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A Construction of ozone baselines14

We remind the reader that all of these baselines use the same data for training, testing and validation15

as the Bayesian neural network ensemble. This validation tests the ability of the ensembling methods16

to interpolate and extrapolate, particularly over regions of interest and sparse data.17

A.1 Multi-model mean18

This is the uniform weighting of all the 15 chemistry-climate models. The prediction is therefore,19

yMMM(x, t) =
1

15

15∑
i=1

Mi(x, t) (1)

where yMMM(x, t) is the multi-model mean prediction and Mi(x, t) is the i-th individual model20

prediction.21
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A.2 Weighted mean22

Here the ensemble mean is constructed from model projections weighted by their skill (in replicating23

observations) and their independence. This is based on work from Knutti et al. [2], Sanderson et al.24

[3].For an ensemble of N models, the weight for model i (wi) is given by25

wi = exp

(
− D2

i

niσ2
D

)
/

1 +

N∑
j 6=i

exp

(
−
S2
ij

niσ2
S

) , (2)

where D2
i is the squared difference between a model and observation averaged over all space and26

time, S2
ij is the squared difference between models averaged over all space and time, ni is the size27

of data used in constructing the weight, and σD and σS are constants which allow tuning of the28

weighting. The weights wi are normalise to sum to 1. The weighted prediction is therefore29

yWM(x, t) =

N∑
i=1

wiMi(x, t). (3)

Values of σD and σS were found by minimising the difference between the weighted prediction and30

the observations over the training data.31

A.3 Spatially weighted mean32

The ensemble is constructed much the same as the weighted mean presented above, except that model33

weights vary in space. The weights are calculated34

wi(x, t) = exp

(
− Di(x, t)
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)
/
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2

ni(x, t)σ2
S

) , (4)

and are used to generate the prediction,35

ySWM(x, t) =

N∑
i=1

wi(x, t)Mi(x, t). (5)

A.4 Spatiotemporal kriging36

We performed spatiotemporal kriging using an implementation of a stochastic variational Gaussian37

process (SVGP) from GPFlow [1]. Due to the size of the training data (1.8 million data points) we38

used a SVGP on 3 year sections of observational data with 5000 inducing points per section. The39

kernel we used was the product of a Matern3/2 kernel acting over latitude and time, and periodic40

Matern3/2 kernel acting over longitude. We used an Adam optimiser implemented in tensorflow to41

train the SVGP.42

A.5 Bilinear interpolation43

Bilinear interpolation over the training data was performed using the SciPy function grid-44

data: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.45

griddata.html.46

B Hyperparameter details47

The pretrained model weights and the code to run the BayNNE for both the syn-48

thetic and ozone experiments can be found here: https://anonymous.4open.science/r/49

6bf08e5a-c909-45a3-be63-aa0f5ba187df/. Table 1 shows the hyperparameters chosen in50

the running of the BayNNE for both experiments.51

The heteroscedastic loss function is prone to episodes of catastrophic forgetting. To avoid these, we52

use large batch sizes, small learning rates and a large number of epochs so that each neural network53

ensemble member may be stably trained till convergence.54
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Table 1: Hyperparameter values and priors for BayNNE.

Synthetic experiment Ozone experiment

Spatial coord scaling 2 2
Temporal coord scaling (month of year) 1 2
Temporal coord scaling (total months) 1 1
Number of physical models 4 15
Number of neural network ensemble members 50 65
Bias mean. prior 0 0
Bias std. prior 0.01 0.03
Noise mean prior 0.02 0.015
Noise std. prior 0.004 0.003
Number of hidden layers 1 1
Number of hidden nodes 100 500
Optimiser Adam Adam
Batch Size 2000 25000
Learning rate 5× 10−5 3× 10−5

Number of epochs 6000 125000

The neural network ensemble for the 2 million datapoint ozone dataset were trained across a cluster55

of 6 P100 GPUs. Each neural network needed 20 hours to be trained till convergence and the entire56

ensemble needed 8 days of wall clock time.57

C Derivation of loss function58

In the following, we derive the anchored ensembling loss function for the heteroscedastic case. For59

the j-th neural network ensemble member in randomized MAP sampling, we compute the MAP60

estimate corresponding to a recentered prior over parameters θanc,j , P (θj) = N (θanc,j ,Σprior).61

Here θanc,j is a sample from the original multivariate normal prior over parameters, i.e. θanc,j ∼62

N (µprior,Σprior).63

θMAP,j = argmaxθj
P (θj |D)

= argmaxθj
PD(D|θj)P (θj) (Bayes’ Theorem)

= argmaxθj
log(PD(D|θj)) + log(P (θj)) (log strictly monotonic increasing)

= argmaxθj
log(PD(D|θj))−

1

2
(θj − θanc,j)

TΣ−1prior(θj − θanc,j) + const.

= argmaxθj
log(PD(D|θj))−

1

2
‖Σ−1/2prior(θj − θanc,j)‖22 (diagonal prior covariance)

If we specify the data likelihood for our regression task assuming i.i.d. observations and additive64

heteroscedastic Gaussian noise i.e., PD(D|θj) =
∏ND

i=1N (ŷj(xi, ti), σ
2
j (xi, ti)), we obtain65

θMAP,j = argmaxθj
− 1

2

ND∑
i=1

(yi − ŷj(xi, ti))
2

σ2
j (xi, ti)

−
ND∑
i=1

log(σj(xi, ti)) + const.− 1

2
‖Σ−1/2prior(θj − θanc,j)‖22

= argminθj

ND∑
i=1

(yi − ŷj(xi, ti))
2

σ2
j (xi, ti)

+

ND∑
i=1

log(σ2
j (xi, ti)) + ‖Σ−1/2prior(θj − θanc,j)‖22 (× -2 throughout)

3



D Extra ozone experiment plots66

In the main text we highlighted the models with the most interesting features and highest weights.67

For completeness here, we include a wider range of plots looking at model weights and modelled68

bias and uncertainties, for the ozone experiment.69

D.1 Bias70

Figures 1 and 2 show the modelled bias averaged in time and space respectively. Bias is seen to be71

negative over polar regions especially the southern polar region and southern mid latitudes.
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Figure 1: Temporally averaged modelled bias.
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Figure 2: Spatially averaged modelled bias.

D.2 Epistemic uncertainty73

Figures 3 and 4 show the epistemic uncertainty averaged in time and space respectively. Epistemic74

uncertainty is highest at polar regions. Epistemic uncertainty increases for regions with sparse or no75

data including 2007–2010 (used to validate extrapolation) and 1993–1997 where there is a greater76

sparsity of data. This can be seen clearly in Figure 4.77

D.3 Average model weight78

Figure 5 shows the average model weight for all 15 chemistry-climate models used in the ozone79

experiment.80
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Epistemic uncertainty
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Figure 3: Temporally averaged epistemic uncertainty.
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Figure 4: Spatially averaged epistemic uncertainty and the number of training points per month.
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Figure 5: Temporally averaged model weights for all 15 chemistry-climate models.
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