A Proof of Lemma 1

Proof. It follows that

$$
\begin{aligned}
\psi_{1,1}\left(\boldsymbol{z}_{1,1}\right) & \stackrel{(a)}{=} \psi_{1,0}\left(\boldsymbol{z}_{1,1}\right)+a_{1}\left(g\left(\boldsymbol{y}_{1,1}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{1,1}\right), \boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\rangle+l\left(\boldsymbol{z}_{1,1}\right)\right) \\
& \stackrel{(b)}{=} \frac{1}{2}\left\|\boldsymbol{z}_{1,1}-\boldsymbol{z}_{1,0}\right\|^{2}+a_{1}\left(g\left(\boldsymbol{y}_{1,1}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{1,1}\right), \boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\rangle+l\left(\boldsymbol{z}_{1,1}\right)\right) \\
& \stackrel{(c)}{=} a_{1}\left(g\left(\boldsymbol{y}_{1,1}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{1,1}\right), \boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\rangle+\frac{1}{2 a_{1}}\left\|\boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\|^{2}+l\left(\boldsymbol{z}_{1,1}\right)\right) \\
& \stackrel{(d)}{=} a_{1}\left(g\left(\boldsymbol{y}_{1,1}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{1,1}\right), \boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\rangle+\frac{L}{2}\left\|\boldsymbol{z}_{1,1}-\boldsymbol{y}_{1,1}\right\|^{2}+l\left(\boldsymbol{z}_{1,1}\right)\right) \\
& \stackrel{(e)}{\geq} a_{1}\left(g\left(\boldsymbol{z}_{1,1}\right)+l\left(\boldsymbol{z}_{1,1}\right)\right) \\
& \stackrel{(f)}{=} A_{1} f\left(\tilde{\boldsymbol{x}}_{1}\right),
\end{aligned}
$$

where (a) is by definition of $\psi_{1,1},(b)$ is by the definition of $\psi_{1,0}$ and $\boldsymbol{z}_{1,0}=\tilde{\boldsymbol{x}}_{0},(c)$ is by the setting $\boldsymbol{y}_{1,1}=\boldsymbol{z}_{1,0}$ and simple rearrangement,(d) is by the setting $a_{1}=\frac{1}{L},(e)$ is by Lemma 6 , and (f) is by the setting $A_{1}=a_{1}$ and $\tilde{\boldsymbol{x}}_{1}=\boldsymbol{z}_{1,1}$.

B Proof of Lemma 2

Proof. As $l(\boldsymbol{z})$ is σ-strongly convex, by the definition of the sequence $\left\{\psi_{s, k}(\boldsymbol{z})\right\}, \psi_{s-1, m}(\boldsymbol{z})$ is $m+\sigma m \sum_{i=1}^{s-1} a_{i}=m\left(1+\sigma A_{s-1}\right)$-strongly convex. Furthermore, we also know that $\psi_{s, k}(\boldsymbol{z})(k \geq 0)$ is also at least $m\left(1+\sigma A_{s-1}\right)$-strongly convex. So it follows that: $\forall k \geq 1$,

$$
\begin{align*}
\psi_{s, k}\left(\boldsymbol{z}_{s, k}\right) & \stackrel{(a)}{=} \psi_{s, k-1}\left(\boldsymbol{z}_{s, k}\right)+a_{s}\left(g\left(\boldsymbol{y}_{s, k}\right)+\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{z}_{s, k}-\boldsymbol{y}_{s, k}\right\rangle+l\left(\boldsymbol{z}_{s, k}\right)\right) \\
& \stackrel{(b)}{\geq} \psi_{s, k-1}\left(\boldsymbol{z}_{s, k-1}\right)+\frac{m\left(1+\sigma A_{s-1}\right)}{2}\left\|\boldsymbol{z}_{s, k}-\boldsymbol{z}_{s, k-1}\right\|^{2} \\
& +a_{s}\left(g\left(\boldsymbol{y}_{s, k}\right)+\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{z}_{s, k}-\boldsymbol{y}_{s, k}\right\rangle+l\left(\boldsymbol{z}_{s, k}\right)\right), \tag{19}
\end{align*}
$$

where (a) is by the definition of $\psi_{s, k}$ and (b) is by the optimality condition of $\boldsymbol{z}_{s, k-1}$ and the $m\left(1+\sigma A_{s-1}\right)$-strong convexity of $\psi_{s, k-1}$. Then we have

