
A The Algorithm of [Soma and Yoshida, 2018]: Reduction and Error

An mentioned in Section 1, Soma and Yoshida [2018] described an algorithm for the problem of
maximizing a monotone submodular function subject to a cardinality constraint over the integer
lattice. Section A.1 gives a reduction (based on an idea suggested by an anonymous referee) from
their problem to ours, that in principle can be used to convert any algorithm for their setting into
an algorithm for our setting with a slightly worse approximation guarantee and a somewhat higher
time complexity. However, an error was recently found in the analysis of the algorithm suggested by
[Soma and Yoshida, 2018], and this error is described in Section A.2.

A.1 Reduction from Our Problem to the Integer Lattice

The difference between our problem and the integral lattice setting of [Soma and Yoshida, 2018] is
that in the last setting a solution is feasible only if all its coordinates are integral. Thus, an algorithm
for the integer lattice setting can find a solution for our problem that approximates the best integral
solution. Furthermore, using scaling it can also find a solution for our problem that approximates
the best solution whose coordinates are all integer multiples of δ = B/(2n3) (although this scaling
might of course affect the time complexity of the algorithm). This means that an algorithm for the
integer lattice that has some approximation guarantee provides roughly the same guarantee also when
applied to our problem (after scaling) whenever the instance of our problem is nice in the following
sense.
Definition A.1. An instance of our problem is nice if the best solution for it whose coordinates are all
integer multiples of δ is as good as the best solution for it without this restriction up to a multiplicative
factor of 1−O(n−1) and an additive factor of O(n−1) ·B2L.

Unfortunately, there are instances of our problem that are not nice. For example, consider an n
dimensional instance in which the objective function is simply F (x) = x1, and the upper bound
vector u is

ui =

{
δ/2 if i = 1 ,

1 otherwise .

In this instance, every solution whose coordinates are all multiple integers of δ must have 0 in the
first coordinate, and thus, is of value 0. Since the objective function is linear (and thus, 0-smooth),
the last observation implies that the above instance is nice only if the value of the optimal solution for
it is also 0, but this is clearly not the case.

To handle instances that are not nice, we need to make two observations. First, the vector u itself is
an optimal solution whenever ‖u‖1 ≤ B because of the monotonicity of F . Thus, we may assume
from now on ‖u‖1 > B. Second, the main reason that the instance in the above example failed to be
nice is that the vector u in it included values that are not integer multiples of δ. To solve this second
issue, we consider an auxiliary instance defined as follows. Let u′ be the vector obtained by rounding
down the entries of u to the nearest integer multiples of δ. The auxiliary instance has the domain
[0,u′], the budget B′ = B − ‖u− u′‖1 and the objective function

F ′(x) = F (x + u− u′) .

Lemma A.1. Assuming ‖u‖1 > B, every feasible solution x′ for the auxiliary instance can be
converted into a solution x′ + u− u′ for the original instance that is also feasible and has the same
value, and every feasible solution x for the original solution can be converted into a feasible solution
y for the auxiliary solution whose coordinates are all integer multiples of δ = B/(2n3) such that
F ′(y) ≥ (1− n−1) · F (x)−B2L/(4n3).

Proof. To prove the first part of the lemma it suffices to observe that F (x′ + u− u′) = F ′(x′) by
the definition of F ′ and ‖x′ + u− u′‖1 = ‖x′‖1 + ‖u− u′‖1 ≤ B′ + ‖u− u′‖1 = B because x′

is feasible in the auxiliary instance. Thus, it remains to prove the second part of the lemma.

