
A Approximate Sampling from k-DPP Marginals

The final piece of the ADA-CVAR algorithm is how to efficiently compute the marginal distribution
Pw(i) of the k-DPP model, and how to sample from it.

Cost of sampling Compared to general k-DPPs, our setting has the crucial advantage that the
kernel matrix is diagonal. Thus there is no need for performing an expensive eigendecomposition of
the kernel matrix which is required in the general case. The marginals of diagonal k-DPPs are

Pw(i) = wi
ek−1
−i
ekN

, (9)

where ekN =
∑
|I|=k

∏
i∈I wi is the elementary symmetric polynomial of size k for the ground set [N ]

and ek−1
−i is the elementary symmetric polynomial of size k−1 for the ground set [N ]\i. Unfortunately,

naively computing the elementary symmetric polynomials has a complexity of O(N2k) = O(αN3)
using (Kulesza et al., 2012, Algorithm 7). Even if this computation could be performed fast, exact
computation of the elementary symmetric polynomials is numerically unstable.

In view of this, Barthelmé et al. (2019) propose an approximation to k-DPPs valid for large-scale
ground sets which has better numerical properties. Their main idea is to relax the sample size
constraint of the k-DPP with a soft constraint such that the expected sample size of the matched
DPP is k. The total variation distance between the marginal probabilities of the k-DPP and DPP
decays as O(1/N). The marginal probabilities of this matched DPP are simply

P̂w(i) =
wie

ν

1 + wieν
, (10)

where ν softly enforces the sample size constraint
∑N
i=1

wie
ν

1+wieν
= k. For a given ν, we can

efficiently sample from this singleton-marginal distribution, which takes O(log(N)) using the same
sum-tree data-structure as Shalev-Shwartz and Wexler (2016).

Proposition 2 (Excess Regret of Approximate Sampler). Let q̃ be the marginals of the approximate
k-DPP (10) and q the exact marginals of the k-DPP (9). Then, a sampler that plays ADA-CVAR
using the approximate k-DPPs marginals suffers an extra regret of εapproxT , with εapprox = O(1/N),
for large enough N .

Proof. Let S̃RT be the regret of the player that selects the approximate k-DPPs marginals. Then,

S̃RT := max
q∈Qα

T∑
t=1

q>Lt −
T∑
t=1

q̃>t Lt

= SRT +

T∑
t=1

(q̃t − qt)>Lt

≤ SRT +

T∑
t=1

‖q̃t − qt‖1‖Lt‖∞

≤ SRT +

T∑
t=1

‖q̃t − qt‖1

≤ SRT +εapproxT

where the first inequality holds due to Hölder’s inequality, the second inequality due to L ∈ [0, 1],
and finally noticing that ‖q̃t − qt‖1 is proportional to the total variation distance. Using Theorem 2.1
from Barthelmé et al. (2019) the results follow.

We note that this result implies an an extraO(1/N) term in the excess CVaR bounds from Corollaries 1
and 2. This is fast compared to statistical O(1/

√
N) rates. For small N , the exact marginals can be

computed efficiently so there is no need for the approximation.
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B Omitted Proofs

B.1 Proof of Proposition 1

Proposition 1. Let h : X → Y be a function class with finite VC-dimension |H|. Let L(h) : H →
[0, 1] be a random variable. Then, for any 0 < α ≤ 1, with probability at least 1− δ,

E
[

sup
h∈H

∣∣∣Ĉα[L(h)]− Cα[L(h)]
∣∣∣] ≤ 1

α

√
log(2|H|/δ)

N
.

Proof for Proposition 1. Brown (2007) proves that the following two inequalities hold jointly with
probability 1− δ, δ ∈ (0, 1] for a single h ∈ H:

Cα(L(h)) ≥ Ĉα(L(h))− 1

α

√
log(2/δ)

N

Cα(L(h)) ≤ Ĉα(L(h)) +

√
5 log(6/δ)

αN
Taking the union bound over all h ∈ H:

Cα(L(h)) ≥ Ĉα(L(h))− 1

α

√
log(2|H|/δ)

N

Cα(L(h)) ≤ Ĉα(L(h)) +

√
5 log(6|H|/δ)

αN
The theorem follows from taking the maximum between lower and upper bounds.

IfH is a non-finite class we follow a standard argument with bounded norm of real valued functions,
i.e., ‖H‖∞ ≤ B, we rely on the standard argument based on covering numbers. To define such
covering, we fix ε > 0 and consider a set CH,ε of minimum cardinality, such that for all h ∈ H, there
exists an h′ ∈ CH,ε, satisfying |h − h′| ≤ ε. Define the covering number as NH,ε = |CH,ε|, then
taking the union bound for ε = 1

√
N we arrive to the result

E
[

sup
h∈H

∣∣∣Ĉα[L(h)]− Cα[L(h)]
∣∣∣] ≤ 1

α

√
log(2NH,ε/δ)

N
.

Finally, the logarithm of the covering number can be upper bounded using the pseudo-VC dimension
of the function class, for a proof see Devroye et al. (2013, Chapter 29).

B.2 Proof of Lemma 1

Lemma 1. Let the sampler player play the K.EXP.3 Algorithm with η =
√

logN
NT . Then, she suffers

a sampler regret (5) of at most O(
√
TN logN).

