)log(x−1)−xlog(x)]
∣∣`
k

=`log

(
1− 1

`

)
−log(`−1)

−
(
klog

(
1− 1

k

)
−log(k−1)

)
.

Finally, note that xlog
(
1− 1

x

)
is an increasing function, and bounded from above since it is negative,

so it is Θ(1) (this can also be seen from its Taylor expansion). Thus we have

logρ≥Θ(1)−log(`−1)+log(k−1)−log(k),

Furthermore, all inequalities are asymptotically tight, so that ρ=Θ(1/`) as desired.

E.4 Function Approximation Error

Proof of Proposition 6. Fix a time t. HiPPO-LegS uses the measure ω(t, x) = 1
t I[0,t] and the

polynomial basis pn(t,x)=(2n+1)
1
2Pn

(
2x
t −1

)
. Let cn(t)=〈f≤t,p(t)

n 〉µ(t) for n=0,1,.... Then the
projection g(t) is obtained by linear combinations of the basis functions, with cn(t) as coefficients:

g(t) =

N−1∑
n=0

cn(t)p(t)
n .

Since p(t)
n forms an orthonormal basis of the Hilbert space defined by the inner product 〈·,·〉µ(t) [14],

by Parseval’s identity, ∥∥∥f≤t−g(t)
∥∥∥2

µ(t)
=

∞∑
n=N

c2n(t).

To bound the error
∥∥f≤t−g(t)

∥∥
µ(t) , it suffices to bound the sum of the squares of the high-order

coefficients cn(t) for n=N,N+1,.... We will bound each coefficient by integration by parts.

We first simplify the expression for cn(t). For any n≥1, we have

cn(t)=〈f≤t,p(t)
n 〉µ(t)

=
1

t
(2n+1)

1
2

∫ t

0

f(x)Pn

(
2x

t
−1

)
dx

=
(2n+1)

1
2

2

∫ 1

−1

f

(
1+x

2
t

)
Pn(x)dx (change of variable x→ 1+x

2
t).

As Pn(x)= 1
2n+1

d
dx (Pn+1(x)−Pn−1(x)) (cf. Appendix B.1.1), integration by parts yields:

cn(t)=
(2n+1)

1
2

2

[
f

(
1+x

2
t

)
1

2n+1
(Pn+1(x)−Pn−1(x))

]∣∣∣∣1
−1

− (2n+1)
1
2

2

∫ 1

−1

t

2
f ′
(

1+x

2
t

)
1

2n+1
(Pn+1(x)−Pn−1(x))dx.
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Notice that the boundary term is zero, sincePn+1(1)=Pn−1(1)=1 andPn+1(−1)=Pn−1(−1)=±1
(either both 1 or both−1 depending on whether n is odd or even). Hence:

cn(t)=−1

4
· 1

(2n+1)
1
2

·t
∫ 1

−1

f ′
(

1+x

2
t

)
(Pn+1(x)−Pn−1(x))dx.

Now suppose that f isL-Lipschitz, which implies that |f ′|≤L. Then

c2n(t)≤ t2L2 1

16
· 1

2n+1

[∫ 1

−1

|Pn+1(x)−Pn−1(x)|dx
]2

≤ t2L2 1

16
· 1

2n+1
·2
∫ 1

−1

(Pn+1(x)−Pn−1(x))2dx (Cauchy–Schwarz)

= t2L2 1

8

1

2n+1

[∫ 1

−1

P 2
n+1(x)dx+

∫ 1

−1

P 2
n−1(x)dx

]
(Pn+1 and Pn−1 are orthogonal)

= t2L2 1

8

1

2n+1

[
2

2n+3
+

2

2n−1

]
=O(1)t2L2 1

n2
.

Summing for all n≥N yields:∥∥∥f≤t−g(t)
∥∥∥2

µ(t)
=

∞∑
n=N

c2n(t)=O(1)t2L2
∞∑
n=N

1

n2
=O(1)t2L2 1

N
.

We then obtain that
∥∥f≤t−g(t)

∥∥
µ(t) =O(tL/

√
N) as claimed.