By the monotonicity of F and the inequality ‖u‖ > B, we may assume without loss of generality
that ‖x‖1 = B. Let us now denote by i the maximal coordinate of x, which implies xi ≥ B/n.
We define the promised vector y as follows. For every coordinate j 6= i, yj is simply the smallest
integer multiple of δ which is at least xj − (uj −u′j)—note that yj is non-negative since uj −u′j < δ
by the definition of u′, and furthermore, yj is at most u′j since u′j is an integer multiple of δ and

14



xj − (uj − u′j) ≤ u′j . For coordinate i, we define yi to be the largest multiple integer of δ which is at
most B′ −

∑
j 6=i yj . One can observe that yi is also non-negative since

B′ −
∑
j 6=i

yj ≥ B′ −
∑
j 6=i

[xj − (uj − u′j) + δ]

≥ B′ − ‖x‖1 + x1 + (‖u‖1 − ‖u′‖1)− nδ = x1 − nδ ≥
B

n
− B

2n2
≥ B

2n
,

that yi is upper bounded by u′i since

B′ −
∑
j 6=i

yj ≤ B′ −
∑
j 6=i

[xj − (uj − u′j)]

= B′ − ‖x‖1 + (‖u‖1 − ‖u′‖1) + xi − ui + u′i = xi − ui + u′i ≤ u′i ,

and that the definition of yi guarantees ‖y‖ ≤ B′. All these observations together imply that y is
indeed feasible in the auxiliary instance.

It remains to relate F ′(y) to F (x). To do that, we need an hybrid vector z which is identical to y
on all coordinates other than i, and is identical to x− u + u′ in coordinate i. Clearly, z + u− u′

dominates x coordinate-wise, and thus, by the monotonicity of F ,

F ′(z) = F (z + u− u′) ≥ F (x) .

We also note that

zi − yi = xi − yi = xi −B′ +
∑
j 6=i

yj ≤ xi −B′ +
∑
j 6=i

[xj − (uj − u′j) + δ]

≤ ‖x‖1 −B′ − (‖u‖1 − ‖u′‖1) + nδ = nδ .

Therefore, if we denote by g the derivative of F ′ at y according to the coordinate i, then the
smoothness of F implies

F ′(z)− F ′(y) =

∫ zi−yi

0

dF ′

dt
(y + tei)dt ≤

∫ zi−yi

0

(g + Lt)dt

= (zi − yi)g +
L(zi − yi)2

2
≤ nδg +

Ln2δ2

2
≤ 2n2δ

B
·
(
Bg

2n
− LB2

8n2

)
+
δLB

2

=
2n2δ

B
·
∫ B/(2n)

0

(g − Lt)dt+
δLB

2
≤ 2n2δ

B
·
∫ B/(2n)

0

dF ′

dt
(y − tei)dt+

δLB

2

≤ 2n2δ

B
· F ′(y) +

δLB

2
= n−1 · F ′(y) +

LB2

4n3
.

Rearranging the last inequality, we finally get

F ′(y) ≥ F ′(z)− LB2/(4n3)

1 + n−1

≥ (1− n−1) · F ′(z)− LB2/(4n3) ≥ (1− n−1) · F (x)− LB2/(4n3) .

Given the last lemma, it is clear that one can find an approximate optimal solution for the original
instance by running an algorithm on the auxiliary instance for (approximately) finding the best
feasible solution whose coordiantes are all integer multiples of δ.

A.2 The Error in the Algorithm of [Soma and Yoshida, 2018]

The algorithm of [Soma and Yoshida, 2018] involves a procedure named BinarySearchLattice
whose job is to find a feasible augmentation for the current solution whose density passes some given
threshold θ (or indicate that such an augmentation does not exist)—formally, Property (2) of Lemma 4
in [Soma and Yoshida, 2018] proves that the procedure BinarySearchLattice has this behavior.
The main algorithm of [Soma and Yoshida, 2018] (which appears there as Algorithm 3) invokes
BinarySearchLattice repeatably with a decreasing threshold θ, and apply the augmentation found
in every invocation (assuming one is found). The idea is to consider the set A of augmentations

15



corresponding to increasing individual coordinates of the solution to their values in the optimal
solution, with the assumption that, once the threshold θ becomes (roughly) equal to the density of
some augmentation in A, the procedure BinarySearchLattice will find an augmentation of the
same density to be applied.

If this assumption were correct, it would have led to an approximation guarantee because the average
density of the augmentations in A can be lower bounded. Unfortunately, however, for Lemma 4 to
prove this assumption the augmentations of A must all be feasible, which might not be the case once
the `1 norm of the solution becomes large enough. From a more formal point of view, the issue is that
the proof of Lemma 5 of [Soma and Yoshida, 2018]—which is based on the idea described—invokes
Lemma 4 with k′+ ∆(a), but without verifying that k′+ ∆(a) is upper bounded by kmax (which is a
necessary condition of Lemma 4 equivalent to the intuitive notion that the augmentation represented
by k′ + ∆(a) should be feasible).

