
A Proof of Lemma 5.1

Lemma (Lemma 5.1). Let G : Rk → Rn be a d−layered neural network with ReLU activations.
Let A ∈ Rm×n be a matrix with i.i.d rows satisfying Assumption 1. If m = Ω

(
1

1−γ2 kd log n
)
, then

with probability 1− e−Ω(m), A satisfies

1

m
‖AG(z1)−AG(z2)‖2 ≥ γ2‖G(z1)−G(z2)‖2

for all z1, z2 ∈ Rk.

Proof. The proof is based on Proposition A.1 and Proposition A.2, which will be introduced as
follows. Proposition A.1 shows that the set SG = {G(z1)−G(z2) : z1, z2 ∈ Rk} lies in the range
of eO(kd logn) different 2k−dimensional subspaces.

Proposition A.2 guarantees the result for a single subspace with probability 1 − e−m. Since m =
Ω(kd log n), the proof follows from a union bound over the eO(kd logn) subspaces in Proposition A.1.

Proposition A.1. If G : Rk → Rn is a d−layered neural network with ReLU activations, then the
set SG = {G(z1) − G(z2) : z1, z2 ∈ Rk} lies in the union of O

(
n2kd

)
different 2k−dimensional

subspaces.

Proof of Proposition (A.1). From Lemma 8.3 in [15], the set {G(z) : z ∈ Rk} lies in the union of
O(nkd) different k−dimensional subspaces.

This implies that the set
{G(z1)−G(z2) : z1, z2 ∈ Rk}

lies in the union of M = O(n2kd) different 2k−dimensional subspaces.

Proposition A.2. Consider a single 2k−dimensional subspace given by S1 = {Wz : W ∈
Rn×2k,WTW = I2k, z ∈ R2k}. Let A ∈ Rm×n be a matrix with i.i.d rows drawn from a
distribution satisfying Assumption (1). If m = O( C2k

3
4−γ2 ), with probability 1− e−Ω(m), A satisfies

1

m
‖Av‖2 ≥ γ2‖v‖2, ∀v ∈ S1.

Proof. The proof follows Theorem 14.12 in [87], with non-trivial modifications for our setting.

We want to show that for all vectors v ∈ S1,

1

m
||Av||2 ≥ γ2||v||2.

For u, τ ∈ R, define the truncated quadratic function

φτ (u) =

{
u2 if |u| ≤ τ,
τ2 otherwise.

(7)

By construction, φτ (〈ai, v〉) ≤ 〈ai, v〉2.
This implies that

1

m
||Av||2 =

1

m

m∑
i=1

〈ai, v〉2 =
‖v‖2

m

m∑
i=1

〈ai, v
‖v‖ 〉

2 (8)

≥ ‖v‖
2

m

m∑
i=1

φτ (〈ai, v
‖v‖ 〉) (9)

16



≥ ‖v‖2E

[∑m
i=1 φτ (〈ai, v

‖v‖ 〉)
m

]
− ‖v‖2

∣∣∣∣∣
∑m
i=1 φτ (〈ai, v

‖v‖ 〉)
m

− E

[∑m
i=1 φτ (〈ai, v

‖v‖ 〉)
m

]∣∣∣∣∣
(10)

= ‖v‖2E
[
φτ (〈a, v

‖v‖ 〉)
]
− ‖v‖2

∣∣∣∣∣
∑m
i=1 φτ (〈ai, v

‖v‖ 〉)
m

− E
[
φτ (〈a, v

‖v‖ 〉)
]∣∣∣∣∣ (11)

≥ ‖v‖2E
[
φτ (〈a, v

‖v‖ 〉)
]
− ‖v‖2 sup

v∈S1

∣∣∣∣∣ 1

m

m∑
i=1

φτ (〈ai, v
‖v‖ 〉)− E

[
φτ (〈a, v

‖v‖ 〉)
]∣∣∣∣∣ (12)

In Claim A.3 we will show that for τ2 = C4

3
4−γ2 , we have

E
[
φτ (〈a, v

‖v‖ 〉)
]
≥ (γ2 +

1

4
).

