
A Dirichlet Distribution Computations

A.1 Dirichlet distribution

The Dirichlet distribution with concentration parameters α = (α1, . . . , αC), where αc > 0, has the
probability density function:

f(x;α) =

∏C
c=1 Γ(αc)

Γ
(∑C

c=1 αc

) C∏
c=1

xαc−1
i (8)

where Γ is a gamma function:

Γ(α) =

∫ ∞
0

αz−1e−αdz

A.2 Closed-form formula for Bayesian loss.

The novel Bayesian loss described in formula 7 can be computed in closed form. For the sample x(i),
it is given by:

L(i) = Eq(p(i))[CE(p(i),y(i))]︸ ︷︷ ︸
(1)

−H(q(i))︸ ︷︷ ︸
(2)

(9)

where the distribution q belongs to the family of the Dirichlet distributions Dir(α(i)). The term (1) is
the UCE loss [1]. Given that the observed class one-hot encoded by y(i) is denoted by c∗, the term
(1) is equal to:

Eq(p(i))[CE(p(i),y(i))] = Ψ(α
(i)
c∗ )−Ψ(α

(i)
0 ) (10)

where Ψ denotes the digamma function. The term (2) is the entropy of a Dirichlet distribution and is
given by:

H(q(i)) = logB(α(i)) + (α
(i)
0 − C)Ψ(α

(i)
0 )−

∑
c

(α(i)
c − 1)Ψ(α(i)

c ) (11)

where B denotes the beta function.

A.3 Epistemic covariance for in-distribution samples in PostNet.

The epistemic distribution in PostNet is a Dirichlet distribution Dir(α(i)) with the following concen-
tration parameters α(i)

c = βprior
c +N · P(c|z(i);φ) · P(z(i);φ) and α(i)

0 =
∑
c β

prior
c +N · P(z(i);φ).

We can write the variance:

Varp∼Dir(α(i))(pc) =
αc(α0 − αc)
α2
0(α0 + 1)

; Covp∼Dir(α(i))(pc, pc′) =
−αcαc′

α2
0(α0 + 1)

(12)

For in-distribution data (i.e. P(z(i);φ) → ∞), we have Varp∼Dir(α(i))(pc) =

O
(

P(c|z(i);φ)(1−P(c|z(i);φ))
P(z(i);φ)N

)
and Covp∼Dir(α(i))(pc, pc′) = O

(
−P(c|z(i);φ)P(c′|z(i);φ)

P(z(i);φ)N

)
. Hence both

terms converge to 0 when P(z(i);φ)→∞.

B Model details

For vector datasets, all models share an architecture of 3 linear layers with Relu activation. A grid
search in [32, 64, 128] led to no significant changes in the performances. Therefore, we decided to use
64 hidden units for each layer. For image datasets, we used LeakyRelu activation and add on the top 3
convolutional layers with kernel size of 5, followed by a Max-pooling of size 2. Alternatively, we used
the VGG16 architecture with batch normalization [37] adapted from PyTorch implementation [32].
All models are trained after a grid search for learning rate in [1e−3, 1e−5]. All models were optimized
with Adam optimizer without further learning rate scheduling. We performed early stopping by

13



checking loss improvement every 2 epochs and a patience equal to 10. We trained all models on
GPUs (1TB SSD).

For the dropout models, we used pdrop = .25 after a grid search in [.25, .5, .75] and sampled 10 times
for uncertainty estimation. As an indicator, the original paper [8], uses a dropout probability of .5
for MNIST. It also states that 10 samples already lead to reasonable uncertainty estimates. For the
ensemble models, we used m = 10 networks after a grid search in [2, 5, 10, 20]. A greater number of
networks was also found to give no great improvements in the original paper [21]. To be fair with
these models, we distilled the knowledge of 10 neural networks for Distribution Distillation. We also
trained Prior Networks where target parameters βin = 1e2 as suggested in original papers [24, 25].

For PostNet, we used a 1D batch normalization after the encoder. Experiments on latent dimensions
and density types are presented in following sections. If not explicitley mentioned otherwise, we
used by default radial flow with a flow length of 6 and a latent dimension of 6. This leads to only 80
parameters. Comparison with IAF are done with two layers of size 256. In general, we found out
that a latent dimension smaller or equal to the number of classes is sufficient. It enables classes to be
orthogonal in the latent space if necessary.

All metrics have been scaled by 100. We obtain numbers in [0, 100] for all scores instead of [0, 1].