$$
\begin{array}{ll}
& a_{s}\left(g\left(\boldsymbol{y}_{s, k}\right)+\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{z}_{s, k}-\boldsymbol{y}_{s, k}\right\rangle+l\left(\boldsymbol{z}_{s, k}\right)\right) \\
\stackrel{(a)}{=} & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left\langle\tilde{\nabla}_{s, k}, \frac{a_{s}}{A_{s}} \boldsymbol{z}_{s, k}-\boldsymbol{y}_{s, k}+\frac{A_{s-1}}{A_{s}} \tilde{\boldsymbol{x}}_{s-1}\right\rangle \\
& -A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle+a_{s} l\left(\boldsymbol{z}_{s, k}\right) \\
\stackrel{(b)}{\geq} & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle \\
& +A_{s} l\left(\boldsymbol{y}_{s, k+1}\right)-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right), \tag{20}
\end{array}
$$

where (a) is by the fact that $A_{s}=A_{s-1}+a_{s}$ and simple rearrangement and (b) is by $\boldsymbol{y}_{s, k+1}=$ $\frac{A_{s-1}}{A_{s}} \tilde{\boldsymbol{x}}_{s-1}+\frac{a_{s}}{A_{s}} \boldsymbol{z}_{s, k}$ (which is by our definition of the sequence $\left\{\boldsymbol{y}_{s, k}\right\}$) and the convexity of $l(\boldsymbol{z})$.
Meanwhile, by our setting in Step 5 of Algorithm 1, $A_{s}=A_{s-1}+\sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}}$ and also $a_{s}=A_{s}-A_{s-1}$, we have

$$
\begin{equation*}
\frac{m A_{s}\left(1+\sigma A_{s-1}\right)}{a_{s}^{2}}=\frac{2 A_{s}}{A_{s-1}} L \geq\left(1+\frac{A_{s}}{A_{s-1}}\right) L . \tag{21}
\end{equation*}
$$

Then by combining (19) and (20), it follows that

$$
\begin{array}{ll}
& \psi_{s, k}\left(\boldsymbol{z}_{s, k}\right)-\psi_{s, k-1}\left(\boldsymbol{z}_{s, k-1}\right) \\
\geq & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle \\
& +A_{s} l\left(\boldsymbol{y}_{s, k+1}\right)-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right)+\frac{m\left(1+\sigma A_{s-1}\right)}{2}\left\|\boldsymbol{z}_{s, k}-\boldsymbol{z}_{s, k-1}\right\|^{2} \\
\stackrel{(a)}{=} & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle \\
& +A_{s} l\left(\boldsymbol{y}_{s, k+1}\right)-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right)+\frac{m A_{s}^{2}\left(1+\sigma A_{s-1}\right)}{2 a_{s}^{2}}\left\|\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\|^{2} \\
\stackrel{(b)}{\geq} & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left(\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle\right. \\
& \left.\quad+\left(1+\frac{A_{s}}{A_{s-1}}\right) \frac{L}{2}\left\|\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\|^{2}+l\left(\boldsymbol{y}_{s, k+1}\right)\right) \\
& \quad-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right),
\end{array}
$$

where (a) is by the fact $\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}=\frac{a_{s}}{A_{s}}\left(\boldsymbol{z}_{s, k}-\boldsymbol{z}_{s, k-1}\right)$ and (b) is by (21). Then we have

$$
\begin{align*}
& \left\langle\tilde{\nabla}_{s, k}, \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle+\left(1+\frac{A_{s}}{A_{s-1}}\right) \frac{L}{2}\left\|\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\|^{2}+l\left(\boldsymbol{y}_{s, k+1}\right) \\
= & \left\langle\nabla g\left(\boldsymbol{y}_{s, k}\right), \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\|^{2}+l\left(\boldsymbol{y}_{s, k+1}\right) \\
& +\left\langle\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right), \boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\rangle+\frac{A_{s} L}{2 A_{s-1}}\left\|\boldsymbol{y}_{s, k+1}-\boldsymbol{y}_{s, k}\right\|^{2} \\
\stackrel{(a)}{\geq} & g\left(\boldsymbol{y}_{s, k+1}\right)-g\left(\boldsymbol{y}_{s, k}\right)+l\left(\boldsymbol{y}_{s, k+1}\right)-\frac{A_{s-1}}{2 A_{s} L}\left\|\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2} \\
= & f\left(\boldsymbol{y}_{s, k+1}\right)-g\left(\boldsymbol{y}_{s, k}\right)-\frac{A_{s-1}}{2 A_{s} L}\left\|\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2} \tag{22}
\end{align*}
$$