Now supposed that f has k derivatives and the k-th derivative is bounded. The argument is similar
to the one above where we integrate by parts k times. We sketch this argument here.

Take k to be a constant, and let n ≥ k. Applying integration by parts k times, noting that all the
boundary terms are zero, gives:

cn(t)=O(1)(2n+1)
1
2 tk
∫ 1

−1

f (k)

(
1+x

2
t

)
qk(x)dx,

where qk(x) is a polynomial such that dk

dxk
qk(x) = Pn(x). Then since f (k) is bounded,

|cn(t)|=O(1)(2n+1)
1
2

∫ 1

−1
|qk(x)|dx, and so

c2n(t)=O(1)t2k(2n+1)

[∫ 1

−1

|qk(x)|dx
]2

=O(1)t2k(2n+1)

∫ 1

−1

q2
k(x)dx (Cauchy–Schwarz).

It remains to bound
∫ 1

−1
q2
k(x) dx. Using the fact that d

dxPn(x) = 1
2n+1 (Pn+1(x) − Pn−1(x))

repeatedly, we have:

q1 =
1

2n+1
(Pn+1−Pn−1)=

1

n+O(1)
· 1
2

(Pn+1−Pn−1)

q2 =
1

(n+O(1))2

1

22
(Pn+2−Pn−Pn+Pn−2)=

1

(n+O(1))2

1

22
(Pn+2−2Pn+Pn−2)

q3 =
1

(n+O(1))3

1

23
(Pn+3−Pn+1−2Pn+1+2Pn−1+Pn−1−Pn−3)=

1

(n+O(1))3

1

23
(Pn+3−3Pn+1+3Pn−1−Pn−3)

...

In general, when we expand out
∫ 1

−1
q2
k(x)dx, since the Pm’s are orthogonal, we get k+1 terms of

the form 1
(n+O(1))2k

1
22k

(
k
l

)2∫ 1

−1
P 2
m(x)dx for k different values ofm in the range [n−k,n+k], and

l goes from 0 to k. For eachm,
∫ 1

−1
P 2
m(x)dx= 1

n+O(1) , and
∑k
l=0

(
k
l

)2
=
(

2k
k

)
. Summing up all k+1

terms yields ∫ 1

−1

q2
k(x)dx=

1

(n+O(1))2k+1

1

2k

(
2k

k

)
.
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By Stirling’s approximation,
(

2k
k

)
= O(1)4k, so

∫ 1

−1
q2
k(x)dx = O(1)2k

(n+O(1))2k+1 . Noting that k is a
constant, plugging this into the bound for c2n(t):

c2n(t)=O(1)t2k(2n+1)
O(1)2k

(n+O(1))2k+1
=O(1)t2k

1

n2k
.

Summing for all n≥N yields:∥∥∥f≤t−g(t)
∥∥∥2

µ(t)
=

∞∑
n=N

c2n(t)=O(1)t2k
∞∑
n=N

1

n2k
=O(1)t2k

1

N2k−1
.

We then obtain that
∥∥f≤t−g(t)

∥∥
µ(t) =O(tkN−k+1/2) as claimed.

Remark. The approximation error of Legendre polynomials reduces to how fast the Legendre co-
efficients decay, subjected to the smoothness assumption of the input function. This result is analogous
to the classical result in Fourier analysis, where the n-th Fourier coefficients decay asO(n−k) if the
input function has order-k bounded derivatives [45]. That result is also proved by integration by parts.

F Experiment Details and Additional Results

F.1 Model Architecture Details

Given inputs xt or features thereof f(xt) in any model, the HiPPO framework can be used to memorize
the history of features ft through time. As the discretized HiPPO dynamics form a linear recurrent
update similar in style to RNNs (e.g., Theorem 2), we focus on these models in our experiments. Thus,
given any RNN update function ht = τ(ht−1,xt), we simply replace the previous hidden state with
a projected version of its entire history. Equations (31) lists the explicit update equations and Figure 6

⌧

<latexit sha1_base64="bJQNXJRkeSxa7eMID0Z9Dm2fUI8="></latexit>

hippo!

