
We thank reviewers R1, R2, R3, R4 for their time and constructive reviews on our submission, which we will incorporate1

to improve our paper. Due to limited space, we will only be able to address the major points from the reviews:2

Benefits of a GP posterior ensemble interpretation (addressed to R1 & R4) We agree with R2 that a key strength of3

our work is that it “provides a formal treatment of the relationship between deep ensembles and Bayesian posterior4

predictive distributions”. Posterior inference offers a principled way to convert prior beliefs into predictive uncertainties,5

and provides o.o.d. robustness via Bayesian marginalisation [14]. Moreover, Bayesian ML has a rich history [3] and is6

an active research frontier. One practical benefit to the GP posterior interpretation is selecting hyperparameters, like7

activation, of the NTK/NN architecture (akin to choosing GP kernel) that best model prior beliefs about data. For8

example, the NNGP/NTK correspondence allows one to deduce that Sine activation can alleviate overconfidence (see9

[43]) of ReLU deep ensembles on Two Moons classification. This is because the ReLU kernels do not decay away10

from the training data, as can be seen in Eqns S14,15 of [21], unlike the Sine kernels, as can be seen in stax.py of11

the Neural Tangents library [31]. In the left 3 plots below, we demonstrate this empirically (with two layer NNs of12

width 500, MSE trained with scaled one-hot regression targets and no observation noise, which are then fed into cross13

entropy to get probabilities): we see that both deep ensembles [11] and NTKGP analytic (with small noise σ2>0 added14

for numerical stability, for R4) are overconfident with ReLU activation (denoted by blue and red shaded regions), but15

NTKGP-param with Sine activation has low confidence (white regions) away from the training data (points), as desired.16
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Additional experiment on CIFAR-10 (R2, R3) We repeated the MNIST/NotMNIST experimental setup using the17

Myrtle-10 CNN with 100 channel width (Shankar et al., arXiv:2003.02237) trained on CIFAR-10 with SVHN o.o.d.18

test set. We changed our classification methodology to use MSE loss (using scaled one-hot regression targets with scale19

selected via moment-matching with NTK, small σ2>0) before temperature scaling on a validation set. In the right 220

plots above, we see that our NTKGP methods perform slightly worse on in-distribution test accuracy (<1% higher error),21

but outperform all baselines on o.o.d. detection in the Error vs Confidence plot (far right). For instance, NTKGP-fn22

exceeds baselines by between 8-10% accuracy on (combined in-dist+o.o.d.) test points with confident predictions (e.g.23

confidence τ=0.8). This o.o.d. performance gain is crucial for safety-critical applications (e.g. self-driving cars).24

Computational overhead (R1, R2, R4) We would like to clarify that for a training set of fixed-size (e.g. CIFAR-10)25

the train-time overhead of our methods is negligible compared to standard deep ensembles [11]: one can obtain and26

store our fixed additive JVPs δ in a single pass over the training data. This was mentioned on lines 528-531. For27

test-time constrained applications, we could apply distillation techniques, as is common with standard deep ensembles.28

Novelty (R1, R4) Though presentation has been simplified, we respectfully disagree that the novelty of our paper is29

straightforward. We are (to our knowledge) the first to consider GP(0,NTK) prior instead of GP(0,NNGP), in order30

to align posterior inference with optimisation of all NN layers. Our contributions are distinct to, not extensions of,31

[22, 23], and give different limiting predictive distributions to [22], see Table 1. Also, if there is no modelling of32

observation noise, σ2=0, then RP-param [22, Eq. 4] and anchored ensembles with MSE [23, Eq. 8] become standard33

deep ensembles [11]. On the other hand, NTKGP-param still retains its posterior interpretation (Corollary 1), using34

fixed additive JVP corrections with no regularisation nor noisy targets. This is the case in the two moons ensembles35

above. It is only when modelling observation noise that we synergise our methods with [22].36

Individual responses (R1) We contest the “marginal” empirical improvement of our work: Figure 3 (right) depicts37

significant gains of our methods for o.o.d. NotMNIST detection over baselines. The NTK & standard parameterisations38

are introduced in Appendix A. (R2) We believe the slightly worse in-distribution test performance of our methods39

can be alleviated with thorough NTK hyperparameter tuning. (R3) When modelling observation noise, σ2>0, our40

regularisation scheme (Appendix D) enables closer alignment to the kernel regime in standard parameterisation (lines41

492-499) and nullifies problems caused by the fast decay of NTK eigenvalues (lines 84-86). (R4) Θ�K follows from the42

NTK being a sum of p.d. contributions from different layers andK is the contribution from last layer, see Eq. S29 of [21].43

JVPs are more memory-efficient in forward-mode than reverse-mode AD; we will add this. Please see lines 511-51344

for discussion of parameter and function space methods; our code is open-source and we are working with the Neural45

Tangents authors [31] to integrate our work. It is unclear if analytic NTKGPs are preferable to analytic NNGPs when46

both are tuned, due to cost and predictive-mean performance (see §3.2 of Lee et al., arXiv:2007.15801); we focus on47

giving a posterior interpretation to deep ensembles for wide but finite NNs, and lack the compute needed for comparisons48

of large-scale analytic NTKGP/NNGPs. For the prediction decomposition, setting Θσ
XX = Θ(X ,X ) + σ2I , we obtain:49

f̃∞(x∗) = Θ(x∗,X )
[
Θσ
XX
]−1Y + f0(x∗)−Θ(x∗,X )

[
Θσ
XX
]−1

f0(X )︸ ︷︷ ︸
f0

+ δ(x∗)−Θ(x∗,X )
[
Θσ
XX
]−1

δ(X )︸ ︷︷ ︸
δ
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