C Datasets details

For all datasets, we use 5 different random splits to train all models. We split the data in training,
validation and test sets (60%, 20%, 20%). In particular, we did not restrict to classic MNIST and
CIFAR10 splits in order do prevent overfitting to a specific split.

We use one toy dataset composed of three 2D isotropic Gaussians corresponding to three classes.
The Gaussians means are [0, 2.], [−1.73205081,−1.] and [1.73205081,−1.]. The variance of the
Gaussians is 0.2. A visualization of the true distributions for the three Gaussians is given in Figure 5.
The final dataset is composed in total of 1500 samples.

We use the segment vector dataset [6], where the goal is to classify areas of images into 7 classes
(window, foliage, grass, brickface, path, cement, sky). We remove the class ’sky’ from training and
instead use it as the OOD dataset for OOD detection experiments. Each input is composed of 18
attributes describing the image area. The dataset contains 2, 310 samples in total.

We further use the Sensorless Drive vector dataset [6], where the goal is to classify extracted motor
current measurements into 11 different classes. We remove classes 10 and 11 from training and use
them as the OOD dataset for OOD detection experiments. Each input is composed of 49 attributes
describing motor behaviour. The dataset contains 58, 509 samples in total.

Additionally, we use the MNIST image dataset [22] where the goal is to classify pictures of hand-
drawn digits into 10 classes (from digit 0 to digit 9). Each input is composed of a 1× 28× 28 tensor.
The dataset contains 70, 000 samples. For OOD detection experiments, we use KMNIST [5] and
FashionMNIST [40] containing images of Japanese characters and images of clothes, respectively.

Finally, we use the CIFAR10 image dataset [19] where the goal is to classify a picture of objects
into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck). Each input is
a 3 × 32 × 32 tensor. The dataset contains 60, 000 samples. For OOD detection experiments, we
use street view house numbers (SVHN) [29] containing images of numbers. For the dataset shift
experiments, we use the classic split of CIFAR10 to avoid data leakage with the corrupted images
from the test set that is provided online.

D Additional Experimental Results

In this section, we present additional results for uncertainty estimation on other datasets. Tables
6, 8, 9, 10, 12 show the performance of all models on the Segment, Sensorless Drive, MNIST,
and CIFAR10 datasets. In the same way as for the other datasets, PostNet is competitive for all
metrics and show a significant improvement on calibration among Dirichlet parametrized models
and on OOD detection tasks among all models. We evaluated the performances of all models on
MNIST using different uncertainty measures and observed very correlated results (see Table 11). We
compared different encoder architectures on CIFAR10 (see Fig. 5). Without further parameter tuning,
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PostNet adapted well to the convolutional architecture, AlexNet [20], VGG [37] and ResNet [12].
For easier comparison, we also trained models on the classic CIFAR10 split (79%, 5%, 16%) with
VGG architecture. We noticed that a larger training set leads to better accuracy for all models.

We also show results of experiments with different latent dimensions (see Fig. 7; 8; 13; 14) and
density types (MoG, radial, IAF) (see Tab. 6; 8; 9; 10; 12) for all datasets. We remarked that PostNet
works with various type of densities even if using mixture of Gaussians presented more instability
in practice. We observed no clear winner between Radial flow and IAF. We observed a bit lower
performances for MoG which could be explained by its lack of expressiveness. Furthermore, we
observed that a too high latent dimension would affect the performance.

Beside tables and figures with detailed metrics, we report additional visualizations. We present
the uncertainty visualization on the input space for a 2D toy dataset (see Fig. 6). We show this
visualization for all models parametrizing Dirichlet distributions. PostNet is the only model which is
not overconfident for OOD data. In particular, it demonstrates the best fit of the true in-distribution
data shown in figure 5. Other models show overconfident prediction for OOD regions and fail even
on this simple dataset.

Furthermore, we plotted histograms of entropy of ID, OOD, OODom data for MNIST and CIFAR10
(see Fig 10 and 4). For both datasets, PostNet can easily distinguish between the three data types.

Finally, We also included the evolution of the uncertainty while interpolating linearly between images
of MNIST (see Fig. 11 and 12). It corresponds to a smooth walk in latent space. As shown in
Figure 11, PostNet predicts correctly on clean images and outputs more balanced class predictions
for mixed images. Additionally the Figure 12 shows the evolution of the concentration parameters
and consequently the epistemic uncertainty. We observe that the epistemic uncertainty (i.e. low αc)
is higher on mixed images which do not correspond to proper digits.
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Figure 5: Three Gaussians toy dataset.