B Proof of Proposition 3.1

In this section we prove Proposition 3.1. Let us begin by restating this proposition.

Proposition 3.1. Given a point x ∈ [0,u], a coordinate i ∈ [n], bounds 0 < a ≤ b ≤ ui − xi and a
positive parameter ε ∈ (0, 1) there is a polynomial time algorithm that runs in O(

√
B/ε+ log(ε/a))

time and returns a value y ∈ [a, b] maximizing the ratio F (x + yei)/y up to an additive error of εL.

As might be expected, the algorithm we use to prove Proposition 3.1 tries a relatively small set of
possible options for y, and then outputs the value yielding the maximum F (x + yei)/y ratio. To
define the set of values which the algorithm checks, we first need to define the following recursive
series.

z0 = a and zi = zi−1 +
√
εzi−1 .

Using this definition, we can now formally state the algorithm used to prove Proposition 3.1 as
Algorithm 5.

Algorithm 5: ONE COORDINATE RATIO MAXIMIZER

1 Let M = {b} ∪ {zi | i is a non-negative integer and zi ∈ [a, b]}.
2 Return y ∈ arg maxy∈M F (x + yei)/y.

Before analyzing the quality of the solution returned by Algorithm 5, let us prove that it indeed has
the required time complexity.

Lemma B.1. The time complexity of Algorithm 5 is O(
√
B/ε+ log(ε/a)).

Proof. Let ` be the smallest non-negative integer such that z` ≥ B. Clearly, the size of M is upper
bounded by `+ 3 since b ≤ ui ≤ B, and thus, the time complexity of Algorithm 5 is O(`). Hence,
to prove the lemma, it suffices to argue that there exists a positive integer i′ = O(

√
B/ε+ log(ε/a))

such that zi′ ≥ B, and thus, O(`) = O(i′) = O(
√
B/ε+ log(ε/a)).

Observe that if zi ≤ ε, then zi+1 ≥ 2zi. Thus, for i0 = dlog2(ε/a)e we already get zi0 ≥ ε.
Consider now the function f(x) = ε(x2 +16)/16. We would like to prove by induction that for every
non-negative integer i ≥ 0 we have f(i) ≤ zi+i0 . For i = 0 this holds since f(0) = ε ≤ zi0 . Assume
now that this claim holds for some integer i−1 ≥ 0, and let us prove it for i. Since zi−1+i0 ≥ f(i−1)
by the induction hypothesis, it suffices to argue that f(i)−f(i−1) ≤ zi+i0 − zi−1+i0 =

√
εzi−1+i0 .

By the definition of f ,

f(i)− f(i− 1) =
ε(i2 + 16)

16
− ε[(i− 1)2 + 16]

16
=
ε(2i− 1)

16

≤
ε · 4

√
(i− 1)2 + 16

16
=

√
ε · ε[(i− 1)2 + 16]

16
=
√
ε · f(i− 1) ≤ √ε · zi−1+i0 ,

16



where the second inequality follows from the induction hypothesis, and the first inequality holds
since for i ≥ 1

2i− 1 ≤ 4
√

(i− 1)2 + 16 ⇐⇒ (2i− 1)2 ≤ 16[(i− 1)2 + 16]

⇐⇒ 4i2 − 4i+ 1 ≤ 16i2 − 32i+ 272 ⇐⇒ 0 ≤ 12i2 − 28i+ 271 ,

and the last inequality holds for every i.

To complete the proof, it remains to observe that for i′ = dlog2(ε/a)e+d4
√
B/εe = i0 +d4

√
B/εe

we have

zi′ ≥ f(i′ − i0) =
ε((i′ − i0)2 + 16)

16
≥ ε(16B/ε+ 16)

16
≥ B .