𝑓!

ℎ!

𝑐!

ℎ!"#

𝑐!"#

𝑥!

𝐴!

𝑏!

ht∈Rd=τ(ht−1,[ct−1,xt])

ft∈R1 =Lf (ht)

ct∈RN =hippot(f)

=Atct−1+Btft

(31)

Figure 6: The simple RNN model we use HiPPO with, and associated update equations. L� is a parametrized
linear function, τ is any RNN update function, and [·] denotes concatenation. hippo is the HiPPO memory
operator which orthogonalizes the history of the ft features up to time t. At,Bt are fixed matrices depending
on the chosen measure . N and d represent the approximation order and hidden state size, respectively.

illustrates the model. In our experiments, we choose a basic gated RNN update

τ(h,x)=(1−g(h,x))◦h+g(h,x)◦tanh(Lτ (h,x)), g(h,x)=σ(Lg(h,x)).

Methods and Baselines We consider the following instantiations of our framework HiPPO.

HiPPO-LegT, LagT, and LegS, use the translated Legendre, and tilted Laguerre, and scaled Legendre
measure families with update dynamics (1), (2), and (3). As mentioned, LegT has an additional
hyperparameter θ, which should be set to the timescale of the data if known a priori. We attempt to
set it equal to its ideal value (the length of the sequences) in every task, and also consider θ values
that are too large and small to illustrate the effect of this hyperparameter.

39



Our derivations in Appendices D.1 to D.5 show that there is a large variety of update equations that
can arise from the HiPPO framework—for example, the tilted generalized Laguerre polynomials lead
to an entire family governed by two free parameters (Appendix D.2)—many of which lead to linear
dynamics of the form d

dtc(t) =−Ac(t)+Bf(t) for variousA,B. Given that many different update
dynamics lead to such dynamical systems that give sensible results, we additionally consider the
HiPPO-Rand baseline that uses randomA andB matrices (normalized appropriately) in its dynamics.

We additionally compare against the following standard RNN baselines. The RNN is a vanilla RNN.
The MGU is a minimal gated architecture, equivalent to a GRU without the reset gate. The HiPPO
architecture we use is simply the MGU with an additional hippo intermediate layer. The LSTM is
the most well-known and popular RNN architecture, which is a more sophisticated gated RNN. The
expRNN [48] is the state-of-the-art representative of the orthogonal RNN family of models designed
for long-term dependencies [3]. The LMU is the exact same model as in Voelker et al. [71]; it is
equivalent to HiPPO-LegT with a different RNN architecture.

All methods have the same hidden size in our experiments. In particular, for simplicity and to reduce
hyperparameters, HiPPO variants tie the memory size N to the hidden state dimension d. The
hyperparameterN and d is also referred to as the number of hidden units.

Model and Architecture Comparisons The model (31) we use is a simple RNN that bears
similarity to the classical LSTM and the original LMU cell. In comparison to the LSTM, HiPPO can
be seen as a variant where the memorymt plays the role of the LSTM’s hidden state and ht plays the
role of the LSTM’s gated cell state, with equal dimensionalities. HiPPO updatesmt using the fixed
A transition matrix instead of a learned matrix, and also lacks “input” and “output” gates, so for a
given hidden size, it requires about half the parameters.

The LMU is a version of the HiPPO-LegT cell with an additional hidden-to-hidden transition matrix
and memory-to-memory transition vector instead of the gate g, leaving it with approximately the same
number of trainable parameters.

Training Details Unless stated otherwise, all methods use the Adam optimizer [41] with learning
rate frozen to 0.001, which has been a robust default for RNN based models [31, 71].

All experiments use PyTorch 1.5 and are run on a Nvidia P100 GPU.

F.2 Permuted MNIST

Task The input to the sequential MNIST (sMNIST) task [47] is an MNIST source image, flattened
in row-major order into a single sequence of length 784. The goal of the model is to process the entire
image sequentially before outputting a classification label, requiring learning long-term dependencies.
A variant of this, the permuted MNIST (pMNIST) task, applies a fixed permutation to every image,
breaking locality and further straining a model’s capacity for long-term dependencies.

