
Evaluation. Our initial experiments only used the first 500 images from the MS-COCO data set, as was done in [3].1

In the tables below we use the full test set with the best performing reduction based on the initial experiments. As2

R3 and R4 suggest, we will use the full test set to update the comparison Table 1 of Sec. 6 toawrds the final manuscript.3

Additional Experiments. As R3 suggested, we provide additional results for different architectures. While the4

median-smoothed RCNN has better clean performance as measured by F1 score, its certified precision recall is strictly5

lower highlighting the trade-off between clean accuracy and robustness as discussed in the literature.6

Precision Recall F1 Certified Precision Certified Recall
YOLOv3 91.80% 20.88% 34.02% 29.65% 11.43%
Faster RCNN 86.58% 24.63% 38.35% 17.69% 10.85%
Mask RCNN 85.50% 25.14% 38.85% 17.42% 10.85%

Other Performance Metrics. As R4 suggested, we examine the average precision (AP) for both the plain and7

certified detectors; we report the results for YOLOv3 below, and plan to include Faster RCNN and Mask RCNN in the8

final manuscript. Since varying the objectness threshold changes the base detector (f ), we reevaluate the smoothed9

detector at objectness thresholds {0.1, 0.2, 0.4, 0.6, 0.8} and calculate the area under the steps to lower bound true AP.10

As for inference speed, the smoothing paradigm is inherently costly, as we use 2000 perturbations for Monte Carlo11

estimation. We leave it to future work to improve these important metrics as needed in practice.12

AP@50 Certified AP@50

YOLOv3 32.0% 4.2%

Comparison to Prior Work. We thank R4 for bringing relevant prior work to our attention. While we cannot claim13

to be the first adversarial defense for object detection, we maintain that we provide the first certified defense. The14

performance of the certified defense approach is currently so weak compared to the adversarial training approach that15

we do not think a meaningful quantitative comparison can be done. We will make sure to discuss the relation to this prior16

work as follow: “our certified radius is 0.36 in terms of `2-norm whereas Zhang et al. (ICCV’19) achieved robustness17

radius of 8/255 in terms of the stronger `∞-norm threat model.” As R2 suggests, we will distinguish certification and18

defense as follows: "Several methods of obtaining robustness certificates for classification problems have been proposed19

[19, 21, XX]. In addition, [9, 11, 24, 25, 29, YY] proposes methods to both defend the model while enabling better20

certificates;" we will make sure to include the citations suggested by R2.21

Tailored Empirical Attacks. As R2 suggested, we implemented a DAG attack against our best performing model.22

The DAG attack is modified to include Monte Carlo sampling to increase the strength of the attack. We take 20 PGD23

steps and draw 5 random samples to estimate the gradient of the smoothed model. Surprisingly, the smoothed model24

is quite robust within the desired radius. The DAG attack was only able to decrease recall by 1.1%. This illustrates25

that the bound we obtained is likely quite loose with respect to the true robustness of the object detector, and we leave26

improvements of the robustness certificate as future work.27

Certifiable radius. R2 rightly points out that as of right now the certifiable radius is too low for real-world ap-28

plications. We emphasize that certified robustness is a challenging domain and none of the existing methods yield29

practical certificates even for classification problems. For example, while the SOTA certified defense by Salman et al.30

(NeurIPS’19) achieved 68.2% certified accuracy for ||ε||∞ < 2/255 on CIFAR-10, the empirical approach of Xie et al.31

(CVPR’19) can achieve similar empirical robustness but at the ImageNet scale and with larger radius. That said, our32

work leverages a principled smoothing approach to provide the first non-trivial certificates for architectures as complex33

as object detectors.34

Generality of the Techniques. R1 remarks that the sorting and bucketing techniques proposed in Section 5 may be35

too specific for object detection. We note that the proposed techniques are potentially applicable to certifying other36

networks through reductions to a regression formulation. This is particularly relevant for tasks that have variable length37

outputs, such as key points detection, instance segmentation, or image captioning. Viewed in the broader context of38

adversarial robustness for ML models, computer vision continues to provide exemplar problems and we hope our work39

on object detection will help advance both the theory and practice of this important field.40

Other Clarifications and Corrections. R2 correctly points out an issue with Equation 3. We already fixed this issue41

in the supplemental materials, replacing min/max with inf/sup. We will also clarify the definition of the worst-case42

bounding box as “the box with coordinates satisfying the certified upper and lower bounds which realizes the lowest43