Our next objective is to show that the solution produced by Algorithm 5 approximately maximizes the
ratio F (x + yei)/y within the range [a, b]. Let y∗ be a value within this range that truly maximizes
this ratio, and let yM be the largest value in the set M which is not larger than y∗ (possibly y∗ = yM
if y∗ ∈M ). We argue below that F (x + y∗ei)/y

∗ ≤ F (x + yMei)/yM + εL, which completes the
proof of Proposition 3.1 since the membership of yM in M implies that the ratio F (x + yei)/y for
the value y returned by Algorithm 5 is at least as good as F (x + yMei)/yM .

The next lemma gives us a simple upper bound on the ratio F (x + y∗ei)/y
∗.

Lemma B.2.
F (x + y∗ei)

y∗
≤ F (x + yMei)

yM
+

(y∗ − yM )2L

2yM
.

Proof. The derivative of F (x + yei)/y by y is

dF
dy (x + yei) · y − F (x + yei)

y2
.

Since y∗ is a maximizer of this ratio, the above derivative must be zero in y∗, i.e., we get

dF

dy
(x + y∗ei) · y∗ − F (x + y∗ei) = 0⇒ dF

dy
(x + y∗ei) =

F (x + y∗ei)

y∗
.

This allows us to use the smoothness of F to upper bound the difference between F (x + y∗ei) and
F (x + yMei) by

F (x + y∗ei)− F (x + yMei) =

∫ y∗

yM

dF

dy
(x + yei)dy ≤

∫ y∗

yM

[
dF

dy
(x + y∗ei) + (y∗ − y)L

]
dy

=

∫ y∗

yM

[
F (x + y∗ei)

y∗
+ (y∗ − y)L

]
dy =

y∗ − yM
y∗

· F (x + y∗ei) +
(y∗ − yM )2L

2
.

Rearranging the last inequality, we get

yM
y∗
· F (x + y∗ei) ≤ F (x + yMei) +

(y∗ − yM )2L

2
,

and the observation follows by dividing the last inequality by yM .

Given the above discussion, the last lemma implies that to prove Proposition 3.1 we only need to
argue that (y∗−yM )2L

2yM
is always upper bounded by εL. The following observation shows that this is

indeed the case.

Observation B.3. (y∗−yM )2

2yM
≤ ε.

Proof. By the definition of the set M , the value of y∗ must be at most yM +
√
εyM . Thus,

(y∗ − yM )2

2yM
≤

(
√
εyM )2

2yM
=
εyM
2yM

=
ε

2
< ε .

17



C Proof of Proposition 5.1

In this section we prove Proposition 5.1. Let us begin by restating this proposition.

Proposition 5.1. Given a point x ∈ [0,u], a coordinate i ∈ [n], a target value F (x) ≤ v ≤
F (x ∨ uiei) and a positive parameter ε ∈ (0, 1), there is a polynomial time algorithm that runs in
O(log(B/ε)) time and returns a value 0 ≤ y ≤ ui − xi such that

• F (x + yei) ≥ v − εL.

• There is no value 0 ≤ y′ < y such that F (x + y′ei) ≥ v.

The algorithm we use to prove Proposition 5.1 has two phases. In the first phase, the algorithm uses
binary search to zoom in on a small range of y values which includes the lowest y value for which
F (x + yei) = v. Then, in the second phase, the algorithm uses linear interpolation to pick a value y
from this range for which F (x + yei) is close to v. The linear interpolation parameters have to be
selected with care to make sure that the value picked obeys the second guarantee of the proposition.
A formal statement of the algorithm appears as Algorithm 6.

Algorithm 6: ONE COORDINATE GETTING TARGET VALUE

1 Let a = 0 and b = ui − xi.
2 while b− a ≥ ε do
3 Let m = (b− a)/2.
4 if F (x +mei) ≥ v then Update b← m.
5 else Update a← m.

6 Let d← F (x+bei)−F (x+aei)
b−a + εL

2 , and r ← v−F (x+aei)
d .

7 Return a+ r.

We begin the analysis of Algorithm 6 by showing that has the time complexity guaranteed by
Proposition 5.1.

Observation C.1. The time complexity of Algorithm 6 is at most O(log(B/ε)).