Models are trained using the cross-entropy loss. We use the standard train-test split (60,000 examples
for training and 10,000 for testing), and further split the training set with 10% to be used as validation set.

Baselines and Ablations Table 1 is duplicated here in Tables 4 and 5, with more complete baselines
and hyperparameter ablations.

Table 4 consists of our implementations of various baselines related to our method, described in
Appendix F.1. Each method was ran for 3 seeds, and the maximum average validation accuracy is
reported. All methods used the same hidden size of 512; we found that this gave better performance
than 256, and further increasing it did not improve more. All methods were trained for 50 epochs with
a batch size of 100.

State of the Art Table 5 directly shows the reported test accuracy of various methods on this data
(Middle and Bottom). Table 5 (Top) reports the test accuracy of various instantations of our methods.
We additionally include our reproduction of the LMU, which achieved better results than reported
in Voelker et al. [71] (possibly due to a larger hidden size). We note that all of our HiPPO methods
are competitive; each of them (HiPPO-LegT, HiPPO-LagT, HiPPO-LegS) achieves state-of-the-art
among previous recurrent sequence models. Note that differences between our HiPPO-LegT and LMU
numbers in Table 5 (Top) stem primarily from the architecture difference (Appendix F.1).
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Timescale Hyperparameters Table 4 also shows ablations for the HiPPO-LegT and HiPPO-LagT
timescale hyperparameters. HiPPO-LagT sweeps the discretization step size ∆t (Section 2.4
and Appendix B.3). For LegT, we set ∆t= 1.0 without loss of generality, as only the ratio of θ to
∆tmatters. These timescale hyperparameters are important for these methods. Previous works have
shown that the equivalent of ∆t in standard RNNs, i.e. the gates of LSTMs and GRUs (Section 2.4),
can also drastically affect their performance [31, 66]. For example, the only difference between the
URLSTM and LSTM in Table 5 is a reparametrization of the gates.

Table 4: Our methods and related baselines. Permuted MNIST (pMNIST) validation scores. (Top): Our
methods. (Bottom): Recurrent baselines.

Method Validation accuracy (%)

HiPPO-LegS 98.34
HiPPO-LagT ∆t=1.0 98.15
HiPPO-LegT θ=200 98.00
HiPPO-LegT θ=2000 97.90
HiPPO-LagT ∆t=0.1 96.44
HiPPO-LegT θ=20 91.75
HiPPO-LagT ∆t=0.01 90.71
HiPPO-Rand 69.93

LMU 97.08
ExpRNN 94.67
GRU 93.04
LSTM 92.54
MGU 89.37
RNN 52.98

Table 5: Comparison to prior methods for pixel-by-pixel image classification. Reported test accuracies from
previous works on pixel-by-pixel image classification benchmarks. Top: Our methods. Middle: Recurrent
baselines and variants. Bottom: Non-recurrent sequence models with global receptive field.

Model Test accuracy (%)

HiPPO-LegS 98.3
HiPPO-Laguerre 98.24
HiPPO-LegT 98.03
LMU (ours) 97.29

URLSTM + Zoneout [46] 97.58
LMU [71] 97.15
URLSTM [31] 96.96
IndRNN [49] 96.0
Dilated RNN [10] 96.1
r-LSTM [69] 95.2
LSTM [31] 95.11

TrellisNet [6] 98.13
Temporal ConvNet [5] 97.2
Transformer [69] 97.9

F.3 Copying

Task In the Copying task [3], the input is a sequence of L+ 20 digits where the first 10 tokens
(a0,a1,...,a9) are randomly chosen from {1,...,8}, the middle N tokens are set to 0, and the last ten
tokens are 9. The goal of the recurrent model is to output (a0,...,a9) in order on the last 10 time steps,
whenever the cue token 9 is presented. Models are trained using the cross-entropy loss; the random
guessing baseline has loss log(8)≈2.08. We use lengthL=200. The training and testing examples
are generated in the same way.

