
Supplemental Material for “Model Selection for Production
System via Automated Online Experiments”

A Experiment Details

In the following section, we will present the additional details about our experiments that do not fit in
the main text.

A.1 Baseline methods

As MSPS is a new framework for model selection, we construct five baseline methods by extending
the related method into our scenario and compare with AOE. The five baseline methods are as follows:

BO For each online experiment, we can have an unbiased estimate of the accumulative metric under
the deployed model as mentioned in Section 2. We directly apply Bayesian Optimization
(BO) to the model selection problem by taking the set of candidate models as the input
space and the estimate of the accumulative metric from online experiments as the output and
treating MSPS as an optimization problem. We use the default setting of BO in GPyOpt,
where the surrogate model is a Gaussian process (GP) regression model with a Gaussian
noise distribution and a Mátern 5/2 kernel. Expected Improvement (EI) is used as the
acquisition function. For the classification experiment, as the candidate models are naturally
generated from a 2D space of the SVM parameters C and γ, we use the values of these
two parameters to identify individual candidate models and use this 2D space as the search
space for BO. However, for the recommender system experiment, there are no natural
representations for the candidate models. We treat each candidate model as a categorical
value, which leads to its bad performance.

IS-g / DR-g Off-policy evaluation (OPE) methods can provide an estimate of the accumulative
metric. We use two popular OPE methods, importance sampling (IS) and doubly robust
(DR) to estimate the accumulative metric after each online experiment and greedily choose
the candidate model with the highest estimated accumulative metric for the next online
experiment. We denote the resulting two methods as IS-g and DR-g respectively.

IS-EI / DR-EI IS-g and DR-g suffer from the fact that there is no exploration mechanism. To offer
a stronger baseline, we not only use IS and DR to estimate the accumulative metric, but
also calculate the empirical variance of the resulting estimate. Then, we score the candidate
models according to an acquisition function (EI is used in the experiments) and select the
next model to deploy with the highest score. The resulting methods are denoted as IS-EI
and DR-EI respectively.

As there are limited information to be gained by repeatedly deploying the same model online, we
exclude the models that have been deployed when choosing the next model to deploy for all the
methods including AOE.

A.2 Classification

We take the inspiration from the OPE literature and construct an online experiment scenario using
a classification dataset. We simulate the “online” deployment scenario as follows: a multi-class
classifier is given a set of inputs; for each input, the classifier returns a prediction of the label and
only a binary immediate feedback about whether the predicted class is correct is available. The
performance of a classifier is measured by the average accuracy on the hold-out set, which corresponds
to the accumulative metric. As only one model can be deployed at a time and in each deployment
a small subset of the hold-out data are used, the task is to select the best-performing model in the
smallest number of deployments.

We use the “letter" dataset from UCI repository [41]. There are, in total, 20,000 data points in the
dataset. We randomly sample 200 data points for training and use the rest for “online" experiments.
In each online experiment, we randomly select 200 data points from the hold-out set and pass them to
the “deployed" model and record the binary feedback and accumulative metric.
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Figure 3: Additional results of the classification experiment. (a) Comparison of AOE and five baseline
methods through the 20 sequential online experiments (refer to as iterations). The y-axis shows the
gap in the accumulative metric between the optimal model and the estimated best model by each
method. (b) RMSE of the estimated accumulative metrics for all the candidate models from each
method. The error bars in both (a) and (b) indicate the confidence interval of the estimated mean by
two times of the standard deviation.

Table 1: The metric gap and RMSE after Iteration 20 in the classification experiment
Metric Gap RMSE

AOE 0.0029 (0.0033) 0.011 (0.0053)
IS-EI 0.042 (0.042) 0.061 (0.019)
IS-g 0.024 (0.036) 0.063 (0.027)

DR-EI 0.013 (0.016) 0.044 (0.027)
DR-g 0.020 (0.024) 0.054 (0.026)
BO 0.059 (0.15) 1.31 (0.54)

We consider support vector machine (SVM) as the multi-class classifier and generate the set of
candidate models by varying the two tuning parameters of SVM for training, C and γ. To demonstrate
that AOE can select a good model from a large set of candidates, we generate in total 10,000 candidate
models by choosing C, and γ from a 100x100 grid in the space of these two parameters in log scale.
We follow the guideline from previous works and consider C between 2−5 and 215 and γ between
2−15 and 23. In order to compare with the OPE-based baselines, all the predictions from an SVM
are augmented with a ε-greedy step, i.e., the predicted label is sampled according to a categorical
distribution, in which the class predicted by the SVM has 1− ε probability and the rest classes evenly
share the probability ε. We set ε = 0.05.

We use a GP binary classifier with a Matérn 3
2 kernel as the surrogate model. We use 2000 inducing

points and EI as the acquisition function. When training the surrogate model, we use Adam as the
gradient optimizer for variational inference, which runs for 600 epochs with the mini-batch size
being 100 and the learning rate being 0.001 with stratified sampling. We use logistic regression as the
baseline model for DR-based baselines.