Proof. The time complexity of Algorithm 6 is proportional to the number of iterations made by the
binary search in the first phase of the algorithm. Since this binary search starts with a range of size
ui − xi ≤ ui ≤ B, and ends when its range shrinks to a size of ε or less, the number of iterations it
performs is upper bounded by dlog(B/ε)e.

Let us denote now by a0 and b0 the values of the variables a and b when the binary search phase
of Algorithm 6 terminates. By the design of the binary search, it is clear that F (x + a0ei) ≤ v.
Furthermore, this inequality can hold as an equality only when a0 = 0. Let us now get bounds on the
derivative of F (x + yei) as a function of y within the range [a0, b0].

Lemma C.2. For every y′ ∈ [a0, b0], dF
dy (x + yei) ∈ [d− εL, d].

Proof. By the smoothness of the function F

F (x + b0ei)− F (x + a0ei) =

∫ b0

a0

dF

dy
(x + yei)dy ≤

∫ b0

a0

[
dF

dy
(x + y′ei) + |y − y′|L

]
dy

≤ (b0 − a0) · dF
dy

(x + y′ei) +
(b0 − a0)2L

2

≤ (b0 − a0) · dF
dy

(x + y′ei) +
(b0 − a0)εL

2
.

Dividing the last inequality by b0 − a0, we get

d− εL

2
≤ dF

dy
(x + y′ei) +

εL

2
=⇒ d− εL ≤ dF

dy
(x + y′ei) .

18



Similarly, the smoothness of F also implies

F (x + b0ei)− F (x + a0ei) =

∫ b0

a0

dF

dy
(x + yei)dy ≥

∫ b0

a0

[
dF

dy
(x + y′ei)− |y − y′|L

]
dy

≥ (b0 − a0) · dF
dy

(x + y′ei)−
(b0 − a0)2L

2

≥ (b0 − a0) · dF
dy

(x + y′ei)−
(b0 − a0)εL

2
,

and this time dividing the last inequality by b0 − a0 yields

d− εL

2
≥ dF

dy
(x + y′ei)−

εL

2
=⇒ d ≥ dF

dy
(x + y′ei) .

The following corollary now completes the proof of Proposition 5.1 since the output of Algorithm 6
is a0 + r.

Corollary C.3. F (x + (a0 + r)ei) ≥ v − εL, and furthermore, F (x + y′ei) < v for every
0 ≤ y′ < a0 + r.

Proof. Using Lemma C.2, we get

F (x + (a0 + r)ei) = F (x + a0ei) +

∫ a0+r

a0

dF

dy
(x + yei)dy

≥ F (x + a0ei) +

∫ a0+r

a0

(d− εL)dy = F (x + a0ei) + r(d− εL)

= F (x + a0ei) + [v − F (x + a0ei)]− rεL
≥ F (x + a0ei) + [v − F (x + a0ei)]− εL ,

where the third equality holds by plugging in the definition of r, and the last inequality holds since

r =
v − F (x + aei)

d
≤ F (x + bei)− F (x + aei)

d
≤ b− a ≤ ε < 1 .

Similarly, Lemma C.2 also implies for every a0 ≤ y′ < a0 + r

F (x + y′ei) = F (x + a0ei) +

∫ y′

a0

dF

dy
(x + yei)dy

≤ F (x + a0ei) +

∫ y′

a0

d dy = F (x + a0ei) + (y′ − a0)d

< F (x + a0ei) + rd = F (x + a0ei) + [v − F (x + a0ei)] = v .

If r > 0, then the last inequality completes the proof of the corollary because the monotonicity
of F guarantees F (x + y′ei) ≤ F (x + a0ei) < v for every 0 ≤ y′ < a0. Thus, it remains to
consider the case of r = 0. This case happens only when F (x + a0ei) = v, which implies by the
discussion before Lemma C.2 that a0 = 0 as well. Hence, the requirement F (x + y′ei) < v for
every 0 ≤ y′ < a0 + r is trivial in this case.

D Missing Proofs

In this section we give the formal proofs which have been omitted from the main part of this paper.