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

Drop Out 95.25±0.1 99.75±0.0 99.43±0.0 11.89±0.2 41.48±0.5 43.11±0.6
Ensemble *97.27±0.1 *99.88±0.0 *99.85±0.0 *7.64±0.2 54.76±1.6 58.13±1.7

Distill. 96.21±0.1 99.82±0.0 99.8±0.0 57.77±0.6 37.12±0.5 35.83±0.4
KL-PN 95.61±0.1 99.79±0.0 99.76±0.0 16.84±0.3 65.62±2.4 57.07±3.7
RKL-PN 96.36±0.2 99.71±0.0 99.58±0.0 11.97±0.1 75.46±2.4 51.02±0.6
PostN Rad. (2) 95.76±0.1 99.23±0.1 98.82±0.1 13.33±1.3 92.75±1.3 90.41±1.5
PostN Rad. (6) 96.52±0.2 99.82±0.0 99.43±0.0 8.69±0.3 98.27±0.2 98.09±0.3
PostN Rad. (10) 94.9±0.2 99.51±0.0 98.57±0.1 12.22±0.7 95.53±0.8 97.51±0.7
PostN IAF (2) 93.94±0.3 99.02±0.1 98.3±0.2 15.33±0.7 *98.3±0.3 *99.33±0.1
PostN IAF (6) 95.71±0.2 99.63±0.0 99.11±0.1 10.16±0.3 96.92±0.9 98.17±0.6
PostN IAF (10) 96.92±0.1 99.83±0.0 99.49±0.0 8.45±0.4 95.75±1.1 96.74±0.9
PostN MoG (2) 63.43±5.3 79.61±6.2 79.05±6.1 54.14±5.4 90.87±1.4 91.62±1.4
PostN MoG (6) 89.75±2.5 95.28±1.6 93.15±2.1 24.42±4.3 96.04±1.3 97.71±0.8
PostN MoG (10) 94.44±0.5 99.64±0.1 99.08±0.2 14.79±1.3 91.14±1.5 90.82±1.3

Table 6: Results on Segment dataset with all models. It shows results with different density types.
Number into parentheses indicates flow size (for radial flow and IAF) or number of components (for
MoG). Bold numbers indicate best score among Dirichlet parametrized models and starred numbers
indicate best scores among all models.
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Figure 6: Visualization of the concentration parameters predicted by Distribution Distillation, Prior
Networks trained with KL and reverse KL divergence and Posterior Network on a 3-Gaussians toy
dataset over 5 runs. Red dots indicate the mean of the 3 Gaussians. Colours indicate class labels
predicted by the models, dark regions correspond to high epistemic uncertainty. PostNet consistently
predicts low uncertainty around the training data and high uncertainty for OOD data.

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

PostN: No-Flow 93.13±0.3 99.48±0.1 98.41±0.3 12.94±0.3 47.3±2.9 35.49±0.3
PostN: No-Bayes-Loss 93.94±0.8 98.53±0.3 96.08±1.1 16.15±1.9 94.71±1.0 95.92±0.8
PostN: Seq-No-Bn 18.94±1.1 20.42±1.7 20.42±1.7 91.29±0.0 58.91±0.8 58.43±0.8
PostN: Seq-Bn 93.89±0.1 99.38±0.1 98.93±0.0 14.64±0.3 98.02±0.4 99.93±0.0

Table 7: Ablation study results on Segment dataset. Gray cells indicate significant drops in scores
compare to the complete PostNet Rad. (6) model in Table 6.
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Figure 7: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32] on the
Segment dataset. We observed that the performances remains high for small dimensions (i.e. 2, 6,
10) and drop for a too high dimension (i.e. 32).