where (a) is by Lemma 6 and the Young's inequality $\langle\boldsymbol{a}, \boldsymbol{b}\rangle \geq-\frac{1}{2}\|\boldsymbol{a}\|^{2}-\frac{1}{2}\|\boldsymbol{b}\|^{2}$. So we have

$$
\begin{align*}
& \psi_{s, k}\left(\boldsymbol{z}_{s, k}\right)-\psi_{s, k-1}\left(\boldsymbol{z}_{s, k-1}\right) \\
\geq & a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left(f\left(\boldsymbol{y}_{s, k+1}\right)-g\left(\boldsymbol{y}_{s, k}\right)-\frac{A_{s-1}}{2 A_{s} L}\left\|\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2}\right) \\
& -A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right) \tag{23}
\end{align*}
$$

C Proof of Lemma 3

Proof. Taking expectation on the randomness over the choice of i, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2}\right] & =\mathbb{E}\left[\left\|\nabla g_{i}\left(\boldsymbol{y}_{s, k}\right)-\nabla g_{i}\left(\tilde{\boldsymbol{x}}_{s-1}\right)+\boldsymbol{\mu}_{s-1}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\nabla g_{i}\left(\boldsymbol{y}_{s, k}\right)-\nabla g_{i}\left(\tilde{\boldsymbol{x}}_{s-1}\right)+\nabla g\left(\tilde{\boldsymbol{x}}_{s-1}\right)-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\nabla g_{i}\left(\boldsymbol{y}_{s, k}\right)-\nabla g_{i}\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right\|^{2}\right]-\left\|\nabla g\left(\tilde{\boldsymbol{x}}_{s-1}\right)-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2} \\
& \leq \mathbb{E}\left[\left\|\nabla g_{i}\left(\boldsymbol{y}_{s, k}\right)-\nabla g_{i}\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right\|^{2}\right] \\
& \stackrel{(a)}{\leq} \mathbb{E}\left[2 L\left(g_{i}\left(\tilde{\boldsymbol{x}}_{s-1}\right)-g_{i}\left(\boldsymbol{y}_{s, k}\right)-\left\langle\nabla g_{i}\left(\boldsymbol{y}_{s, k}\right), \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle\right)\right] \\
& =2 L\left(g\left(\tilde{\boldsymbol{x}}_{s-1}\right)-g\left(\boldsymbol{y}_{s, k}\right)-\left\langle\nabla g\left(\boldsymbol{y}_{s, k}\right), \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle\right),
\end{aligned}
$$

where (a) is by Lemma 6.

D Proof of Lemma 4

Proof. By Lemma 2 and taking expectation on the randomness over the choice of i, we have

$$
\begin{align*}
& \mathbb{E}\left[\psi_{s, k}\left(\boldsymbol{z}_{s, k}\right)-\psi_{s, k-1}\left(\boldsymbol{z}_{s, k-1}\right)\right] \\
& \geq \mathbb{E}\left[a_{s} g\left(\boldsymbol{y}_{s, k}\right)+A_{s}\left(f\left(\boldsymbol{y}_{s, k+1}\right)-g\left(\boldsymbol{y}_{s, k}\right)-\frac{A_{s-1}}{2 A_{s} L}\left\|\tilde{\nabla}_{s, k}-\nabla g\left(\boldsymbol{y}_{s, k}\right)\right\|^{2}\right)\right. \\
&\left.-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right] \\
& \stackrel{(a)}{\geq} \mathbb{E}\left[a_{s} g\left(\boldsymbol{y}_{s, k}\right)\right. \\
&+A_{s}\left(f\left(\boldsymbol{y}_{s, k+1}\right)-g\left(\boldsymbol{y}_{s, k}\right)\right)-A_{s-1}\left(g\left(\tilde{\boldsymbol{x}}_{s-1}\right)-g\left(\boldsymbol{y}_{s, k}\right)-\left\langle\nabla g\left(\boldsymbol{y}_{s, k}\right), \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle\right) \\
&\left.-A_{s-1}\left\langle\tilde{\nabla}_{s, k}, \tilde{\boldsymbol{x}}_{s-1}-\boldsymbol{y}_{s, k}\right\rangle-A_{s-1} l\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right] \\
& \stackrel{(b)}{=} \mathbb{E}\left[A_{s} f\left(\boldsymbol{y}_{s, k+1}\right)\right]-A_{s-1} f\left(\tilde{\boldsymbol{x}}_{s-1}\right), \tag{24}
\end{align*}
$$