In order to prove this, we need to first show that K.EXP.3 is a valid algorithm for the sampler player.
This we do next.
Proposition 3. The marginals of any k-DPP with a diagonal matrix kernel K = diag(w) are in the
set Qαk =

{
kq ∈ RN | q ∈ Qα

}
.

Proof. For any w ∈ RN≥0 the marginals of the k-DPP with kernel K = diag(w) are:

Pw(i) =
∑
I3i

Pw(I) =

∑
I3i
∏
i′∈I wi′∑

I

∏
i′∈I wi′

. (11)

From eq. (11), clearly 0 ≤ Pw(i) ≤ 1. Summing eq. (11) over i we get:∑
i

Pw(i) =
∑
i

∑
I3i

Pw(I) =
∑
I

Pw(I)
∑
i∈I

1 = k

This shows that Pw(i) ∈ Qαk .
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Proposition 4. Let L̃I =
∑
i∈I Li. Let ∆ =

{
w̃ ∈ R(Nk) |, 0 ≤ wI ≤ 1,

∑
I wI = 1

}
the set of

distributions over the
(
N
k

)
subsets of size k of the ground set [N ].

max
q∈Qα

T∑
t=1

q>Lt = max
w̃∈∆

1

k

T∑
t=1

w̃L̃I (12)

Proof. Both left and right sides of (12) are linear programs over a convex polytope, hence the solution
is in one of its vertices (Murty, 1983). The vertices of Qα are vectors 1

k1I = 1
k [[i ∈ I]]. These

vectors have 1
k in coordinate i if the coordinate belongs to set I and 0 otherwise. The vertices of the

simplex are just [[I]], one for coordinate I .

Let q? = 1
k1I? be the solution of the l.h.s. of (12). Assume that Î 6= I? is the solution of the right

hand side. This implies that L̃Î ≥ L̃I? . Therefore,
∑
i∈Î Li ≥

∑
i∈I? Li. This in turn implies that

1ÎLi ≥ 1I?Li, which contradicts the first predicate. In the case the equalities hold, then the values
l.h.s and r.h.s. of equation (12) are also equal.

Proof of Lemma 1.

SRT = max
q∈Qα

T∑
t=1

q>Lt −
T∑
t=1

q>t Lt

= max
w̃∈∆

1

k

T∑
t=1

w̃L̃I −
T∑
t=1

q>t Lt

=
1

k

(
max
w̃∈∆

T∑
t=1

w̃L̃I −
T∑
t=1

∑
i

Pwt(i)Li

)

=
1

k

(
max
w̃∈∆

T∑
t=1

w̃L̃I −
T∑
t=1

∑
I

Pwt(I)L̃I

)
≤ O(

√
NT log(N))

The first equality uses Proposition 4. The second equality uses Proposition 3 and the fact that the
iterates qt come from the K.EXP.3 algorithm. The third equality uses the definition of L̃. The final
inequality is due to Alatur et al. (2020, Lemma 1).

B.3 Proof of Lemma 2

Lemma 2. A learner player that plays the BTL algorithm with access to an ERM oracle as in
Assumption 1, achieves at most εoracleT regret.

Proof. We proceed by induction. Clearly for T = 1, LR1 ≤ εoracle. Assume true for T − 1, the
inductive hypothesis is LRT−1 ≤ εoracle(T − 1). The regret at time T is:

LRT =

T∑
t=1

q>t L(θt)−min
θ∈Θ

T∑
t=1

q>t L(θ),

≤
T∑
t=1

q>t [L(θt)− L(θT )] + εoracle

=

T−1∑
t=1

q>t [L(θt)− L(θT )] + εoracle

≤ LRT−1 +εoracle ≤ εoracleT

The first inequality is due to the definition of the oracle, the second inequality is by definition of the
minimum in the learner regret, and the final inequality is due to the inductive hypothesis.
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B.4 Proof of Theorem 1

Theorem 1. Let Li(·) : Θ → [0, 1], i = {1, ..., N} be a fixed set of loss functions. If the sampler
player uses ADA-CVAR and the learner player uses the BTL algorithm, then the game has regret
O(
√
TN logN).

Proof. We decompose bound the game regret into the sum of player and sampler regret. To bound
the regret, we bound it with the sum of the Learner and Sampler regret as follows:

GameRegretT =
∑T

t=1
J(θt, q

?)− J(θ?, qt),

≤ max
q∈Qα

∑T

t=1
J(θt, q)− J(θ?, qt),

(Lemma 2) ≤ max
q∈Qα

∑T

t=1
J(θt, q)− J(θt, qt),

(Lemma 1) ≤ O(
√
TN logN + εoracleT ).

B.5 Proof of Corollary 1

Corollary 1 (Online to Batch Conversion). Let Li(·) : Θ → [0, 1], i = {1, ..., N} be a set of loss
functions sampled from a distribution D. Let θ? be the minimizer of the CVaR of the empirical
distribution Ĉα. Let θ̄ be the output of ADA-CVAR, selected uniformly at random from the sequence
{θt}Tt=1. Its expected excess CVaR is bounded as:

EĈα[L(θ̄)] ≤ Ĉα[L(θ?)] + +O(
√
N logN/T ) + εoracle

where the expectation is taken w.r.t. the randomization in the algorithm, both for the sampling steps
and the final randomization in choosing θ̄.