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

Drop Out 89.32±0.2 98.21±0.1 95.24±0.2 28.86±0.4 35.41±0.4 40.61±0.7
Ensemble 99.37±0.0 99.99±0.0 *99.98±0.0 2.47±0.1 50.01±0.0 50.62±0.1

Distill. 93.66±1.5 98.29±0.5 98.15±0.5 44.94±1.4 32.1±0.6 31.17±0.2
KL-PN 94.77±0.9 99.52±0.1 99.47±0.1 21.47±1.9 35.48±0.8 33.2±0.6
RKL-PN 99.42±0.0 99.96±0.0 99.89±0.0 9.07±0.1 45.89±1.6 38.14±0.8
PostN Rad. (2) 96.07±0.0 99.28±0.0 98.88±0.0 19.94±0.0 *98.22±0.0 *98.03±0.0
PostN Rad. (6) 98.02±0.1 99.89±0.0 99.47±0.0 5.51±0.2 72.89±0.8 88.73±0.5
PostN Rad. (10) 97.3±0.0 99.82±0.0 99.31±0.0 7.93±0.0 66.65±0.0 87.91±0.0
PostN IAF (2) 99.19±0.0 99.98±0.0 99.78±0.0 2.45±0.0 78.13±0.0 85.9±0.0
PostN IAF (6) 99.11±0.1 99.98±0.0 99.72±0.0 2.71±0.1 78.48±0.7 86.47±0.5
PostN IAF (10) *99.52±0.0 *100.0±0.0 99.92±0.0 *1.43±0.1 82.96±0.8 88.65±0.4
PostN MoG (2) 59.63±4.8 72.2±4.7 70.38±4.8 68.41±4.6 67.2±3.1 72.3±2.9
PostN MoG (6) 96.83±0.2 99.72±0.0 99.16±0.1 13.24±1.0 59.82±2.3 60.61±2.6
PostN MoG (10) 96.65±0.2 99.64±0.0 99.12±0.1 13.12±1.1 61.54±1.8 65.35±2.0

Table 8: Results on Sensorless Drive dataset with all models. It shows results with different density
types. Number into parentheses indicates flow size (for radial flow and IAF) or number of components
(for MoG).
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Figure 8: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32] on the
Sensorless Drive dataset. OOD scores are computed against the left out sky class. We observed that
the performances remains high for medium dimensions (i.e. 6, 10) and drop for a too high dimension
(i.e. 32).

(a) ID/OOD data (PriorNet) (b) ID/OOD data (PostNet)

Figure 9: This figure should be seen in perspective with Fig. 1. We plot FashionMNIST OODom data
with black crosses to show where these data would land. OODom data were not used for training
the models, A comparison of Fig. 9(a) with Fig. 1(b) show that Prior Network assigns high certainty
to OODom data. In contrast, a comparison of Fig. 9(b) and Fig. 1(c) shows that Posterior Network
assigns low uncertainty to OODom data as desired.
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(a) MNIST

Figure 10: Histograms of the entropy of the predicted categorical distributions for in-distribution
(green), out-of-distribution (yellow) and out-of-domain (red) data. The value 2.3026∗ denotes
the maximal entropy achievable for a categorical distribution with 10 classes. We use MNIST,
FashionMNIST and the unscaled version of FashionMNIST as in-distribution, out-of-distribution and
out-of-domain data. PostNet clearly distinguishes between the three types of data with low entropy
for in-distribution data and high entropy for out-of-distribution, and close to the maximum possible
entropy for out-of-domain data.
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Figure 11: Evolution of the probability predictions when interpolating linearly between four MNIST
images. The interpolation goes from the clean digits 5, 4, 6 and 2 in a cyclic way with 20 interpolated
images between each pair. As desired, We can observe correct predictions around clean images with
higher (aleatoric) uncertainty for mixed images, and smooth transitions in between.
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Figure 12: Evolution of the concentration parameters predictions when interpolating linearly between
four MNIST images. The interpolation goes from the clean digits 5, 4, 6 and 2 in a cyclic way with 20
interpolated images between each pair. As desired, we can observe correct and confident predictions
around clean images with higher (epistemic) uncertainty for mixed images.
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Acc. Alea. Conf. Epist. Conf. Brier

Drop Out 99.26±0.0 99.98±0.0 99.97±0.0 1.78±0.0
Ensemble *99.35±0.0 *99.99±0.0 *99.98±0.0 1.67±0.0