In Claim A.4 we will show that with overwhelming probability in m,

sup
v:‖v‖≤1

∣∣∣∣∣ 1

m

m∑
i=1

φτ (〈ai, v
‖v‖ 〉)− E

[
φτ (〈a, v

‖v‖ 〉)
]∣∣∣∣∣ ≤ 1

4
.

These two results together imply that

1

m
‖Av‖2 ≥ γ2‖v‖2.

with overwhelming probability in m.

Claim A.3. Assume that the random vector a satisfies Assumption (1) with constant C. Let φτ be
the thresholded quadratic function defined in Eqn (7). For all v ∈ Rn, ‖v‖ ≤ 1, we have

E [φτ (〈a, v〉)] ≥
(

1− C4

τ2

)
‖v‖2.

Proof.

‖v‖2 − E [φτ (〈a, v〉)] =E
[
〈a, v〉2

]
− E [φτ (〈a, v〉)] (13)

=E
[
(〈a, v〉2 − τ2)1{|〈a,v〉|≥τ}

]
(14)

≤E
[
〈a, v〉21{|〈a,v〉|≥τ}

]
(15)

By the Cauchy-Schwartz inequality,

E
[
〈a, v〉21{|〈a,v〉|≥τ}

]
≤
(
E
[
〈a, v〉4

]) 1
2 (Pr [|〈a, v〉| ≥ τ ])

1
2 (16)

From Assumption (1), we have (
E
[
〈a, v〉4

]) 1
2 ≤ C2E

[
〈a, v〉2

]
.

From Chebyshev’s inequality and Assumption (1), we have

(Pr [|〈a, v〉| ≥ τ ])
1
2 ≤

(
E
[
|〈a, v〉|4

]
τ4

) 1
2

≤

(
C4E

[
|〈a, v〉|2

]2
τ4

) 1
2

=
C2E

[
|〈a, v〉|2

]
τ2

. (17)

Substituting the above two inequalities into eq. (16), we get

E
[
〈a, v〉21{|〈a,v〉|≥τ}

]
≤
C4E

[
〈a, v〉2

]2
τ2

(18)

=
C4‖v‖4

τ2
≤ C4‖v‖2

τ2
. (19)
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Substituting into Eqn (13),

‖v‖2 − E [φτ (〈a, v〉)] ≤ C4‖v‖2

τ2
, (20)

which completes the proof.

Claim A.4. For an orthonormal matrix U ∈ Rn×2k, let S := {v : v = Uz, ‖v‖ = 1}. Let φτ be the
function defined in Proposition A.2. For m = Ω

(
τ2k
)
, we have

sup
v∈S

∣∣∣∣∣ 1

m

m∑
i=1

φτ (〈ai, v〉)− E [φτ (〈a, v〉)]

∣∣∣∣∣ ≤ 1

4
.

with probability 1− e−Ω(m).

Proof. Define

Zm = sup
v∈S

∣∣∣∣∣ 1

m

m∑
i=1

φτ (〈ai, v〉)− E [φτ (〈a, v〉)]

∣∣∣∣∣ .
We will first show that

EA [Zm] ≤ 1

8
for large enough m. Then we use Talagrand’s inequality [83] to show that

Pr

[
Zm ≥ E [Zm] +

1

8

]
≤ e−Ω(m),

using which we can conclude that Zm ≤ 1
4 with probability 1− e−Ω(m).

By the symmetrization inequality, we have

EA [Zm] ≤ 2Eε,A

[
sup
v∈S

∣∣∣∣∣ 1

m

m∑
i=1

εiφτ (〈ai, v〉)

∣∣∣∣∣
]

where {εi}mi=1 are i.i.d Bernoulli ±1 random variables.

Since φτ is a Lipschitz function with Lipschitz constant 2τ , we can apply the Ledoux-Talagrand
contraction inequality [56] (refer to Appendix G for the sake of completeness) to get

2Eε,A

[
sup
v∈S

∣∣∣∣∣ 1

m

m∑
i=1

εiφτ (〈ai, v〉)

∣∣∣∣∣
]

≤8τEε,A

[
sup
v∈S

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, v〉

∣∣∣∣∣
]

(21)

=8τEε,A
[
sup
v∈S

∣∣∣∣ 1

m
εTAv

∣∣∣∣] . (22)

Since S := {v : v = Uz, ‖v‖ = 1}, we have

8τEε,A
[
sup
v∈S

∣∣∣∣ 1

m
εTAv

∣∣∣∣] (23)

=8τEε,A

[
sup

z:‖z‖=1

∣∣∣∣8τm εTAUz

∣∣∣∣
]

(24)

≤8τ

m
Eε,A

[
‖εTAU‖2

]
(25)

≤8τ

m

√
Eε,A [‖εTAU‖22] (26)
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The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality.