Proof. We use the proof techinque from Agarwal et al. (2018)[Theorem 3]. The CVaR of θ̄ is
Ĉα[L(θ̄)] = maxq∈Qα J(θ̄, q). Let q̄? := arg maxq∈Qα J(θ̄, q). For any q ∈ Qα, we can use the
sampler regret to bound:

E
[
J(θ̄, q)

]
= E

[
1

T

T∑
t=1

J(θt, q)

]

≤ E

[
1

T

T∑
t=1

J(θt, qt)

]
+

1

T
SRT

Likewise, for any θ ∈ Θ,

E [J(θ, q̄)] = E

[
1

T

T∑
t=1

J(θ, qt)

]

≥ E

[
1

T

T∑
t=1

J(θt, qt)

]
− 1

T
LRT

Using the minimax inequality, we bound the excess risk for any q ∈ Q and θ ∈ Θ by the average
game regret:

E
[
J(θ̄, q)

]
≤ J(θ?, q?) + E

[
J(θ̄, q)− J(θ, q̄)

]
≤ J(θ?, q?) +

1

T
(LRT + SRT )︸ ︷︷ ︸

ε

Noting that, GameRegretT = LRT + SRT and that the latter results holds in particular for q̄?.
Furthermore, the pair (θ̄, q̄) is an ε-equilibrium point of the game in the sense: J(θ?, q?) − ε ≤
E
[
J(θ̄, q̄)

]
≤ J(θ?, q?) + ε.
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B.6 Proof of Corollary 2

Corollary 2 (Online to Batch Conversion). Let L(·) : Θ→ [0, 1] be a Random Variable induced by
the data distribution D. Let θ? be the minimizer of the CVaR at level α of such Random Variable.
Let θ̄ be the output of ADA-CVAR, selected uniformly at random from the sequence {θt}Tt=1. Then,
with probability at least δ the expected excess CVaR of θ̄ is bounded as:

ECα[L(θ̄)] ≤ Cα[L(θ?)] +O(
√
N logN/T ) + εoracle + εstat

where εstat = Õ( 1
α

√
1
N ) comes from the statistical error and the expectation is taken w.r.t. the

randomization in the algorithm, both for the sampling steps and the randomization in choosing θ̄.

Proof.

ECα[L(θ̄)] ≤ EĈα[L(θ̄)] + εstat

≤ EĈα[L(θ?)] +O(
√
N logN/T ) + εoracle + εstat

≤ ECα[L(θ?)] +O(
√
N logN/T ) + εoracle + 2εstat,

Where the first and last inequality hold by the uniform convergence results from Proposition 1 and
the second inequality by Corollary 1.

C Learner Player Algorithm for Convex Losses

In the convex setting, there are online learning algorithms that have no-regret guarantees and there is
no need to play the BTL algorithm (7) exactly. Instead, stochastic gradient descent (SGD) Zinkevich
(2003) or online mirror descent (OMD) (Beck and Teboulle, 2003) both have no-regret guarantees.
We focus now on SGD but, for certain geometries of Θ and appropriate mirror maps, OMD has
exponentially better regret guarantees (in terms of the dimension of the problem).

Algorithm 2: Ada-CVaR-CVX
input Learning rates ηs, ηl.

1: Sampler: Initialize k-DPP w1 = 1N .
2: Learner: Initialize parameters θ1 ∈ Θ.
3: for t = 1, . . . , T do
4: Sampler: Sample element it ∼ qt = 1

kPwt(i).

5: Sampler: Build estimate L̂t =
Lit (θt)

qt,it
[[i == it]].

6: Sampler: Update k-DPP wt+1,i = wt,ie
ηsL̂t,i .

7: Learner: θt+1 = θt − ηl∇Lit(θt).
8: end for

output θ̄ = 1
T

∑T
t=1 θt, q̄ = 1

T

∑T
t=1 qt

Lemma 3. Let assume that Li(·) : Θ→ [0, 1] be any sequence of convex losses, with ‖∇Li‖2 ≤ G
and ‖Θ‖2 ≤ D, then a learner player that plays SGD algorithm suffers at most regret O(GD

√
T ).

Proof. Hazan (2016, Chapter 3).

Note that even if there are algorithms for the strongly convex case or exp-concave case that have
log(T ) regret, it does not bring any advantage in our case as the

√
T term in the sampler regret

dominates and is unavoidable (Audibert et al., 2013).
Corollary 3. Let Li(·) : Θ→ [0, 1] be any sequence of convex losses. Let the learner and sampler
player play Algorithm 2, then the game has regret O(

√
TN logN + β

√
T ), where β is a problem-

dependent constant.

This result changes the εoracle term in Corollaries 1 and 2 by a O(1/
√
T ) term.
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D Experimental Setup

Implementation and Resources: We implemented all our experiments using PyTorch (Paszke
et al., 2017). We ran our experiments convex experiments on an Intel(R) Xeon(R) CPU E5-2697 v4
2.30GHz machine. Our deep lerning experiments ran on an NVIDIA GeForce GTX 1080 Ti GPU.

Datasets: For classification we use the Adult, Australian Credit Approval, German Credit Data,
Monks-Problems-1, Spambase, and Splice-junction Gene Sequences datasets from the UCI repository
(Dua and Graff, 2017) and the Titanic Disaster dataset from (Eaton and Haas, 1995). For regression
we use the Boston Housing, and Abalone, and CPU small from the UCI repository, the sinc dataset
is synthetic recreated from (Fan et al., 2017), and normal and pareto datasets are synthetic datasets
recreated from (Brownlees et al., 2015) with Gaussian and Pareto noise, respectively. For vision
datasets, we use MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky et al., 2014).