Distill. 99.34±0.0 99.98±0.0 *99.98±0.0 72.55±0.2
KL-PN 99.01±0.0 99.92±0.0 99.95±0.0 10.82±0.0
RKL-PN 99.21±0.0 99.67±0.0 99.57±0.0 9.76±0.0
RKL-PN w/ F. 99.2±0.0 99.75±0.0 99.68±0.0 9.9±0.0
PostN Rad. (2) 99.34±0.0 99.98±0.0 99.97±0.0 *1.25±0.0
PostN Rad. (6) 99.28±0.0 99.97±0.0 99.96±0.0 1.36±0.0
PostN Rad. (10) 99.22±0.0 99.97±0.0 99.97±0.0 1.41±0.0
PostN IAF (2) 99.06±0.0 99.96±0.0 99.94±0.0 1.48±0.0
PostN IAF (6) 99.08±0.0 99.96±0.0 99.94±0.0 1.45±0.1
PostN IAF (10) 98.97±0.0 99.96±0.0 99.94±0.0 1.61±0.0
PostN MoG (2) 76.41±2.3 99.93±0.0 99.92±0.0 23.23±2.2
PostN MoG (6) 99.21±0.0 99.94±0.0 99.92±0.0 1.61±0.0
PostN MoG (10) 99.22±0.0 99.94±0.0 99.92±0.0 1.53±0.0

Table 9: Accuracy, confidence and calibration results on MNIST dataset with all models. It shows
results with different density types. Number into parentheses indicates flow size (for radial flow
and IAF) or number of components (for MoG). Bold numbers indicate best score among Dirichlet
parametrized models and starred numbers indicate best scores among all models.

OOD K. OOD K. OOD F. OOD F. OODom K. OODom K. OODom F. OODom F.
Alea. Epist. Alea. Epist. Alea. Epist. Alea. Epist.

Drop Out 94.0±0.1 93.01±0.2 96.56±0.2 95.0±0.2 31.59±0.5 31.97±0.5 27.2±1.1 27.52±1.1
Ensemble *97.12±0.0 *96.5±0.0 98.15±0.1 96.76±0.0 41.7±0.3 42.25±0.3 37.22±1.0 37.73±1.0

Distill. 96.64±0.1 85.17±1.0 98.83±0.0 94.09±0.4 11.49±0.3 10.66±0.2 13.82±0.5 12.03±0.3
KL-PN 92.97±1.2 93.39±1.0 98.44±0.1 98.16±0.0 9.54±0.1 9.78±0.1 9.57±0.1 10.06±0.1
RKL-PN 60.76±2.9 53.76±3.4 78.45±3.1 72.18±3.6 9.35±0.1 8.94±0.0 9.53±0.1 8.96±0.0
RKL-PN w/ F. 81.34±4.5 78.07±4.8 *100.0±0.0 *100.0±0.0 9.24±0.1 9.08±0.1 88.96±4.4 87.49±5.0
PostN Rad. (2) 95.49±0.3 93.12±0.7 96.2±0.3 94.6±0.4 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN Rad. (6) 95.75±0.2 94.59±0.3 97.78±0.2 97.24±0.3 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN Rad. (10) 95.46±0.4 94.19±0.4 97.33±0.2 96.75±0.3 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (2) 92.24±0.3 91.75±0.3 96.58±0.2 96.6±0.2 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (6) 90.74±0.6 90.63±0.6 93.66±0.5 93.17±0.6 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (10) 87.08±0.2 86.52±0.3 92.34±0.6 91.27±0.9 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN MoG (2) 74.27±2.0 73.34±1.9 76.99±2.0 76.74±1.9 *100.0±0.0 *100.0±0.0 99.99±0.0 99.99±0.0
PostN MoG (6) 84.67±1.5 81.46±1.9 88.98±1.7 87.07±2.1 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN MoG (10) 85.14±1.3 81.12±1.5 94.43±0.8 93.8±1.0 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0

Table 10: OOD results on MNIST dataset with all models. It shows results with different density
types. Number into parentheses indicates flow size (for radial flow and IAF) or number of components
(for MoG).

OOD K. α0/var. OOD K. MI. OOD F. α0/var. OOD F. MI. OODom K. α0/var. OODom K. MI. OODom F. α0/var. OODom F. MI

Ensemble *97.19±0.0 *97.44±0.0 97.53±0.1 97.69±0.1 42.36±0.3 42.38±0.3 37.85±1.1 37.86±1.1

RKL-PN 54.11±3.4 54.9±3.3 72.54±3.6 73.33±3.5 8.94±0.0 8.94±0.0 8.96±0.0 8.96±0.0
RKL-PN w/ F. 78.4±4.8 78.73±4.8 *100.0±0.0 *100.0±0.0 9.08±0.1 9.08±0.1 87.49±5.0 87.49±5.0
PostN 96.04±0.2 96.05±0.2 98.17±0.2 98.17±0.2 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0

Table 11: OOD detection on MNIST with other uncertainty measures. Mutual Information [24] and α0

(Dirichlet) / variance (Ensemble) results are highly correlated.
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Figure 13: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32] on the
MNIST dataset. OOD and OODom scores are computed against scaled and unscaled KMNIST and
FashionMNIST datasets. We observed that the performances remains high for medium dimensions
(i.e. 6, 10) and drop for a too high dimension (i.e. 32).