where (a) is by Lemma 3, and (b) is by $\mathbb{E}\left[\tilde{\nabla}_{s, k}\right]=\nabla g\left(\boldsymbol{y}_{s, k}\right), A_{s}=A_{s-1}+a_{s}$ and $f(\boldsymbol{x})=$ $g(\boldsymbol{x})+l(\boldsymbol{x})$.
Summing (24) from $k=1$ to m, by the setting for $s \geq 2, \psi_{s+1,0}:=\psi_{s, m}$ and $\boldsymbol{z}_{s+1,0}:=\boldsymbol{z}_{s, m}$, we have

$$
\begin{align*}
\mathbb{E}\left[\psi_{s+1,0}\left(\boldsymbol{z}_{s+1,0}\right)-\psi_{s, 0}\left(\boldsymbol{z}_{s, 0}\right)\right] & =\mathbb{E}\left[\psi_{s, m}\left(\boldsymbol{z}_{s, m}\right)-\psi_{s, 0}\left(\boldsymbol{z}_{s, 0}\right)\right] \\
& \geq \mathbb{E}\left[A_{s} \sum_{k=1}^{m} f\left(\boldsymbol{y}_{s, k+1}\right)-m A_{s-1} f\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right] \\
& \stackrel{(a)}{\geq} \mathbb{E}\left[m A_{s} f\left(\tilde{\boldsymbol{x}}_{s}\right)-m A_{s-1} f\left(\tilde{\boldsymbol{x}}_{s-1}\right)\right] \tag{25}
\end{align*}
$$

where (a) is by the convexity of $f(\boldsymbol{z})$ and the fact of $\tilde{\boldsymbol{x}}_{s}=\frac{1}{m} \sum_{k=1}^{m} \boldsymbol{y}_{s, k+1}$ (which is in turn by the definition of $\tilde{\boldsymbol{x}}_{s}=\frac{A_{s-1}}{A_{s}} \tilde{\boldsymbol{x}}_{s-1}+\frac{a_{s}}{m A_{s}} \sum_{k=1}^{m} \boldsymbol{z}_{s, k}$ and the definition of $\boldsymbol{y}_{s, k}$.)

E Proof of Lemma 5

Proof. $\forall s \geq 2$, taking expectation on the choice of i in the k-th iteration of the s-th epoch, we have $\forall z$,

$$
\begin{align*}
\mathbb{E}\left[\psi_{s, k}(\boldsymbol{z})\right] & =\mathbb{E}\left[\psi_{s, k-1}(\boldsymbol{z})+a_{s}\left(g\left(\boldsymbol{y}_{s, k}\right)+\left\langle\tilde{\nabla}_{s, k}, \boldsymbol{z}-\boldsymbol{y}_{s, k}\right\rangle+l(\boldsymbol{z})\right)\right] \\
& \stackrel{(a)}{=} \psi_{s, k-1}(\boldsymbol{z})+a_{s}\left(g\left(\boldsymbol{y}_{s, k}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{s, k}\right), \boldsymbol{z}-\boldsymbol{y}_{s, k}\right\rangle+l(\boldsymbol{z})\right) \\
& \stackrel{(b)}{\leq} \psi_{s, k-1}(\boldsymbol{z})+a_{s}(g(\boldsymbol{z})+l(\boldsymbol{z})) \\
& =\psi_{s, k-1}(\boldsymbol{z})+a_{s} f(\boldsymbol{z}) \tag{26}
\end{align*}
$$

where (a) is by the fact $\mathbb{E}\left[\tilde{\nabla}_{s, k}\right]=\nabla g\left(\boldsymbol{y}_{s, k}\right)$, and (b) is by the convexity of $g(\boldsymbol{z})$. Then taking expectation from the randomness of the epoch s and telescoping (26) from $k=1$ to m, we have

$$
\begin{align*}
\mathbb{E}\left[\psi_{s, m}(\boldsymbol{z})\right] & \leq \psi_{s, 0}(\boldsymbol{z})+m a_{s} f(\boldsymbol{z}) \\
& = \begin{cases}\psi_{s-1, m}(\boldsymbol{z})+m a_{s} f(\boldsymbol{z}), & s \geq 3 \\
m \psi_{1,1}(\boldsymbol{z})+m a_{2} f(\boldsymbol{z}), & s=2\end{cases} \tag{27}
\end{align*}
$$

