Recurrent Quantum Neural Networks
Supplementary Information

June 11, 2020

1 QRNN Postselection Analysis

A QRNN as described in Sec. 2 in the main text has two locations where we utilise amplitude
amplification with a subsequent measurement to mimic the process of postselection. This
introduces an overhead, since sub-circuits and their inverse operations need to repeated multiple
times, depending on the likelihood of the event that we postselect on. We emphasize that this
overhead is only present when running this model on a quantum device; classically, since we have
access to the full wavevector, we can postselect by multiplying with a projector, and renormalizing
the state. This is how the quantum neuron is implemented as a pytorch layer.

Amplitude amplification is a generic variant of Grover search, described in detail e.g. in
[]. In brief, a state [¢') = a|0) |x) + V1 —a?|1)|y) (for normalised |x),|y)) has a
likelihood o |@|? to be measured in state |0) |x). Amplitude amplification allows the state to be
manipulated such that this probability can be bumped close to 1.

More precisely, the variant of amplitude amplification we utilise is called “fixed-point oblivious
amplitude amplification” [;], which is suitable for the case where we have a unitary
U |¢) = |y’) that produces the state (which is where “oblivious” comes from); and where we
do not know «a (which is where “fixed-point” comes from). By repeatedly applying U and its
inverse U in a specific fashion, the likelihood of a subsequent measurement to observe outcome
|0) |x) can be amplified to a probability > 1 — €, with O(log €/|a|) many applications of U.

1.1 Quantum Neuron

The first location where this is necessary is in the application of each quantum neuron; the purple
meters in Fig. 1 in the main text indicate that we would like to measure |0) on the respective
lanes—if a |1) was measured, a wrong operation results. As discussed, the authors in []
named their quantum neuron with a similar structure a RUS (repeat-until-success) circuit. Such
circuits generally have the feature that the “recover” operation is simple, and one can just flush
and repeat the operation until it finally succeeds. This is true for their first degree quantum
neuron, as it is for our higher-degree quantum neuron—but only on the Hilbert space spanned by
product states (e.g. on inputs like |1) [0), but not states like Bell pairs such as (]00) + [11))/V2).

The circuit cannot really be “lifted” to a RUS circuit on the full Hilbert space of input states.
Instead, we amplify the 0 measurement outcome, essentially postselecting on measuring 0 every
time. Since we can detect failure (i.e. measuring 1), we can simply choose the likelihood of
measuring 0—i.e. 1 — e—to be such that we do not fail too often; and in case of a failure simply
repeat the entire operation. Due to the logarithmic dependence on € in the time complexity of
fixed-point amplitude amplification this is possible with an at most logarithmic overhead in €
and the number of postselections to be done.

But what is the overhead with respect to @? 1.e. when applying a quantum neuron, how many
times do we have to apply the neuron and its inverse in order to be able to apply the intended
nonlinear transformation in eq. (2) in the main text? A loose bound can be readily derived as
follows. The “good” overall transformation which we wish to postselect on is a map

10) —> cos(6)2™ |0 +sin(@)2™ 1) = |x) with [||x)]|* = cos()¥2" + sin(0)>*™.

As we treat the order ord of the neuron as a constant (it is a hyperparameter, and it is not
beneficial to think about its scaling; choices of ord € {1, 2, 3,4} seem sensible) is easy to derive
x> > 1/ 20d*~1__which results in an amplitude amplification overhead of about 2, 8, 128,
or 32768 for ord = 1, 2, 3,4, respectively. For all our experiments we chose ord = 2; this choice
is based on the fact that the activation function for ord = 2—shown as the dashed line in Fig. 5
in the main text—features relatively steep slopes around 6 = 7/4 and 37/4; and a relatively flat
plateou around 0 and 7/2.