41



Our motivation of studying the Copying task is that standard models such as the LSTM struggle to
solve it. We note that the Copying task is much harder than other memory benchmarks such as the
Adding task [3], and we do not consider those.

Figure 7: Loss on the Copying task. HiPPO methods are the only to fully solve the task. The hyperparameter-free
LegS update is best, while methods with timescale parameters (e.g. LegT) do not solve the task if mis-specified.

Results The HiPPO-LegS method solves this task the fastest. The LegT method also solves
this task quickly, only if the parameter θ is initialized to the correct value of 200. Mis-specifying
this timescale hyperparameter to θ = 20 or θ = 2000 drastically slows down the convergence of
HiPPO-LegT. The LMU (at optimal parameter θ= 200) solves this task at comparable speed; like
in Appendix F.2, differences between HiPPO-LegT (θ= 200) and LMU here arise from the minor
architecture difference in Appendix F.1.

The HiPPO-Rand baseline (denoted “random LTI” system here) does much worse than the updates
with the dynamics derived from our framework, highlighting the importance of the precise dynamics
(in contrast to just the architecture).

Standard methods such as the RNN and LSTM are also nearly stuck at baseline.

F.4 Trajectory Classification

Dataset The Character Trajectories dataset [4] from the UCI machine learning repository [25]
consists of pen tip trajectories recorded from writing individual characters. The trajectories were
captured at 200Hz and data was normalized and smoothed. Input is 3-dimensional (x and y positions,
and pen tip force), and there are 20 possible outputs (number of classes). Models are trained using
the cross-entropy loss. The dataset contains 2858 time series. The length of the sequences is variable,
ranging up to 182. We use a train-val-test split of 70%-15%-15%.

Methods RNN baselines include the LSTM [34], GRU [17], and LMU [71]. Our implementations
of these used 256 hidden units each.

The GRU-D [11] is a method for handling missing values in time series that computes a decay between
observations. The ODE-RNN [61] and Neural CDE (NCDE) [40] baselines are state-of-the-art neural
ODE methods, also designed to handle irregularly-sampled time series. Our GRU-D, ODE-RNN,
and Neural CDE baselines used code from Kidger et al. [40], inheriting the hyperparameters for those
methods.

All methods trained for 100 epochs.

Timescale mis-specification The goal of this experiment is to investigate the performance of models
when the timescale is mis-specified between train and evaluation time, leading to distribution shift.
We considered the following two standard types of time series:

1. Sequences sampled at a fixed rate

2. Irregularly-sampled time series (i.e., missing values) with timestamps
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Timescale shift is emulated in the corresponding ways, which can be interpreted as different sampling
rates or trajectory speeds.

1. Either the train or evaluation sequences are downsampled by a factor of 2
2. The train or evaluation timestamps are halved.9

The first scenario in each corresponds to the original sequence being sampled at 100Hz instead of 200Hz;
alternatively, it is equivalent to the writer drawing twice as fast. Thus, these scenarios correspond
to a train→ evaluation timescale shift of 100Hz→ 200Hz and 200Hz→ 100Hz respectively.

Note that models are unable to obviously tell that there is timescale shift. For example, in the first sce-
nario, shorter or longer sequences can be attributed to the variability of sequence lengths in the original
dataset. In the second scenario, the timestamps have different distributions, but this can correspond
to different rates of missing data, which the baselines for irregularly-sampled data are able to address.

F.5 Online Function Approximation and Speed Benchmark

Task The task is to reconstruct an input function (as a discrete sequence) based on some hidden
state produced after the model has traversed the input function. This is the same problem setup as in
Section 2.1; the online approximation and reconstruction details are in Appendix C. The input function
is randomly sampled from a continuous-time band-limited white noise process, with length 106. The
sampling step size is ∆t=10−4, and the signal band limit is 1Hz.