Notice that
Eε
[
‖εTAU‖22

]
= trace(AUUTAT ) = trace(UTATAU)

Since UTU = I2k, we have

Eε,A
[
‖εTAU‖22

]
= EA

[
trace(UTATAU)

]
(27)

=

m∑
i=1

Eai trace(UTaia
T
i U) (28)

=

m∑
i=1

trace(UT InU) = m trace(I2k) = 2km. (29)

Putting this together, and choosing m = Ω(τ2k), we have

EA [Zm] ≤ 8τ

√
2k

m
≤ 1

8
.

We now need to show that

Pr

[
Zm ≥ E [Zm] +

1

8

]
≤ e−Ω(m).

By construction, φτ (〈ai, v〉) ≤ τ2 for all v ∈ S.

In order to apply Talagrand’s inequality, we need to bound

σ2 = sup
v∈S

E
[
(φτ (〈a, v〉)− E [φτ (〈a, v〉)])2

]
.

We can bound this by

var(φτ (〈a, v〉) ≤ E
[
φ2
τ (〈a, v〉)

]
(30)

≤ τ2E [φτ (〈a, v〉)] ≤ τ2 (31)

Applying Talagrand’s inequality, we have

Pr [Zm ≥ E [Zm] + t] ≤ C1 exp

(
− C2mt

2

τ2 + τ2t

)
.

Setting t = 1
8 ,m = Ω(τ2k) we get

Pr[Zm ≥
1

4
] ≤ Pr

[
Zm ≥ E [Zm] +

1

8

]
≤ C1e

−C2m

τ2 = e−Ω(m).

This concludes the proof.

B Proof of Lemma 5.2

Lemma B.1. Let M denote the number of batches. Then with probability 1− e−Ω(M), the objective
in Equation (2) satisfies

min
z∈Rk

max
z′∈Rk

median
1≤j≤M

`Bj (z)− `Bj (z′) ≤ 4σ2. (32)

Proof. By setting z ← z∗, for all z′ ∈ Rk, for any j ∈ [M ], we have

`Bj (z
∗)− `Bj (z′) ≤ `Bj (z∗) =

1

b
‖ηBj‖2. (33)
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Since the noise is i.i.d. and has variance σ2, we have E
[
`Bj (z

∗)
]

= E 1
b‖ηBj‖

2 = σ2.

For batch j ∈ [M ], define the indicator random variable

Yj = 1
{
`Bj (z

∗) ≥ 4σ2
}
.

By Markov’s inequality, since E[`Bj (z
∗)] = σ2, we have

Pr [Yj = 1] ≤ 1

4
⇒ E

 M∑
j=1

Yj

 ≤ M

4
. (34)

By the Chernoff bound,

Pr

 M∑
j=1

Yj ≥
M

2

 ≤ Pr

 M∑
j=1

Yj ≥ 2E[

M∑
j=1

Yj ]

 ≤ e−Ω(M). (35)

The above inequality implies that with probability 1− e−Ω(M), for all z′ ∈ Rk, at least M2 batches
satisfy

`Bj (z
∗)− `Bj (z′) ≤ 4σ2.

This gives

min
z∈Rk

max
z′∈Rk

median
1≤j≤M

(`Bj (z)− `Bj (z′)) ≤ 4σ2. (36)

C Proof of Lemma 5.3

Lemma (Lemma 5.3). Let G : Rk → Rn be a generative model from a d-layer neural network using
ReLU activations. Let A ∈ Rm×n be a matrix with i.i.d rows satisfying Assumption 1. Let the batch
size b = Θ

(
C4
)
, let the number of batches satisfy M = Ω(kd log n), and let γ be a constant which

depends on the moment constant C. Then with probability at least 1− e−Ω(m), for all z1, z2 ∈ Rk
there exists a set J ⊆ [M ] of cardinality at least 0.9M such that

1

b
‖ABj (G(z1)−G(z2))‖2 ≥ γ2‖G(z1)−G(z2)‖2 ,∀j ∈ J.