Each model selection experiment consists of 20 sequential online experiments and the model deployed
in the first experiments is randomly picked according to a uniform distribution for all the methods.
We repeatedly run 20 experiments for each model. In each repeated run, the set of candidate models
are the same but the first deployed model and the data points sampled for each online experiment
may be different due to random sampling.
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Figure 4: Additional results about the comparison of acquisition functions. It compares the perfor-
mance of different acquisition function used by AOE in the classification experiment. (a) Comparison
of different acquisition functions in terms of the gap in the accumulative metric between the optimal
model and the estimated best model. (b) Comparison of different acquisition function in terms
of RMSE of the estimated accumulative metrics. The error bars in both (a) and (b) indicate the
confidence interval of the estimated mean by two times of the standard deviation.

Table 2: The metric gap and RMSE after Iteration 5 in the recommender system experiment
Metric Gap RMSE

AOE 0. (0.) 0.016 (0.0029)
IS-EI 0.038 (0.043) 0.11 (0.031)
IS-g 0.039 (0.048) 0.11 (0.043)

DR-EI 0.0063 (0.024) 0.085 (0.018)
DR-g 0.032 (0.039) 0.097 (0.027)
BO 0.023 (0.043) 0.715 (0.062)

Figure 3a shows the comparison of all the methods with error bars in terms of the the gap in the
accumulative metric between the optimal model and the estimated best model. Figure 3b shows the
average rooted mean square error (RMSE) of the estimated accumulative metrics after each iteration
with error bars. The error bars indicate the confidence interval of the estimated mean by two times of
the standard deviation. The average metric gaps and average RMSE of all the methods after Iteration
20 are shown in Table 1. The values in the parentheses indicates the standard deviation of the metric
gap and RMSE across the 20 repeated runs.

Apart from the comparison between AOE and the baseline methods. We also compare the performance
of AOE when using different acquisition functions. Figure 4a shows the comparison of different
acquisition functions with error bars in terms of the the gap in the accumulative metric between the
optimal model and the estimated best model. Figure 4b shows the average RMSE of the estimated
accumulative metrics after each iteration with error bars with different acquisition functions. The error
bars indicate the confidence interval of the estimated mean by two times of the standard deviation.

To illustrate the behaviors of AOE and the baseline methods during the model selection process, we
visualize the mean and standard deviation of the estimated accumulative metrics after Iteration 1, 5,
10, 15, and 20 from individual methods in Figure 7. The visualization uses one of the 20 runs. Note
that, to provide more information, Figure 1d and Figure 7 use different runs.

A.3 Recommender System

We demonstrate AOE on the problem of model selection for recommender system, which aims to
select the best recommender based on its online performance. In this experiment, we consider that
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Figure 5: Additional results of the recommender system experiment. (a) Comparison of AOE and
five baseline methods through the 20 sequential online experiments (refer to as iterations). The y-axis
shows the gap in the accumulative metric between the optimal model and the estimated best model
by each method. (b) RMSE of the estimated accumulative metrics for all the candidate models from
each method. The error bars in both (a) and (b) indicate the confidence interval of the estimated mean
by two times of the standard deviation.

a recommender system takes a user ID as input and returns an item ID for recommendation. For
each recommendation, it receives binary feedback indicating whether the user has responded to the
recommended item. We measure the performance of such a recommender system by the average
response rate, which corresponds to the accumulative metric. We construct a simulator by using
the MovieLens 100k data [43]. Given a user ID and an item ID, the binary feedback is simulated
by drawing a sample from a Bernoulli distribution, in which the probably of being one is specified
by the response probability corresponding to the user ID and item ID pair. The MovieLens 100k
data provide the ratings corresponding to a list of user and item pairs. We filter items that have
average rating below a threshold of 0.2. The ratings range between one and five. We generate a full
table of the response probability for all the user and item combinations by first filling all the missing
entries in the rating data with zero and mapping the resulting 0-5 rating evenly to a probably between
[0.05, 0.95], i.e., 0.05 for 0, 0.23 for 1, 0.41 for 2, 0.59 for 3, 0.77 for 4 and 0.95 for 5.

We do not use any user and item features and randomly take 20% of the entries in the response
probability table for training the candidate models. We trained ten models using the Surprise package
[44] with their default setting. The full list of the names of the models are SVD, BaselineOnly, Co-
Clustering, KNNBaseline, KNNWithMeans, NormalPredictor, NMF, KNNWithZScore, KNNBasic,
SlopeOne. At prediction time, each of these models predicts a response probability given a pair of
user ID and item ID. In an online experiment, given a user ID, a trained model predicts the response
probabilities of all the items, and the recommendation is generated by taking the top five items
and randomly choosing one from them following a uniform distribution. The recommendation is
augmented with ε-greedy, i.e., the item for recommendation is sampled from a categorical distribution,
in which the top five items have (1− ε)/5 probability and the rest items evenly share ε probability.
We set ε = 0.05.