Models We compare HiPPO-LegS, LMU, and LSTM. The HiPPO-LegS and LMU model only
consists of the memory update and not the additional RNN architecture. The function is reconstructed
from the coefficients using the formula in Appendix D, so no training is required. For LSTM, we use
a linear decoder to reconstruct the function from the LSTM hidden states and cell states, trained on
a collection of 100 sequences. All models use N = 256 hidden units. The LSTM uses the L2 loss.
The HiPPO methods including LMU follow the fixed dynamics of Theorem 1 and Theorem 2.

Speed benchmark We measure the inference time of HiPPO-LegS, LMU, and LSTM, in
single-threaded mode on a server Intel Xeon CPU E5-2690 v4 at 2.60GHz.

F.6 Sentiment Classification on the IMDB Movie Review Dataset

Dataset The IMDB movie review dataset [50] is a standard binary sentiment classification task
containing 25000 train and test sequences, with sequence lengths ranging from hundreds to thousands
of steps. The task is to classify the sentiment of each movie review into either positive or negative.
We use 10% of the standard training set as validation set.

Methods RNN baselines include the LSTM [34], vanilla RNN, LMU [71], and expRNN [48]. Our
implementations of these used 256 hidden units each.

Result As shown in Table 6, our HiPPO-RNNs have similar and consistent performance, on par
or better than LSTM. Other long-range memory RNN approaches that constrains the expressivity
of the network (e.g. expRNN) performs worse on this more generic task.

F.7 Mackey Glass prediction

The Mackey-Glass data [52] is a time series prediction task for modeling chaotic dynamical systems.
We build on the implementation of Voelker et al. [71]. The data is a sequence of one-dimensional
observations, and models are tasked with predicting 15 time steps into the future. The models are
4-layer stacked recurrent neural networks, trained with the mean squared error (MSE) loss. Voelker
et al. [71] additionally consider a hybrid model with alternating LSTM and LMU layers, which
improved on either by itself. We did not try this approach with our method HiPPO-LegS such as
combining it with the LSTM or other HiPPO methods, but such ideas could further improve our
performance. As a baseline method, the identity function does not simulate the dynamics, and simply
guesses that the future time step is equal to the current input.

9Instead of the train timestamps being halved, equivalently the evaluation timestamps can be doubled.
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Model Test accuracy (%)

HiPPO-LegS 87.8± 0.2
HiPPO-LagT 88.0± 0.2
HiPPO-LegT θ=100 87.4± 0.3
HiPPO-LegT θ=1000 87.7± 0.2
HiPPO-LegT θ=10000 87.9± 0.3
HiPPO-Rand 82.9± 0.3

LMU θ=1000 87.7± 0.1
LSTM 87.3± 0.4
expRNN 84.3± 0.3
RNN 67.4± 7.7

Table 6: IMDB test accuracy, averaged over 3 seeds. Top: Our methods. Bottom: Recurrent baselines.

Fig. 8 plots the training and validation mean squared errors (MSE) of these methods. The table

reports final normalized root mean squared errors (NRMSE)

√
E[(Y−Ŷ )2]

E[Y 2] between the targets Y and

predictions Ŷ . HiPPO-LegS outperforms the LSTM, LMU, and the best hybrid LSTM+LMU model
from [68], reducing normalized MSE by over 30%.
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Baseline 0.1229 1.62274
LSTM 4.784e-4 0.10123
LMU 4.414e-4 0.09722
Hybrid LSTM+LMU 2.198e-4 0.06862
LegS 1.054e-4 0.04752

Figure 8: Mackey-Glass predictions

F.8 Additional Analysis and Ablations of HiPPO

To further analyze the tradeoffs of the memory updates derived from our framework, in Fig. 9 we plot
a simple input function f(x)=1/4sinx+1/2sin(x/3)+sin(x/7) to be approximated. The function is
subsampled on the range x∈ [0,100], creating a sequence of length 1000. This function is simpler than
the functions sampled from white noise signals described in Appendix F.5. Given this function, we use
the same methodology as in Appendix F.5 for processing the function online and then reconstructing
it at the end.