Then taking expectation from the randomness of all the history from $i=3$ and telescoping (27) to some $s \geq 3$, we have

$$
\begin{equation*}
\mathbb{E}\left[\psi_{s, m}(\boldsymbol{z})\right] \leq \psi_{2, m}(\boldsymbol{z})+m \sum_{i=3}^{s} a_{i} f(\boldsymbol{z}) \tag{28}
\end{equation*}
$$

Meanwhile taking expectation from the randomness of epoch $s=2$, we have

$$
\begin{align*}
\mathbb{E}\left[\psi_{2, m}(\boldsymbol{z})\right] & \leq m \psi_{1,1}(\boldsymbol{z})+m a_{2} f(\boldsymbol{z}) \\
& =m\left(\psi_{1,0}(\boldsymbol{z})+a_{1}\left(g\left(\boldsymbol{y}_{1,1}\right)+\left\langle\nabla g\left(\boldsymbol{y}_{1,1}\right), \boldsymbol{z}-\boldsymbol{y}_{1,1}\right\rangle+l(\boldsymbol{z})\right)\right)+m a_{2} f(\boldsymbol{z}) \\
& \stackrel{(a)}{\leq} m\left(\frac{1}{2}\left\|\boldsymbol{z}-\tilde{\boldsymbol{x}}_{0}\right\|^{2}+a_{1}(g(\boldsymbol{z})+l(\boldsymbol{z}))\right)+m a_{2} f(\boldsymbol{z}) \\
& =m\left(a_{1}+a_{2}\right) f(\boldsymbol{z})+\frac{m}{2}\left\|\boldsymbol{z}-\tilde{\boldsymbol{x}}_{0}\right\|^{2}, \tag{29}
\end{align*}
$$

where (a) is by the convexity of $g(\boldsymbol{z})$ and $\psi_{1,0}(\boldsymbol{z})=\frac{1}{2}\left\|\boldsymbol{z}-\tilde{\boldsymbol{x}}_{0}\right\|^{2}$.
So combining (28) and (29), we have: $\forall s \geq 2$,

$$
\begin{align*}
\mathbb{E}\left[\psi_{s, m}(\boldsymbol{z})\right] & \leq m \sum_{i=1}^{s} a_{s} f(\boldsymbol{z})+\frac{m}{2}\left\|\boldsymbol{z}-\tilde{\boldsymbol{x}}_{0}\right\|^{2} \\
& \stackrel{(a)}{=} m A_{s} f(\boldsymbol{z})+\frac{m}{2}\left\|\boldsymbol{z}-\tilde{\boldsymbol{x}}_{0}\right\|^{2} \tag{30}
\end{align*}
$$

where (a) is by the our setting $a_{s}=A_{s}-A_{s-1}$ and $A_{0}=0$.
Then by (30) and the optimality of $\boldsymbol{z}_{s, m}$, we have $\psi_{s, m}\left(\boldsymbol{z}_{s, m}\right) \leq \psi_{s, m}\left(\boldsymbol{x}^{*}\right)$ and thus

$$
\begin{equation*}
\mathbb{E}\left[\psi_{s, m}\left(\boldsymbol{z}_{s, m}\right)\right] \leq \psi_{s, m}\left(\boldsymbol{x}^{*}\right) \leq m A_{s} f\left(\boldsymbol{x}^{*}\right)+\frac{m}{2}\left\|\boldsymbol{x}^{*}-\tilde{\boldsymbol{x}}_{0}\right\|^{2} \tag{31}
\end{equation*}
$$

F The Lower Bounds for the A_{s} in Theorem 1

Proof. In the following, we give the lower bound of A_{s} by the condition in Step 6 of Algorithm 1 and $A_{1}=a_{1}=\frac{1}{L}$. To show the lower bound by the first term in (10), we know that

$$
\begin{equation*}
A_{s}=A_{s-1}+\sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}} \geq \sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}} \geq \sqrt{\frac{m A_{s-1}}{2 L}} \tag{32}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\frac{2 L A_{s}}{m} \geq\left(\frac{2 L A_{s-1}}{m}\right)^{\frac{1}{2}} \geq\left(\frac{2 L A_{1}}{m}\right)^{2^{-(s-1)}} \tag{33}
\end{equation*}
$$