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist. OODom Alea. OODom Epist.

Drop Out 71.73±0.2 92.18±0.1 84.38±0.3 49.76±0.2 72.94±0.3 41.68±0.5 28.3±1.8 47.1±3.3
Ensemble *81.24±0.1 *96.61±0.0 93.25±0.1 38.88±0.1 *77.82±0.2 55.17±0.3 63.18±1.1 89.97±0.9

Distill. 72.11±0.4 91.72±0.2 90.73±0.2 88.04±0.1 75.63±0.6 52.18±2.1 17.76±0.0 17.76±0.0
KL-PN 48.84±0.5 78.01±0.6 77.99±0.7 83.11±0.6 59.32±1.1 58.03±0.8 17.79±0.0 20.25±0.2
RKL-PN 62.91±0.3 85.62±0.2 81.73±0.2 58.12±0.4 67.07±0.4 56.64±0.8 17.83±0.0 17.76±0.0
PostN Rad. (2) 76.43±0.1 94.59±0.1 94.02±0.1 37.59±0.3 72.91±0.4 69.26±1.1 99.99±0.0 *100.0±0.0
PostN Rad. (6) 76.46±0.3 94.75±0.1 *94.34±0.1 *37.39±0.4 72.83±0.6 *72.82±0.7 *100.0±0.0 *100.0±0.0
PostN Rad. (10) 75.43±0.2 94.16±0.1 93.64±0.1 39.3±0.4 71.94±0.3 70.99±0.5 *100.0±0.0 *100.0±0.0
PostN IAF (2) 76.75±0.2 94.78±0.1 92.98±0.2 37.87±0.5 73.07±0.5 65.61±1.0 *100.0±0.0 *100.0±0.0
PostN IAF (6) 76.79±0.1 94.73±0.0 93.7±0.1 37.86±0.2 73.58±0.2 69.74±0.3 *100.0±0.0 *100.0±0.0
PostN IAF (10) 75.92±0.2 94.48±0.1 93.23±0.2 39.09±0.3 72.4±0.3 69.04±0.3 *100.0±0.0 *100.0±0.0
PostN MoG (2) 44.7±5.9 54.12±7.9 52.12±7.8 68.57±5.2 48.53±3.6 47.45±4.1 99.91±0.0 99.96±0.0
PostN MoG (6) 71.05±1.6 91.21±1.0 86.91±1.2 46.37±2.0 73.49±0.6 56.04±3.8 98.04±0.7 99.62±0.1
PostN MoG (10) 71.63±1.3 91.57±0.8 88.92±0.8 46.07±1.9 72.61±0.3 56.28±1.8 99.88±0.0 *100.0±0.0

Table 12: Results on CIFAR10 dataset with all models with convolutional architecture. It shows
results with different density types. Number into parentheses indicates flow size (for radial flow and
IAF) or number of components (for MoG).

Acc. Alea. Conf. Epist. Conf. Brier OOD S. Alea. OOD S. Epist. OODom S. Alea. OODom S. Epist.

Ensemble *91.34±0.0 *99.1±0.0 98.77±0.0 17.69±0.1 *80.1±0.3 75.14±0.2 21.1±3.1 24.42±3.7

RKL-PN 60.05±0.7 85.63±0.8 82.11±1.3 70.84±0.9 50.97±3.9 55.37±4.3 56.16±1.4 51.33±2.4
RKL-PN w/ C100 88.18±0.1 95.44±0.3 94.15±0.3 79.99±2.0 56.67±2.1 73.37±2.3 57.06±1.7 50.31±1.4
PostNet 90.05±0.1 98.87±0.0 *98.82±0.0 *15.44±0.1 76.04±0.4 *75.57±0.4 *87.65±0.3 *92.13±0.5

Table 13: Results with VGG16 on CIFAR10 on classic split (79%, 5%, 16%). RKL-PN w/ C100 uses CIFAR100
as training OOD.
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Figure 14: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32] on the
CIFAR10 dataset. OOD and OODom scores are computed against scaled and unscaled SVHN dataset.
We observed that the performances remains high for medium dimensions (i.e. 6, 10) and drop for a
too high dimension (i.e. 32).
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