Models: For convex regression and classification models we use linear models. For MNIST we use
LeNet-5 neural network (LeCun et al., 1995). For Fashion MNIST we use LeNet-5 using dropout
(Hinton et al., 2012). For CIFAR-10 we use ResNet18 (He et al., 2016) neural network and VGG-16
(Simonyan and Zisserman, 2014) with batch normalization (Ioffe and Szegedy, 2015).

Dataset Preparation: We split UCI datasets into train, validation, and test set using a 50/30/20
split. For vision tasks we use as validation set the same images in the train set, without applying data-
augmentations. For discrete categorical data, we use a one-hot-encoding. We standarize continuous
data.

Hyper-Parameter Search: We ran a grid search over the hyperparameters for all the algorithms
with a five different random seeds. In regression tasks, we selected the set of hyper-parameters with
the lowest CVaR in the validation set. In classification tasks, we selected the set of hyper-parameters
with the highest accuracy in the validation set. The hyperparameters are:

1. Optimizer SGD with momentum or ADAM (Kingma and Ba, 2014).

2. Initial learning rates:
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00001},

3. Momentum: 0.9

4. Learning rate decay: 0.1 at epochs 20 and 40.

5. Batch Size {64, 128},
6. Adaptive algorithm learning rate: {1.0, 0.5, 0.1, ∗}, where (*) is the optimal learning rate,

7. Mixing with uniform distribution: {0, 0.01, 0.1},
8. Adaptive algorithm learning rate decay scheduling: {constant, O(1/

√
t),Adagrad},

9. SOFT-CVAR algorithm temperature: {0.1, 1, 10}.
10. Random seeds: {0, 1, 2, 3, 4}.
11. Early stopping: {True,False}.

Experimental Significance: In UCI and synthetic datasets, the test results of each algorithm is
paired because the same data split is used across the algorithms. Likewise, for vision datasets,
the neural network initialization is paired across experiments. Therefore, we use a paired t-test to
determine statistical significance for p ≤ 0.05 (Zimmerman, 1997). In TRUNC-CVAR and SOFT-
CVAR experiments, we usually encountered numerical overflows, we discarded such experiments to
determine significance.

Evaluation Metric Normalization We evaluate the CVaR and the Average Loss for regression
and we add Accuracy, and the CVaR and the Average Loss of the surrogate loss for classification. We
normalize the mean score s of algorithm a on a given task by (sa −mina sa)/(maxa sa −mina sa)
and we divide the standard deviation by maxa sa.
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E Extended Experimental Results

In Table 1 we show the results of Section 5.1, in Table 2 the results of Section 5.2, and in Table 3 the
results of Section 5.3.

Table 1: Test mean ± s.d. over five independent data splits. In shaded bold we indicate the best
algorithms. In regression, we show the CVaR/(mean) loss. ADA-CVAR is competitive to benchmarks
optimizing the CVaR. In classification, we show the accuracy / precision in “Accuracy” rows and
CVaR/loss in “Surrogate” rows. ADA-CVAR has similar accuracy to MEAN/SOFT-CVAR, but with
a lower CVaR.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

R
eg

re
ss

io
n

L
os

s Abalone 8.92± 3.3 0.61± 0.1 7.94± 2.7 0.79± 0.1 14.25± 0.3 0.63± 0.0 11.07± 3.7 0.51± 0.1
Boston 3.09± 0.8 0.28± 0.1 3.02± 1.0 0.36± 0.0 3.28± 1.4 0.24± 0.1 4.51± 1.9 0.27± 0.1

Cpu 2.32± 0.2 0.58± 0.0 2.12± 0.2 0.57± 0.1 2.85± 0.0 0.40± 0.0 9.95± 1.4 0.30± 0.0
Normal 0.22± 0.1 0.03± 0.0 0.42± 0.3 0.06± 0.0 0.18± 0.0 0.01± 0.0 0.55± 0.2 0.07± 0.0
Pareto 0.39± 0.3 0.02± 0.0 0.43± 0.1 0.05± 0.0 0.30± 0.3 0.01± 0.0 0.69± 0.1 0.06± 0.0
Sinc 7.70± 3.1 0.80± 0.2 7.82± 3.5 0.74± 0.2 7.82± 3.5 0.72± 0.2 8.40± 3.9 0.71± 0.2

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y Adult 0.85± 0.0 0.72± 0.0 0.71± 0.1 0.44± 0.2 0.85± 0.0 0.74± 0.0 0.85± 0.0 0.74± 0.0

Australian 0.82± 0.0 0.79± 0.0 0.66± 0.1 0.62± 0.1 0.82± 0.0 0.81± 0.0 0.81± 0.0 0.78± 0.0
German 0.74± 0.0 0.65± 0.0 0.64± 0.0 0.43± 0.0 0.78± 0.0 0.71± 0.0 0.77± 0.0 0.67± 0.1
Monks 0.62± 0.1 0.59± 0.1 0.53± 0.1 0.50± 0.1 0.63± 0.0 0.68± 0.0 0.61± 0.1 0.66± 0.1