D.1 Proof of Observation 3.2

Observation 3.2. The main loop of Algorithm 1 makes at most O(n/ε) iterations, each running in
O(n

√
B/ε+ n log n) time. Thus, the entire algorithm runs in O(n2

√
B/ε1.5 + n2 log n/ε) time.

19



Proof. We note that the way in which the algorithm assigns a value to dj implies that in any iteration
of the main loop of Algorithm 1 one of the following must happen.

1. One option is that dj = uj − xj . When this happens, the value of xj becomes equal to uj ,
and thus, this is the last iteration in which the coordinate j belongs to the set C.

2. Another option is that dj = B −‖x‖1. In this case, ‖x‖1 becomes equal to B following the
iteration, and thus, the algorithm terminates following this iteration.

3. If neither of the previous options happens, then the value ‖x‖1 increases by at least δ
following the iteration.

There can be at most n iterations in which Option 1 happens since there are only n coordinates,
at most a single iteration in which Option 2 happens and at most B/δ = n/ε iterations in which
Option 3 happens (since the value of ‖x‖1 cannot exceed B). Thus, the total number of iterations is
at most

n+ 1 +
n

ε
= O(ε−1n) .

We now note that every single iteration of the main loop of Algorithm 1 requires O(n) time plus the
time required for up to n executions of the algorithm whose existence is guaranteed by Proposition 3.1.
Furthermore, we can assume that each execution of the last algorithm gets a = δ because we always
look for di either inside a range containing a single value or a range whose lower bound is δ. Thus,
the time required for each such execution is upper bounded by

O

(√
B

ε
+ log

(ε
δ

))
= O

(√
B

ε
+ log

( n
B

))
= O(

√
B/ε+ log n) ,

and the space required for the entire iteration of the main loop of Algorithm 1 is at most

n ·O(
√
B/ε+ log n) +O(n) = O(n

√
B/ε+ n log n) .

D.2 Proof of Corollary 3.5

Corollary 3.5. Let xCA be the vector outputted by Algorithm 1, then F (xCA) ≥ (1− 1/e−B−1 ·
maxi∈[n] ui − ε) · F (opt)− εBL.

Proof. By Observation 3.4, it suffices to argue that

F (x(`)) ≥ (1− 1/e−B−1 ·maxi∈[n] ui − ε) · F (opt)− εBL .

Thus, in the rest of the proof we prove this inequality.

Plugging y = opt into Lemma 3.3, we get

F (x(`)) ≥ (1− e−‖x
(`)‖1/(‖y‖1+εB)) · F (opt)− ‖x(`)‖1 · εL (3)

≥ (1− e−(1−ε)‖x
(`)‖1/B) · F (opt)− εBL ,

where the second inequality holds since ‖y‖1 and ‖x(`)‖1 are both upper bounded by B. If iteration
number ` is not the last iteration of Algorithm 1, then the fact that iteration number `+ 1 was not a
good iteration implies the existence of a coordinate i ∈ [n] such that yi − x(`)i > d′i = B − ‖x(`)‖1
(the last equality holds since the inequalities yi − x(`)i > d′j and ui ≥ yi exclude the possibility of

d′i = ui − x(`)i ). Thus, we get in this case

‖x(`)‖1 > B − yi + x
(`)
i ≥ B − ui ≥ B −maxi∈[n] ui .

Moreover, the last inequality holds also in the case in which iteration number ` is the last iteration of
Algorithm 1 because in this case ‖x(`)‖1 = B. Plugging this into Inequality (3), we get

F (x(`)) ≥ (1− e(1−ε)(maxi∈[n] ui/B−1)) · F (opt)− εBL
≥ (1− eε+maxi∈[n] ui/B−1) · F (opt)− εBL
≥ (1− e−1 −B−1 ·maxi∈[n] ui − ε) · F (opt)− εBL ,

where the last inequality holds since ex−1 ≤ e−1 + x for x ∈ [0, 1.5].

20



D.3 Proof of Theorem 4.2

Theorem 4.2. Algorithm 2 outputs a solution of value at least
(

e−1
2e−1 − 2ε

)
· F (OPT ) − εBL ≥

(0.387 − 2ε) · F (OPT ) − εBL. It has O(n/ε) iterations, each running in O(n
√
B/ε + n log n)

time, which yields a time complexity of O(n2
√
B/ε1.5 + n2 log n/ε).