In Figure 9(a, b), we plot the true function f , and its absolute approximation error based on LegT, LagT,
and LegS. LegS has the lowest approximation error, while LegT and LagT are similar and slightly
worse than LegS. Next, we analyze some qualitative behaviors.

LegT Window Length In Figure 9(c), shows that the approximation error of LegT is sensitive to
the hyperparameter θ, the length of the window. Specifying θ to be even slightly too small (by 0.5%
relative to the total sequence length) causes huge errors in approximation. This is expected by the
HiPPO framework, as the final measure µ(t) is not supported everywhere, so the projection problem
does not care that the reconstructed function is highly inaccurate near x=0.

Generalized LagT Family Our LagT method actually comprises a family of related transforms,
governed by two parametersα,β specifying the original measure and the tilting (Appendix D.2). Fig. 10
shows the error as these parameters change. Fig. 10(a) shows that small α generally performs better.

44



Fig. 10(b, c) show that the reconstruction is unstable for larger β, but small values of β work well. More
detailed theoretical analysis explaining these tradeoffs would be an interesting question to analyze.

LegS vs. LegT In comparison to LegT, LegS does not need any hyperparameters governing the
timescale. However, suppose that the LegT θ window size was chosen perfectly to match the length of
the sequence; that is, θ=T where T is the final time range. Note that at the end of consuming the input
function (time t=T ), the measures µ(t) for LegS and LegT are both equal to 1

T I[0,T ] (Sections 2.3
and 3). Therefore, the approximation projT (f) is specifying the same function for both LegS and
LegT at time t=T . The sole difference is that LegT has an additional approximation term for f(t−θ)
while calculating the update at every time t (see Appendix D.1), due to the nature of the sliding rather
than scaling window.
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Figure 9: Function approximation comparison between LegT, LagT, and LegS. LegS has the lowest approximation
error. LegT error is sensitive to the choice of window length θ, especially if θ is smaller than the length of the
true function.
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Figure 10: Function approximation comparison between different instantiations of the generalized tilted Laguerre
family (Appendix D.2).

45


	Introduction
	The HiPPO Framework: High-order Polynomial Projection Operators
	HiPPO Problem Setup
	General HiPPO framework
	High Order Projection: Measure Families and HiPPO ODEs
	HiPPO recurrences: from Continuous to Discrete Time with ODE Discretization
	Low Order Projection: Memory Mechanisms of Gated RNNs

	HiPPO-LegS: Scaled Measures for Timescale Robustness
	Empirical Validation
	Long-range Memory Benchmark Tasks
	Timescale Robustness of HiPPO-LegS
	Theoretical Validation and Scalability
	Additional Experiments

	Conclusion
	Related Work
	Signal Processing and Orthogonal Polynomials
	Sliding transforms
	OPs in ML

	Memory in Machine Learning
	Directly related methods

	Technical Preliminaries
	Orthogonal Polynomials
	Properties of Legendre Polynomials
	Properties of Laguerre Polynomials
	Properties of Chebyshev polynomials

	Leibniz Integral Rule
	ODE Discretization

	General HiPPO Framework
	Measure and Basis
	The Projection and Coefficients
	Coefficient Dynamics: the `39`42`"613A``45`47`"603Ahippo Operator
	Discretization

	Derivations of HiPPO Projection Operators
	Derivation for Translated Legendre (HiPPO-LegT)
	Derivation for Translated Laguerre (HiPPO-LagT)
	Derivation for Scaled Legendre (HiPPO-LegS)
	Derivation for Fourier Bases
	Translated Fourier
	Fourier Recurrent Unit

	Derivation for Translated Chebyshev

	HiPPO-LegS Theoretical Properties
	Timescale equivariance
	Speed
	Gradient Norms
	Function Approximation Error

	Experiment Details and Additional Results
	Model Architecture Details
	Permuted MNIST
	Copying
	Trajectory Classification
	Online Function Approximation and Speed Benchmark
	Sentiment Classification on the IMDB Movie Review Dataset
	Mackey Glass prediction
	Additional Analysis and Ablations of HiPPO