Phoneme 0.75± 0.0 0.59± 0.0 0.47± 0.1 0.26± 0.0 0.75± 0.0 0.60± 0.0 0.76± 0.0 0.60± 0.0
Spambase 0.90± 0.0 0.88± 0.0 0.81± 0.0 0.71± 0.0 0.93± 0.0 0.92± 0.0 0.92± 0.0 0.91± 0.0

Splice 0.94± 0.0 0.93± 0.0 0.90± 0.0 0.89± 0.0 0.92± 0.0 0.91± 0.0 0.93± 0.0 0.92± 0.0
Titanic 0.78± 0.0 0.74± 0.0 0.55± 0.2 0.40± 0.3 0.78± 0.0 0.75± 0.0 0.78± 0.0 0.75± 0.0

C
la

ss
ifi

ca
tio

n
Su

rr
og

at
e Adult 1.95± 0.1 0.37± 0.0 0.70± 0.0 0.69± 0.0 3.08± 0.1 0.32± 0.0 3.13± 0.1 0.32± 0.0

Australian 1.33± 0.1 0.49± 0.0 0.83± 0.0 0.66± 0.0 1.78± 0.1 0.47± 0.0 1.93± 0.1 0.45± 0.0
German 1.41± 0.2 0.56± 0.0 0.86± 0.0 0.67± 0.0 2.04± 0.2 0.50± 0.0 1.90± 0.2 0.51± 0.0
Monks 0.89± 0.0 0.66± 0.0 0.88± 0.0 0.68± 0.0 1.36± 0.1 0.69± 0.0 1.07± 0.0 0.66± 0.0

Phoneme 0.83± 0.0 0.64± 0.0 0.69± 0.0 0.69± 0.0 2.56± 0.0 0.47± 0.0 2.63± 0.0 0.47± 0.0
Spambase 1.04± 0.1 0.49± 0.0 1.15± 0.3 0.49± 0.0 6.30± 1.7 0.23± 0.0 5.23± 1.4 0.23± 0.0

Splice 1.57± 0.2 0.27± 0.0 1.06± 0.1 0.49± 0.0 5.45± 0.9 0.20± 0.0 1.75± 0.2 0.22± 0.0
Titanic 0.78± 0.0 0.66± 0.0 0.71± 0.0 0.70± 0.0 1.70± 0.0 0.52± 0.0 1.68± 0.0 0.52± 0.0

Table 2: Test accuracy/loss (mean± s.d.) over five independent data splits with train/test distribution
shift. In shaded bold we indicate the best algorithms. ADA-CVAR has superior test accuracy than
benchmarks. It has comparable test loss to TRUNC-CVAR.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

D
is

tr
ib

ut
io

n
Sh

if
t1

0%

Adult 0.65± 0.0 0.63± 0.0 0.61± 0.1 0.69± 0.0 0.63± 0.1 0.84± 0.3 0.60± 0.1 0.90± 0.4
Australian 0.68± 0.0 0.58± 0.0 0.46± 0.1 0.70± 0.0 0.48± 0.3 0.91± 0.4 0.46± 0.3 0.87± 0.3
German 0.48± 0.1 0.73± 0.0 0.44± 0.1 0.75± 0.0 0.45± 0.1 1.00± 0.2 0.48± 0.1 0.80± 0.1
Monks 0.49± 0.0 0.72± 0.0 0.39± 0.1 0.73± 0.0 0.43± 0.3 1.27± 0.6 0.40± 0.2 0.91± 0.3

Phoneme 0.58± 0.1 0.68± 0.0 0.52± 0.2 0.69± 0.0 0.51± 0.2 1.08± 0.4 0.55± 0.2 0.92± 0.3
Spambase 0.77± 0.0 0.46± 0.0 0.74± 0.1 0.60± 0.0 0.71± 0.2 0.61± 0.2 0.69± 0.2 0.58± 0.2

Splice 0.84± 0.0 0.40± 0.0 0.77± 0.1 0.57± 0.0 0.73± 0.1 0.52± 0.2 0.50± 0.3 0.81± 0.4
Titanic 0.46± 0.2 0.70± 0.0 0.50± 0.3 0.69± 0.0 0.43± 0.3 1.17± 0.5 0.41± 0.3 0.87± 0.3
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Table 3: “Accuracy” rows: Avg. test accuracy/(min class) precision. “Surrogate” rows: Avg. test
CVaR/loss. Average over 5 different random seeds. ADA-CVAR matches the accuracy and average
loss performance of MEAN, but has a lower CVaR. TRUNC-CVAR and SOFT-CVAR struggle to
learn in non-convex tasks.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN
A

cc
ur

ac
y MNIST 0.99± 0.0 0.98± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 0.98± 0.0

Fashion-MNIST 0.99± 0.0 0.99± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 0.97± 0.0
Cifar-10 0.94± 0.0 0.87± 0.0 0.59± 0.0 0.50± 0.0 0.86± 0.1 0.64± 0.2 0.94± 0.0 0.87± 0.0

Su
rr

og
at

e MNIST 0.31± 0.0 0.03± 0.0 0.35± 0.1 0.03± 0.0 0.41± 0.1 0.04± 0.0 0.33± 0.0 0.03± 0.0
Fashion-MNIST 0.31± 0.0 0.03± 0.0 0.67± 0.0 0.14± 0.0 0.35± 0.0 0.04± 0.0 0.38± 0.0 0.04± 0.0