Then by the setting $A_{1}=\frac{1}{L}$, we have

$$
\begin{equation*}
A_{s} \geq \frac{m}{2 L}\left(\frac{2}{m}\right)^{2^{-(s-1)}} \tag{34}
\end{equation*}
$$

Meanwhile, for $s \geq 2$, we also have

$$
\begin{align*}
A_{s} & \geq A_{s-1}+\sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}} \geq A_{s-1}+\sqrt{\frac{m \sigma}{2 L}} A_{s-1}=\left(1+\sqrt{\frac{m \sigma}{2 L}}\right) A_{s-1} \\
& \geq\left(1+\sqrt{\frac{m \sigma}{2 L}}\right)^{s-1} A_{1} \\
& =\frac{1}{L}\left(1+\sqrt{\frac{m \sigma}{2 L}}\right)^{s-1} \tag{35}
\end{align*}
$$

Thus the lower bounds in (10) are proved.
Then with $s_{0}=1+\left\lceil\log _{2} \log _{2}(m / 2)\right\rceil$, we have

$$
\begin{aligned}
A_{s_{0}} & \geq \frac{m}{2 L}\left(\frac{2}{m}\right)^{2^{-\left(s_{0}-1\right)}} \geq \frac{m}{2 L}\left(\frac{2}{m}\right)^{2^{-\left\lceil\log _{2} \log _{2}(m / 2)\right\rceil}} \geq \frac{m}{2 L}\left(\frac{2}{m}\right)^{-\log _{2} \log _{2}(m / 2)} \\
& =\frac{m}{4 L}
\end{aligned}
$$

Meanwhile for $s \geq s_{0}+1$, we have

$$
\begin{equation*}
A_{s} \geq A_{s-1}+\sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}} \geq A_{s-1}+\sqrt{\frac{m A_{s-1}}{2 L}} \tag{36}
\end{equation*}
$$

Thus we can use the mathematical induction method to prove the first lower bound in (11): $\forall s \geq$ $s_{0}, A_{s} \geq \frac{m}{32 L}\left(s-s_{0}+2 \sqrt{2}\right)^{2}$.

Firstly, for $s=s_{0}$, we have $A_{s} \geq \frac{m}{4 L}=\frac{m}{32 L}(2 \sqrt{2})^{2}$.
Then assume that for an $s \geq s_{0}+1, A_{s-1} \geq \frac{m}{32 L}\left(s-1-s_{0}+2 \sqrt{2}\right)^{2}$, then

$$
\begin{align*}
A_{s} & \geq A_{s-1}+\sqrt{\frac{m A_{s-1}}{2 L}} \geq \frac{m}{32 L}\left(s-s_{0}+2 \sqrt{2}\right)^{2}+\frac{m}{16 L}\left(s-s_{0}\right)+\frac{m}{32 L}(4 \sqrt{2}-3) \\
& \geq \frac{m}{32 L}\left(s-s_{0}+2 \sqrt{2}\right)^{2} \tag{37}
\end{align*}
$$

Thus the first lower bound in (11) is proved.
Meanwhile, for $s \geq s_{0}+1$, we also have

$$
\begin{align*}
A_{s} & \geq A_{s-1}+\sqrt{\frac{m A_{s-1}\left(1+\sigma A_{s-1}\right)}{2 L}} \geq A_{s-1}+\sqrt{\frac{m \sigma}{2 L}} A_{s-1}=\left(1+\sqrt{\frac{m \sigma}{2 L}}\right) A_{s-1} \\
& \geq\left(1+\sqrt{\frac{m \sigma}{2 L}}\right)^{s-s_{0}} A_{s_{0}} \\
& \geq \frac{m}{4 L}\left(1+\sqrt{\frac{m \sigma}{2 L}}\right)^{s-s_{0}} \tag{38}
\end{align*}
$$

Thus the second lower bound in (11) is proved.

G An Auxiliary Lemma

By Assumption 1 and [25], we have Lemma 6.
Lemma 6. Under Assumption $1, \forall \boldsymbol{x}, \boldsymbol{y}$,

$$
\begin{equation*}
g(\boldsymbol{y}) \leq g(\boldsymbol{x})+\langle\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \tag{39}
\end{equation*}
$$

and $\forall i \in[n], \forall \boldsymbol{x}, \boldsymbol{y}$,

$$
\begin{equation*}
\left\|\nabla g_{i}(\boldsymbol{y})-\nabla g_{i}(\boldsymbol{x})\right\|^{2} \leq 2 L\left(g_{i}(\boldsymbol{y})-g_{i}(\boldsymbol{x})-\left\langle\nabla g_{i}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right) . \tag{40}
\end{equation*}
$$

Under Assumption 1, Lemma 6 are classical results in convex optimization. For completeness, we provide the proof of Lemma 6 here.