1.2 QRNN Cell Output

The second point where we amplify is during training. For each application of the QRNN cell as
depicted in Fig. 4 in the main text, we write the input bit string onto the in/out lanes with a series
of classically-controlled bit flip gates. After this, a series of stages process the new input together
with the hidden cell state. Each of the gates therein can be conditioned on the input, but do not
change the in/out lane at all (see Fig. 3). This is crucial: if e.g. the input bit string was 8110, the
overall state of the QRNN after the input is written is [0110) |#), where |&) is the hidden state.
The subsequent controlled lanes thus cannot create entanglement between the |0110) state and
|h), as |0110) is not in a superposition. This allows us to reset the in/out lanes with an identical
set of bit flips that originally wrote the bit string; resulting in a state |[0000) |A#”) right at the start
of the output stage. The output neurons can then utilize this clean output state to write an output
word, which is measured.

It is this output word that we perform postselection on during training. For instance, if
the character level QRNN is fed an input string (e.g. ascii-encoded lower-case English letters)
fisheries, then after having fed the network fish the next expected letter is a e. Yet, at this
output stage, all the QRNN does is to present us with a quantum state; measuring the output
word results in a distribution over predicted letters, much like in the classical case for RNNs and

LSTMs.! Depending on which outcome is measured, this means a different hidden cell state is
retained: if—for our example the state at the end of the output stage in Fig. 3 is

) = pala)lha) + pp|b) |h) + ... + pz[2) |hz)

then measuring z collapses the QRNN cell state to |,); measuring q collapses it to |hq>.

This is a useful feature during inference: if one measures a certain letter, we expect the internal
state of the QRNN to reflect this change.” During training this results in poor performance, as
the output distribution is not predictive enough yet to give any meaningful correlation between
measured output and resulting internal state.

To circumvent this, we postselect on the next letter that we expect—e.g. in the above example
of fisheries we would postselect on finding the letter e. One point to emphasize here is that it
suffices to repeat the current QRNN cell unitary (and its inverse) for the amplitude amplification
steps; one does not have to iteratively apply the entire QRNN up to that point; the latter would
necessarily result in an exponential runtine overhead. This is not the case here.

We chose to analyse the resulting amplitude amplification overhead only empirically, and
implemented a monitoring feature into pytorch that allowed us to, at any point in time, track the
minimum postselection probability that would result in an overhead if running the QRNN on a
quantum device.

We found three trends during our experiments.

1. The overall postselection overhead was relatively small, but tends to be larger the wider
the in/out lanes.

2. For memorization tasks or learning simple sequences (e.g. Elman’s XOR test), the overhead
started larger, but then converged to one.

3. For learning more complicated sequences as e.g. the pixel-by-pixel MNIST learning task,
the postselection probability converged to roughly a constant > 1.

Examples for the postselection overheads during two representative training tasks are plotted in
fig. 1.

2 QRNN Network Topology

As explained in Sec. 4.2 in the main text, we used Elman’s task of learning sequences comprising
the three words “ba”, “dii” and “guuu” to assess what network topologies work best in this
scenario; i.e., we ask the question of how many work stages within the QRNN cell are useful,
and what influence the neuron degree® and workspace size has on the learning speed.

Our findings are summarised in fig. 2. The input for this task has a width of three bits (which
suffices for the six different letters used), so the useful degree in the input stage in the QRNN cell
is upper-bound by three. A higher degree becomes useful only if the workspace size is increased
accordingly.

! As explained in the main text, depending on whether we run this QRNN on a classical computer or a quantum
device, we can either extract these probabilities by calculating the marginal of the wavevecto—which is done

] = 500f
S 100¢ 8
ot E ot
g 0 2 100t
g g 50¢
2 10¢ g=]
3 st 3 10}
Q Q
2 g s
o} o}
o 1k o
0 50 100 150 200 250 300 0 500 1000 1500
training steps training steps
1F T T T T
0.500
g 2
2 0.100 < 0.100
g § 0.050
< 0.010 2
g s 0.010
0.005
0.001F, X) X) ; i))))
0 50 100 150 200 250 300 0 500 1000 1500
training steps training steps

Figure 1: Typical amplitude amplification overhead during training. Left: memorization of
simple sequences as described in Sec. 4.1; the overhead approaches one as the validation
loss converges to zero. Right: pixel-by-pixel MNIST classification from Sec. 4.3; the
overhead stabilises around a constant of =~ 40 as the validation loss decreases.