Cifar-10 2.36± 0.1 0.25± 0.1 2.02± 0.0 1.32± 0.0 2.79± 0.1 0.32± 0.0 2.49± 0.1 0.24± 0.0

E.1 Comparison to other Techniques that Address Distribution Shift

In section 5.2, how ADA-CVAR and the other CVaR optimization algorithms guarded against
distribution shift. Now, we compare how do this algorithms compare with algorithms that address
distribution shift. We compare against up-sampling and down-sampling techniques for distribution
shift for all the benchmarks considered in the experiment section. Namely, we perform up-sampling
coupled with ADA-CVAR, TRUNC-CVAR, SOFT-CVAR, and MEAN. We expect up-sampling
techniques to perform better than raw CVaR optimization when the distribution shift is random and
the test distribution is balanced.

The CVaR guards against worst-case distribution shifts for all distributions in the DRO set. Certainly,
balanced test-sets are contained in the DRO, but the worst-case guarantees that CVaR brings might
be too pessimistic for this particular case. We expect specialized techniques to perform better.
Nonetheless, the privileged information that the test-set is balanced might not always be available. In
such cases, it could be preferable to optimize for the CVaR of the up-sampled data set, possibly for a
large value of α.

Train-Set Shift In this subsection, we repeat the distribution shift experiment. Here, the train set
is shifted (1-to-10 ratio) and the test-set is kept constant. In sake of presentation clarity, we show
again the results in table 4. We repeat the experiments but upsampling the training set to balance the
dataset. We show the results in table 5. When we compare MEAN with upsampling (last column in
table 5) and ADA-CVAR without upsampling (first column in table 6), we see that both methods are
comparable. This is because ADA-CVAR addresses this distribution shift algorithmically whereas
MEAN does so by re-balancing the dataset. Nevertheless, ADA-CVAR can also re-sample the data
set to balance it. This is ADA-CVAR with upsampling (first column in table 5, that outperforms all
other algorithms with (and without) upsampling.

Table 4: Test accuracy/loss (mean ± s.d. for 5 random seeds) for train-set distribution shift without
train set re-balancing. We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

Tr
ai

n
Se

tS
hi

ft

Adult 0.65± 0.0 0.63± 0.0 0.61± 0.1 0.69± 0.0 0.63± 0.1 0.84± 0.3 0.60± 0.1 0.90± 0.4
Australian 0.68± 0.0 0.58± 0.0 0.46± 0.1 0.70± 0.0 0.48± 0.3 0.91± 0.4 0.46± 0.3 0.87± 0.3
German 0.48± 0.1 0.73± 0.0 0.44± 0.1 0.75± 0.0 0.45± 0.1 1.00± 0.2 0.48± 0.1 0.80± 0.1
Monks 0.49± 0.0 0.72± 0.0 0.39± 0.1 0.73± 0.0 0.43± 0.3 1.27± 0.6 0.40± 0.2 0.91± 0.3

Phoneme 0.58± 0.1 0.68± 0.0 0.52± 0.2 0.69± 0.0 0.51± 0.2 1.08± 0.4 0.55± 0.2 0.92± 0.3
Spambase 0.77± 0.0 0.46± 0.0 0.74± 0.1 0.60± 0.0 0.71± 0.2 0.61± 0.2 0.69± 0.2 0.58± 0.2

Splice 0.84± 0.0 0.40± 0.0 0.77± 0.1 0.57± 0.0 0.73± 0.1 0.52± 0.2 0.50± 0.3 0.81± 0.4
Titanic 0.46± 0.2 0.70± 0.0 0.50± 0.3 0.69± 0.0 0.43± 0.3 1.17± 0.5 0.41± 0.3 0.87± 0.3
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Table 5: Test accuracy/loss (mean ± s.d. for 5 random seeds) for train-set distribution shift with
train set re-balancing via upsampling We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

Tr
ai

n
Se

tS
hi

ft
U

ps
am

pl
e Adult 0.51± 0.0 0.69± 0.0 0.62± 0.1 0.69± 0.0 0.67± 0.1 0.73± 0.3 0.65± 0.2 0.78± 0.4

Australian 0.77± 0.0 0.56± 0.0 0.50± 0.1 0.69± 0.0 0.56± 0.3 0.79± 0.4 0.54± 0.3 0.77± 0.3
German 0.58± 0.0 0.68± 0.0 0.46± 0.1 0.74± 0.0 0.50± 0.2 0.92± 0.2 0.51± 0.1 0.76± 0.1
Monks 0.63± 0.0 0.66± 0.0 0.42± 0.1 0.72± 0.0 0.49± 0.3 1.10± 0.3 0.45± 0.2 0.85± 0.3

Phoneme 0.65± 0.1 0.68± 0.0 0.57± 0.2 0.69± 0.0 0.57± 0.2 0.94± 0.4 0.60± 0.2 0.82± 0.3
Spambase 0.88± 0.0 0.43± 0.0 0.78± 0.1 0.60± 0.0 0.76± 0.2 0.54± 0.2 0.74± 0.2 0.51± 0.2

Splice 0.89± 0.0 0.30± 0.0 0.80± 0.1 0.54± 0.1 0.77± 0.1 0.45± 0.2 0.61± 0.3 0.67± 0.4
Titanic 0.51± 0.2 0.70± 0.0 0.54± 0.3 0.69± 0.0 0.52± 0.3 1.02± 0.5 0.49± 0.3 0.80± 0.3

Test Shift Next, we consider another distribution shift. Namely, the train set is kept constant and
instead the the test-set is shifted (1-to-10 ratio). In this case, up-sampling should not change the test
results. We show the results without re-sampling in table 6 and with upsampling in table 7. In this
setting, upsampling does not help because the training sets are balanced. Comparing each case, we
see that ADA-CVAR has superior performance to the benchmarks.