Proof. By Lemma 4.1, there exists a coordinate j ∈ [n] such that

F (g) ≥ (1− e−1 − 2ε) · F (opt− optjej)− εBL .

Since Algorithm 2 picks a solution xCA+ that is at least as good as both xCA and ujej , the last
inequality and the monotonicity of F imply together that

F (xCA+) ≥ 1

2− e−1 − 2ε
· F (g) +

1− e−1 − 2ε

2− e−1 − 2ε
· F (ujej)

≥ 1

2− e−1 − 2ε
·
[
(1− e−1 − 2ε) · F (opt− optjej)− εBL

]
+

1− e−1 − 2ε

2− e−1 − 2ε
· F (optjej)

≥ 1− e−1 − 2ε

2− e−1 − 2ε
·
[
F (opt− optjej) + F (optjej)

]
− εBL

≥ 1− e−1 − 2ε

2− e−1 − 2ε
· F (opt)− εBL ≥

(
1− e−1

2− e−1
− 2ε

)
· F (opt)− εBL

=

(
e− 1

2e− 1
− 2ε

)
· F (opt)− εBL ,

where the penultimate inequality holds by the submodularity of F .

D.4 Proof of Observation 5.2

Observation 5.2. Assuming the guesses made by Algorithm 3 do not require any time, Algorithm 3
has O(n/ε) iterations, each running in O(n

√
B/ε+ n log n) time, which yields a time complexity

of O(n2
√
B/ε1.5 + n2 log n/ε).

Proof. Besides the two executions of the algorithm whose existence is guaranteed by Proposition 5.1
and the execution of Algorithm 1, Algorithm 3 uses only constant time. Thus, the time complexity
of Algorithm 3 is upper bounded by the sum of the time complexities of the two other algorithms
mentioned. Furthermore, by Proposition 5.1, the total time complexity of the algorithm whose
existence is guaranteed by this proposition is only

O

(
log

(
B

ε

))
,

which is upper bounded by the time complexity of a single iteration of Algorithm 1 as given by
Observation 3.2. Hence, both the number of iterations and the time per iteration of Algorithm 3 are
asymptotically identical to the corresponding values for Algorithm 1.

D.5 Proof of Lemma 5.3

Lemma 5.3. F (x) ≥ F (
∑2

j=1 opthj
· ehj

)− 2ε · F (opt)− 2εL and x ≤
∑2

j=1 opthj
· ehj

.

Proof. Recall that the support of x contains only the coordinates h1 and h2. Thus, to prove the
lemma, it suffices to argue that for every i ∈ {1, 2}

F

 i∑
j=1

xhj · ehj

− F
i−1∑

j=1

xhj
· ehj

 (4)

≥ F

 i∑
j=1

opthj
· ehj

− F
i−1∑

j=1

opthj
· ehj

− ε · F (opt)− εL

21



and
xi ≤ opti . (5)

We prove this by induction on i. In other words, we prove that the two above inequalities hold for
i ∈ {1, 2} given that they holds for every i′ < i that belongs to {1, 2} (if there is such an i′).

The value of xi is determined by an execution of the algorithm whose existence is guaranteed
by Proposition 5.1. Thus, to prove the above inequalities, we need to use the guarantees of this
proposition. Moreover, we notice that this is possible since the target value vi passed to the algorithm
of this proposition clearly falls within the allowed range because opthi

≤ uhi
. Hence, by the first

guarantee of Proposition 5.1,

F

 i∑
j=1

xhj
· ej

 ≥ vi − εL ≥ F
i−1∑

j=1

xhj
· ehj

+ opthi
ehi

− ε · F (opt)− εL .

Inequality (4) now follows from the last inequality by subtracting F
(∑i−1

j=1 xhj
· ehj

)
from both its

sides and observing that, by the submodularity of F and the induction hypothesis,

F

i−1∑
j=1

xhj · ej + opthi
ehi

−F
i−1∑

j=1

xhj · ej

≥ F
 i∑

j=1

opthj
· ehj

−F
i−1∑

j=1

opthj
· ehj

 .