The users and items are represented by their IDs, which are not good representations for GP. We
augment a GP binary classifier by embedding the user and item IDs into two separate latent spaces as
mentioned in Sec. 3.1 and use it as the surrogate model. We use 5D latent spaces for the user and item
embedding separately and an RBF kernel. We use 1000 inducing points and EI as the acquisition
function. When training the surrogate model, we use Adam as the gradient optimizer for variational
inference, which runs for 200 epochs with the mini-batch size being 100 and the learning rate being
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0.001. As the prediction task can also be viewed as matrix imputation, we use the KNNImputer from
the scikit-learn package as the predictive model for DR-based baselines.

Each model selection experiment consists of five sequential online experiments and the model
deployed in the first experiments is randomly picked according to a uniform distribution for all the
methods. The data collected in each online experiment are generated by considering each user for
recommendation five times. We repeatedly run 20 experiments for each model. In each repeated run,
the set of candidate models is the same but the first deployed model and the data points sampled for
each online experiment may be different.

Figure 5a shows the comparison of all the methods with error bars in terms of the gap in the
accumulative metric between the optimal model and the estimated best model. Figure 5b shows the
average RMSE of the estimated accumulative metrics after each iteration with error bars. The error
bars indicate the confidence interval of the estimated mean by two times the standard deviation. The
metric gaps and RMSE of all the methods after Iteration 5 are shown in Table 2. To illustrate the
behaviors of AOE and the baseline methods during the model selection process, we visualize the
estimated accumulative metric after each iteration comparing with the ground truth in Figure 6. The
visualization uses one of the 20 runs.

B Details about Sparse GP and Variational Inference

For scalability, we use the variational sparse GP approximation to speed up the inference. Variational
sparse GP augments the original data with a set of pseudo data u at the corresponding locations Z,
which shares the same GP as in the original model. The input locations of the pseudo data Z lie
in the joint space of the action and input a and x. The resulting model is a joint GP between the
original data and the augmented data p(f ,u|A,X,Z), which can also be written as a product of the
conditional distribution p(f |u,A,X,Z)p(u|Z). Note that such an augmentation does not change the
original model,

p(f |A,X) =

∫
p(f |u,A,X,Z)p(u|Z) du. (9)

Both f and u are latent variables. Variational sparse GP assumes a specific variational posterior
distribution q(f ,u) = p(f |u)q(u), where q(u) = N (mu,Su) is a multi-variate normal distribution,
of which the mean and covariance matrix are variational parameters. A variational lower bound
can be derived with the above variational posterior, of which the computational complexity reduces
from O(N3) to O(NC2), where C is the number of pseudo data. More details about the variational
approximation can be found in [14].

After inferring the variational posterior of the sparse GP, the distribution of the accumulative metric
conditioned on the observed data can be derived based on the variational posterior of sparse GP,

p(v̂|Mi,D) = N
(

1

T
P>: K∗uK−1uumu,

1

T
P>: (K∗∗ −K∗u(K−1uu −K−1uuSuK−1uu)K>∗u)P:

)
,

(10)
where Kuu is the covariance matrix among the pseudo data, K∗u is the cross-covariance matrix
between W and the pseudo data, and mu and Su are the inferred variational parameters in q(u).
With this above derived distribution of the accumulative metric, we can apply an acquisition function
for selecting a candidate model.

For a large problem, the variance calculation in the above distribution can also be very expensive
as K∗∗ is a KT -by-KT matrix. For efficient computation, we apply a FITC approximation [15] at
prediction time,

pFITC(f |u,A,X,Z) = N (KfuK−1uuu,Λ), (11)
where Λ = diag

(
Kff −KfuK−1uuK>fu

)
and diag (·) makes a matrix into a diagonal matrix by letting

off-diagonal entries be zero. Note that, although the conditional distribution p(f |u) is independent
among the entries of f , the resulting distribution p(m̄|A,X,D) is still correlated due to the correlation
from the pseudo data. With the FITC approximation, the resulting distribution of the accumulative
metric becomes

p(v̂|Mi,D) = N
(

1

T
P>: K∗uK−1uumu,

1

T
P>: (Λ + K∗uK−1uuSuK−1uuK>∗u)P:

)
, (12)

where only the diagonal entries of K∗∗ needs to be computed.
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Figure 6: The bar plot of the estimated accumulative metrics of all the candidate models after each
iteration comparing with ground truth (denoted as “gt”). The results come from one of the 20 repeated
runs. The y-axis shows the accumulative metric. In the x-axis, each group of bars corresponds to
a candidate model (there are ten in total.) and each color of bars corresponds to all the compared
methods plus the ground truth.
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