Table 6: Test accuracy/loss (mean ± s.d. for 5 random seeds) for test-set distribution shift without
train set re-balancing. We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

Te
st

Se
tS

hi
ft

Adult 0.50± 0.0 0.69± 0.0 0.64± 0.1 0.69± 0.0 0.66± 0.1 0.72± 0.1 0.64± 0.1 0.77± 0.1
Australian 0.76± 0.0 0.61± 0.0 0.53± 0.1 0.69± 0.0 0.61± 0.3 0.71± 0.2 0.58± 0.3 0.72± 0.1
German 0.52± 0.1 0.69± 0.0 0.46± 0.1 0.73± 0.0 0.51± 0.1 0.90± 0.2 0.52± 0.1 0.75± 0.1
Monks 0.63± 0.1 0.66± 0.0 0.44± 0.2 0.71± 0.0 0.50± 0.2 0.99± 0.2 0.48± 0.2 0.81± 0.2

Phoneme 0.50± 0.2 0.69± 0.0 0.54± 0.2 0.69± 0.0 0.56± 0.2 0.92± 0.4 0.58± 0.1 0.82± 0.3
Spambase 0.91± 0.0 0.52± 0.0 0.81± 0.1 0.62± 0.0 0.79± 0.1 0.48± 0.2 0.77± 0.2 0.46± 0.2

Splice 0.91± 0.0 0.29± 0.0 0.82± 0.1 0.54± 0.1 0.81± 0.1 0.39± 0.2 0.67± 0.3 0.58± 0.2
Titanic 0.47± 0.2 0.70± 0.0 0.52± 0.3 0.69± 0.0 0.52± 0.3 0.99± 0.2 0.50± 0.3 0.81± 0.2

Table 7: Test accuracy/loss (mean ± s.d. for 5 random seeds) for test-set distribution shift with train
set re-balancing via upsampling. We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

Te
st

Se
tS

hi
ft

U
ps

am
pl

e Adult 0.46± 0.0 0.69± 0.0 0.65± 0.1 0.69± 0.0 0.66± 0.1 0.72± 0.1 0.64± 0.1 0.76± 0.1
Australian 0.76± 0.0 0.61± 0.0 0.55± 0.1 0.68± 0.0 0.64± 0.3 0.67± 0.4 0.61± 0.3 0.69± 0.3
German 0.52± 0.1 0.69± 0.0 0.46± 0.1 0.73± 0.0 0.52± 0.1 0.89± 0.2 0.53± 0.1 0.75± 0.1
Monks 0.63± 0.1 0.66± 0.0 0.46± 0.2 0.71± 0.0 0.51± 0.2 0.92± 0.5 0.49± 0.2 0.79± 0.2

Phoneme 0.50± 0.2 0.69± 0.0 0.52± 0.2 0.69± 0.0 0.55± 0.2 0.90± 0.4 0.57± 0.1 0.82± 0.3
Spambase 0.91± 0.0 0.54± 0.0 0.82± 0.1 0.63± 0.0 0.80± 0.1 0.44± 0.2 0.79± 0.2 0.43± 0.2

Splice 0.92± 0.0 0.28± 0.0 0.84± 0.1 0.53± 0.1 0.83± 0.1 0.36± 0.2 0.71± 0.3 0.53± 0.4
Titanic 0.47± 0.2 0.70± 0.0 0.52± 0.3 0.69± 0.0 0.52± 0.3 0.99± 0.2 0.50± 0.3 0.81± 0.2
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Double Shift Finally, we consider a case where the train set is imbalanced (1-to-10 ratio), and the
test set is even more imbalanced (1-to-100 ratio). We show the results without re-sampling in table 8
and with upsampling in table 9. In this case, we upsampling is detrimental. ADA-CVAR clearly
outperforms all the other algorithms with upsampling and without upsampling.

Table 8: Test accuracy/loss (mean ± s.d. for 5 random seeds) for imbalanced train and test-sets
without train set re-balancing. We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

D
ou

bl
e

Se
tS

hi
ft

Adult 0.94± 0.0 0.50± 0.0 0.70± 0.2 0.69± 0.0 0.70± 0.2 0.63± 0.3 0.69± 0.2 0.66± 0.4
Australian 0.90± 0.0 0.39± 0.0 0.59± 0.2 0.67± 0.1 0.69± 0.3 0.59± 0.4 0.66± 0.3 0.61± 0.3
German 0.95± 0.0 0.43± 0.0 0.52± 0.2 0.70± 0.1 0.58± 0.2 0.79± 0.3 0.59± 0.2 0.69± 0.2
Monks 0.95± 0.0 0.48± 0.1 0.50± 0.2 0.70± 0.0 0.58± 0.3 0.81± 0.4 0.56± 0.3 0.72± 0.3