Proof of Lemma 6. By Assumption $1, \forall i \in[n], g_{i}(\boldsymbol{x})$ satisfies $\forall \boldsymbol{x}, \boldsymbol{y},\left\|\nabla g_{i}(\boldsymbol{x})-\nabla g_{i}(\boldsymbol{y})\right\| \leq L \| \boldsymbol{x}-$ $\boldsymbol{y} \|$. As a result, we have

$$
\begin{align*}
\|\nabla g(\boldsymbol{x})-\nabla g(\boldsymbol{y})\| & =\left\|\frac{1}{n} \sum_{i=1}^{n} \nabla g_{i}(\boldsymbol{x})-\frac{1}{n} \sum_{i=1}^{n} \nabla g_{i}(\boldsymbol{y})\right\| \\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left\|g_{i}(\boldsymbol{x})-g_{i}(\boldsymbol{y})\right\| \\
& \leq L\|\boldsymbol{x}-\boldsymbol{y}\| \tag{41}
\end{align*}
$$

The we have

$$
\begin{align*}
g(\boldsymbol{y}) & =g(\boldsymbol{x})+\int_{0}^{1}\langle\nabla g(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x}\rangle d \tau \\
& =g(\boldsymbol{x})+\langle\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\int_{0}^{1}\langle\nabla g(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle d \tau \tag{42}
\end{align*}
$$

Then it follow that

$$
\begin{align*}
g(\boldsymbol{y})-g(\boldsymbol{x})-\langle\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle & \leq\left|\int_{0}^{1}\langle\nabla g(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle d \tau\right| \\
& \leq \int_{0}^{1}|\langle\nabla g(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-\nabla g(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle| d \tau \\
& \leq \int_{0}^{1}\|\nabla g(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-\nabla g(\boldsymbol{x})\|\|\boldsymbol{y}-\boldsymbol{x}\| d \tau \\
& \leq \int_{0}^{1} L \tau\|\boldsymbol{y}-\boldsymbol{x}\|^{2} d \tau \\
& =\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \tag{43}
\end{align*}
$$

Thus we obtain (39).
Then denote $\forall i \in[n], \phi_{i}(\boldsymbol{y})=g_{i}(\boldsymbol{y})-g_{i}(\boldsymbol{x})-\left\langle\nabla g_{i}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle$. Obviously $\phi_{i}(\boldsymbol{y})$ is also L-smooth. One can check that $\nabla g_{i}(\boldsymbol{x})=0$ and so that $\min _{\boldsymbol{y}} \phi_{i}(\boldsymbol{y})=\phi_{i}(\boldsymbol{x})=0$, which implies that

$$
\begin{align*}
\phi_{i}(\boldsymbol{x}) & \leq \phi_{i}\left(\boldsymbol{y}-\frac{1}{L} \nabla \phi_{i}(\boldsymbol{y})\right) \\
& =\phi_{i}(\boldsymbol{y})+\int_{0}^{1}\left\langle\nabla \phi_{i}\left(\boldsymbol{y}-\frac{\tau}{L} \nabla \phi_{i}(\boldsymbol{y})\right),-\frac{1}{L} \nabla \phi_{i}(\boldsymbol{y})\right\rangle d \tau \\
& =\phi_{i}(\boldsymbol{y})+\left\langle\nabla \phi_{i}(\boldsymbol{y}),-\frac{1}{L} \nabla \phi_{i}(\boldsymbol{y})\right\rangle+\int_{0}^{1}\left\langle\nabla \phi_{i}\left(\boldsymbol{y}-\frac{\tau}{L} \nabla \phi_{i}(\boldsymbol{y})\right)-\nabla \phi_{i}(\boldsymbol{y}),-\frac{1}{L} \nabla \phi_{i}(\boldsymbol{y})\right\rangle d \tau \\
& \leq \phi_{i}(\boldsymbol{y})-\frac{1}{L}\left\|\nabla \phi_{i}(\boldsymbol{y})\right\|^{2}+\int_{0}^{1} L\left\|\frac{\tau}{L} \nabla \phi_{i}(\boldsymbol{y})\right\|\left\|\frac{1}{L} \nabla \phi(\boldsymbol{y})\right\| d \tau \\
& \leq \phi_{i}(\boldsymbol{y})-\frac{1}{2 L}\left\|\nabla \phi_{i}(\boldsymbol{y})\right\|^{2} \tag{44}
\end{align*}
$$

Then we have $\left\|\nabla \phi_{i}(\boldsymbol{y})\right\|^{2} \leq 2 L\left(\phi_{i}(\boldsymbol{y})-\phi_{i}(\boldsymbol{x})\right)$. Then by the definition of $\phi_{i}(\boldsymbol{y})$, we obtain (40).