Despite this, we found that a degree of two is already optimal; a degree of three is not better,
and a degree of four has a longer expected convergence time again. This is likely due to the
larger number of parameters necessary for higher-degree neurons, as explained in Fig. 2 in the
main text.

A similar picture can be seen when looking at the number of work stages in the QRNN cell:
a single stage takes considerably longer than two stages; for more stages, the learning time
increases again.

In contrast to this, it appears that the more workspace we have present the better; yet even here
there appears to be a plateau when going to > 6 qubits. This is likely due to the simplicity of the
learning task. For instance, as listed in Tab. 1 in the main text, a workspace of six was enough
to classify MNIST when using data augmentation (which, with an input width of 2 bits, and
an order 2 neuron requires two ancillas, resulting in 10 qubits overall). On the other hand, the
pixel-by-pixel task required a higher information capacity; we found that a workspace of eight
performed better in this setting.

in our pytorch implementation—or by sampling. The sampling overhead naturally depends on the precision to
which one wishes to reproduce the distribution.

2Note how this change is due to the collapse of an entangled state by simply measuring the output lanes; we never
actively modify the cell state.

3 As a reminder, and as explained in the last section, we set our neurons to have order 2. The degree of the neuron
is the degree of the polynomial of the inputs as shown in eq. (3) in the main text.

®
=3
S
=
W
=

training steps
D N - ~
(= W (=1 W
= = =1 =
training steps
wn (=) N ~
wn (=1 W (=3
=l = =] (=
training steps

w
3
=

1.0 15 20 25 30 35 40 1.0 1.5 20 25 30 35 40 3 4 5 6 7 8

degree stages workspace

Figure 2: Average number of training steps for sentence learning task described in Sec. 4.2, for
various combinations of neuron degree, neuron stages, and workspace. For this task,
we found that a combination of degree 2, workspace 6, and 2 stages performed best.

So in general, and as in the case of classical neural networks, there must be a tradeoff between
the number of parameters and the expected learning time. Too few parameters and the model
does not converge. Too many parameters become costly, and potentially start to overfit the
dataset. While the QRNN workspace size has a direct analogy to layer width in classical RNNs
and other network architectures, and stages with the depth of the network, the quantum neuron’s
degree finds no good analogy in common neural network architectures.

References

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge: Cambridge University Press, 2010, p. 676.

[Tac+19] Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. “An
artificial neuron implemented on an actual quantum processor”. In: npj Quantum
Information 5.1 (Dec. 2019), p. 26.

[Gro05] Lov K. Grover. “Fixed-Point Quantum Search”. In: Physical Review Letters 95.15
(Oct. 2005), p. 150501.

[CGA17] Yudong Cao, Gian Giacomo Guerreschi, and Alan Aspuru-Guzik. “Quantum Neuron:
an elementary building block for machine learning on quantum computers”. In: (Nov.
2017). arXiv: 1711.11240.

[Elm90] JElman. “Finding structure in time”. In: Cognitive Science 14.2 (June 1990), pp. 179—
211.

https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1038/s41534-019-0140-4
https://dx.doi.org/10.1038/s41534-019-0140-4
https://dx.doi.org/10.1103/PhysRevLett.95.150501
https://arxiv.org/abs/1711.11240
https://dx.doi.org/10.1016/0364-0213(90)90002-E

	QRNN Postselection Analysis
	Quantum Neuron
	QRNN Cell Output

	QRNN Network Topology