Phoneme 0.58± 0.3 0.67± 0.0 0.57± 0.2 0.69± 0.0 0.61± 0.2 0.79± 0.4 0.63± 0.2 0.73± 0.3
Spambase 0.98± 0.0 0.19± 0.0 0.85± 0.1 0.60± 0.1 0.83± 0.1 0.39± 0.2 0.82± 0.2 0.39± 0.2

Splice 0.98± 0.0 0.18± 0.0 0.86± 0.1 0.52± 0.1 0.85± 0.1 0.31± 0.2 0.75± 0.3 0.46± 0.4
Titanic 0.85± 0.2 0.49± 0.0 0.52± 0.3 0.69± 0.0 0.59± 0.3 0.85± 0.3 0.57± 0.3 0.74± 0.3

Table 9: Test accuracy/loss (mean ± s.d. for 5 random seeds) for imbalanced train and test-sets with
train set re-balancing via up-sampling. We highlight the best algorithms.

Data Set ADA-CVAR TRUNC-CVAR SOFT-CVAR MEAN

D
ou

bl
e

Se
tS

hi
ft

U
ps

am
pl

e Adult 0.40± 0.1 0.69± 0.0 0.68± 0.2 0.69± 0.0 0.72± 0.2 0.60± 0.3 0.71± 0.2 0.62± 0.4
Australian 0.86± 0.0 0.46± 0.0 0.61± 0.2 0.66± 0.1 0.71± 0.3 0.56± 0.2 0.67± 0.3 0.59± 0.2
German 0.78± 0.1 0.58± 0.0 0.55± 0.2 0.69± 0.1 0.60± 0.2 0.75± 0.2 0.60± 0.2 0.68± 0.1
Monks 0.68± 0.1 0.64± 0.0 0.51± 0.2 0.69± 0.0 0.59± 0.2 0.78± 0.3 0.57± 0.2 0.72± 0.2

Phoneme 0.49± 0.3 0.69± 0.0 0.59± 0.2 0.69± 0.0 0.63± 0.2 0.75± 0.2 0.65± 0.2 0.70± 0.2
Spambase 0.95± 0.0 0.26± 0.1 0.86± 0.1 0.60± 0.1 0.84± 0.1 0.36± 0.2 0.83± 0.2 0.37± 0.2

Splice 0.96± 0.0 0.18± 0.0 0.87± 0.1 0.50± 0.1 0.86± 0.1 0.29± 0.2 0.77± 0.3 0.43± 0.2
Titanic 0.62± 0.3 0.68± 0.0 0.53± 0.3 0.69± 0.0 0.58± 0.3 0.82± 0.4 0.57± 0.3 0.72± 0.3

Experiment Conclusion Techniques that address class imbalance, such as up-sampling, are useful
when there is a-priori knowledge that the test-set is balanced (cf. Train Shift experiment). When this
is not the case, such techniques may be detrimental (cf. Double Shift experiment). ADA-CVAR, and
the CVaR DRO optimization problem, is orthogonal to techniques for imbalanced dataset and can be
used together, as shown by the previous experiments. Overall, ADA-CVAR also has lower standard
errors than MEAN and SOFT-CVAR. This indicates that it is more robust to the random sampling
procedures.
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F More Related Work

F.1 Combinatorial Bandit Algorithms

A central contribution of our work is an efficient sampling algorithm based on an instance of
combinatorial bandits, the k-set problem. In this setting, the learner must choose a subset of k out
of N experts with maximum rewards, and there are

(
N
k

)
such sets. Koolen et al. (2010) introduce

this problem in the full information setting (k-sets) and Cesa-Bianchi and Lugosi (2012) extend it to
the bandit setting. Cesa-Bianchi and Lugosi (2012) propose an algorithm, called CombBand, that
attains a regret of O(k3/2

√
NT log(N/k)) when the learner receives bandit feedback. Audibert

et al. (2013) prove a lower bound of O(k
√
NT ), which is attained by Alatur et al. (2020) up to a√

log(N) factor. However, the computational and space complexity of the CombBand algorithm
is O(kN3) and O(N3), respectively. Uchiya et al. (2010) propose an efficient sampling algorithm
that has O(N log(k)) computational and O(N) space complexity. Instead, we efficiently represent
the algorithm proposed by Alatur et al. (2020) using Determinantal Point Processes (Kulesza et al.,
2012). This yields an algorithm with O(log(N)) computational and O(N) space complexity.

F.2 Sampling from kDPPs

We propose to directly sample from the marginals of the (relaxed) k-DPP. Our setting has the
advantage that the k-DPP is diagonal and there is no need for performing an eigendecomposition of
the kernel matrix, which takes O(N3) operations. However, there are efficient methods that avoid the
eigendecomposition and return a sample (of size k) of the k-DPP. Sampling uniformly at random
from such sample can be done in constant time. State-of-the-art exact sampling methods for k-DPPs
take at least O(N poly(k)) operations using rejection sampling (Dereziński et al., 2019), whereas
approximate methods that use MCMC have mixing times of O(Nk) (Anari et al., 2016). Hence, such
algorithms are ineficient compared to our sampling algorithm that takes only O(log(N)). This is
because our method is specialized on diagonal k-DPPs and latter algorithms remain valid for general
k-DPPs.
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