To prove Inequality (5), we note that the second guarantee of Proposition 5.1 implies that for every
0 ≤ y < xhj we have

F

i−1∑
j=1

xhj
· ej + yehi

 < vi ≤ F

i−1∑
j=1

xhj
· ej + optjehi

 ,

and therefore, opthj
cannot fall in the range [0, xhj ).

D.6 Proof of Lemma 5.4

Lemma 5.4. Algorithm 3 outputs a vector xCA++ whose value is at least (1− 1/e− 4ε) · F (opt)−
ε(B + 2)L.

Proof. Since x ≤
∑2

j=1 opthj
· ehj by Lemma 5.3, the submodularity of F guarantees that

F ′

opt−
2∑

j=1

opthj
· ehj

 = F

opt +
2∑

j=1

(xhj
− opthj

) · ehj

− F (x)

≥ F (opt)− F

 2∑
j=1

opthj
· ehj

 .

Therefore, since opt−
∑2

j=1 opthj
· ehj is one feasible solution for the instance received by Algo-

rithm 4.1, we get by Lemma 4.1 that there exists a coordinate i ∈ [n] \ {h1, h2} such that4

F ′(xCA) ≥ (1− 1/e− 2ε) · F ′
opt−

2∑
j=1

opthj
· ehj

− optiei

− εBL
≥ (1− 1/e− 2ε) ·

F ′
opt−

2∑
j=1

opthj
· ehj

− F ′(optiei)
− εBL

4As stated, Lemma 4.1 applies only to the optimal solution, not to every feasible solution. However, one can
verify that its proof does not use the optimality of the solution.

22



≥ (1− 1/e− 2ε) ·

F (opt)− F

 2∑
j=1

opthj
· ehj

− F ′(optiei)
− εBL

≥ (1− 1/e− 2ε) ·

F (opt)− 3

2
· F

 2∑
j=1

opthj
· ehj

− εBL ,

where the second inequality follows from the submodularity of F , and the last inequality holds since
the submodularity of F and the definitions of h1 and h2 imply

F ′(optiei) = F

 2∑
j=1

opthj
· ehj

+ optiei

− F
 2∑

j=1

opthj
· ehj


≤ 1

2

[
F (optiei)− F (0) + F (opth1

+ optiei)− F (opth1
eh1)

]
≤ 1

2

[
F (opth1

eh1)− F (0) + F (opth1
+ opth2

eh2)− F (opth1
eh1)

]
=

1

2

[
F (opth1

eh1 + opth2
eh2)− F (0)

]
≤
F (opth1

eh1 + opth2
eh2)

2
.

We are now ready to calculate the value of xCA++ = x + xCA. By the above calculation and
Lemma 5.3,

F (x + xCA) = F ′(xCA) + F (x)

≥ (1− 1/e− 2ε) ·

F (opt)− 3

2
· F

 2∑
j=1

opthj
· ehj

− εBL
+ F

 2∑
j=1

opthj
· ehj

− 2ε · F (OPT )− 2εL

≥ (1− 1/e− 4ε) · F (opt)− ε(B + 2)L .

D.7 Proof of Observation 5.5

Observation 5.5. Consider the vector x at the point in which Algorithm 3 guesses the value vi. Then,
there exists a value in the set J (x, hi) obeying the requirements from vi.

Proof. Let j be the maximal integer for which F (x) + εj · F (uhi
ehi

) ≤ F (x + opthi
ehi

) ≤
F (x + uhiehi). Since F (x) ≤ F (x + opthi

ehi) by the monotonicity of F , j is non-negative, and
thus, F (x) + εj ·F (uhiehi) belongs to J (x, hi) and F (x) + εj · F (uhiehi) ≥ F (x). Furthermore,
by the definition of j,

F (x) + εj · F (uhiehi) ≥ F (x + opthi
ehi)− ε · F (uhiehi) ≥ F (x + opthi

ehi)− ε · F (opt) ,

where the second inequality holds since uhiehi is a feasible solution. Thus, F (x) + εj · F (uhiehi)
obeys the requirements from vi.

23