H Experimental Details and Supplementary Experiments

Besides running binary classification experiments on the two datasets a9a and covtype, we also run multi-class classification experiments on mnist and cifar 10 . The problem we solve is the ℓ_{2}-norm regularized (multinomial) logistic regression problem:

$$
\begin{equation*}
\min _{\boldsymbol{w} \in \mathbb{R}^{d \times(c-1)}} f(\boldsymbol{w}):=\frac{1}{n} \sum_{j=1}^{n}\left(-\sum_{i=1}^{c-1} y_{j}^{(i)} \boldsymbol{w}^{(i)^{T}} \boldsymbol{x}_{j}+\log \left(1+\sum_{i=1}^{c-1} \exp \left(\boldsymbol{w}^{(i)^{T}} \boldsymbol{x}_{j}\right)\right)\right)+\frac{\lambda}{2} \sum_{i=1}^{c-1}\left\|\boldsymbol{w}^{(i)}\right\|_{2}^{2}, \tag{45}
\end{equation*}
$$

where n is the number of samples, $c \in\{2,3, \ldots\}$ denotes the number of class (for a9a and covtype, $c=2$; for mnist and cifar10, $c=10$.), $\lambda \geq 0$ denotes the regularization parameter, $\boldsymbol{y}_{j}=$ $\left(y_{j}^{(1)}, y_{j}^{(2)}, \ldots, y_{j}^{(c-1)}\right)^{T}$ is a one-hot vector or zero vector ${ }^{11}$, and $\boldsymbol{w}:=\left(\boldsymbol{w}^{(1)}, \boldsymbol{w}^{(2)}, \ldots, \boldsymbol{w}^{(c-1)}\right) \in$ $\mathbb{R}^{d \times(c-1)}$ denotes the variable to optimize. For the two-class datasets "a9a" and "covtype", we have presented our results by choosing the regularization parameter $\lambda \in\left\{0,10^{-8}, 10^{-4}\right\}$. For the ten-class datasets "mnist" and "cifar 10 ", we choose $\lambda \in\left\{0,10^{-6}, 10^{-3}\right\}$.

[^0]

Figure 2: Comparing VRADA with SVRG, Katyusha and MiG on ℓ_{2}-norm regularized multinomial logistic regression problems. The horizontal axis is the number of passes through the entire dataset, and the vertical axis is the optimality gap $f(\boldsymbol{x})-f\left(\boldsymbol{x}^{*}\right)$.

For the four algorithms we compare, the common parameter to tune is the parameter w.r.t. Lipschitz constant ${ }^{12}$, which is tuned in $\{0.0125,0.025,0.05,0.1,0.25,0.5\} .{ }^{13}$ All four algorithms are implemented in $\mathrm{C}++$ under the same framework, while the figures are produced using Python.

As we see, despite there are some minor differences among different tasks/datasets shown in Figure 1 and Figure 2, the general behaviors are still very consistent. From both figures, our method VRADA is competitive with other two accelerated methods, and is much faster than the non-accelerated SVRG algorithm in the general convex setting and the strongly convex setting with a large conditional number. Meanwhile, in the strongly convex setting with a small conditional number, VRADA is still competitive with the non-accelerated SVRG algorithm and much faster than the other two accelerated algorithms of Katyusha ${ }^{\text {sc }}$ and $\mathrm{MiG}^{\text {sc }}$.

[^1]
[^0]: ${ }^{11}$ Zero vector denotes the class of the j-th sample is c.

[^1]: ${ }^{12}$ For logistic regression with normalized data, the Lipschitz constant is globally upper bounded [39] by $1 / 4$, but in practice we can use a smaller one than $1 / 4$.
 ${ }^{13}$ In our experiments, due to the normalization of datasets, all the four algorithms will diverge when the parameter is less than 0.0125 . Otherwise, they always converge if the parameter is less than 0.5 .