Proof. Proposition A.1 shows that the set SG = {G(z1)−G(z2) : z1, z2 ∈ Rk} lies in the range of
eO(kd logn) different 2k−dimensional subspaces.

Proposition C.1 guarantees the result for a single subspace with probability 1 − e−Ω(M). Since
M = Ω(kd log n) and the batch size is constant which depends on the moment constant C, the
lemma follows from a union bound over the eO(kd logn) subspaces in Proposition A.1.

Proposition C.1. Consider a single 2k−dimensional subspace given by S = {Wz : W ∈
Rn×2k,WTW = I2k, z ∈ R2k}. Let A ∈ Rm×n be a matrix with i.i.d rows drawn from a
distribution satisfying Assumption (1) with constant C. If the batch size b = O(C4) and the number
of batches satisfies M = Ω

(
k log 1

ε

)
, with probability 1− e−Ω(M), for all x ∈ S, there exist a subset

of batches Jx ⊆ [M ] with |Jx| ≥ 0.90M such that

1

b
‖ABjx‖2 ≥ γ2‖x‖2 ∀j ∈ Jx,

where γ = Θ
(

1
C2

)
is a constant that depends on the moment constant C.
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Proof. Since the bound we want to prove is homogeneous, it suffices to show it for all vectors in S
that have unit norm. Let W ∈ Rn×2k be the orthonormal matrix spanning S, and S1 denote the set
of unit norm vectors in its span. That is,

S1 = {Wz : z ∈ R2k, ‖z‖ = 1,W ∈ Rn×2k,WTW = I2k}.

For a fixed x ∈ S1 and 0 < t < 1, we have

E
[
〈a, x〉2

]
=E

[
〈a, x〉21{〈a, x〉 ≤ t2‖x‖2}

]
E
[
〈a, x〉21{〈a, x〉 > t2‖x‖2}

]
(37)

≤ t2‖x‖2 + E
[
〈a, x〉4

] 1
2
(
Pr
[
〈a, x〉2 ≥ t2‖x‖2

]) 1
2 (38)

≤ t2‖x‖2 + C2‖x‖2
(
Pr
[
〈a, x〉2 ≥ t2‖x‖2

]) 1
2 (39)

⇒ Pr
[
〈a, x〉2 ≥ t2‖x‖2

]
≥
(
1− t2

)2 ‖x‖4
C4‖x‖4

=

(
1− t2

)2
C4

= C1. (40)

This is essentially a modified version of the Paley-Zigmund inequality [76].

Consider a batch Bj , which has b samples. By the concentration of Bernoulli random variables, with
probability 1− 2e−Ω(C1b), we have∑

i∈Bj

1
{
〈ai, x〉2 ≥ t2‖x‖2

}
≥ bC1

2

This implies that if we set b such that 1− 2e−Ω(C1b) = 0.975, then with probability 0.975, Bj has
bC1

2 samples 〈ai, x〉 whose magnitude is at least t‖x‖. This implies that the average square magnitude
over the batch satisfies

1

b
‖ABjx‖2 =

1

b

∑
i∈Bj

〈ai, x〉2 ≥ t2‖x‖2
bC1

2b
=
C1t

2‖x‖2

2
, (41)

with probability 0.975.

Consider the indicator random variable associated with the complement of the above event. That is,

Yj(x) =

{
1

b
‖ABjx‖2 ≤

C1t
2

2
‖x‖2.

}
From (41) we have that E [Yj(x)] ≤ 0.025.

Consider the sum of indicator random variables over M batches. By standard concentrations of
Bernoulli random variables, we have with probabibility 1− e−Ω(M),

M∑
j=1

Yj(x) ≤ 2E

 M∑
j=1

Yj(x)

 ≤ 0.05.

This implies that there exist a subset of batches J ⊆ [M ] with |J | ≥ 0.95M such that

1

b
‖ABjx‖2 ≥

C1t
2‖x‖2

2
∀ j ∈ J,

with probability 1− e−Ω(M). This shows that we have the statement of the proposition for a fixed
vector in S1.

We now show that this holds true for an ε−cover of S1. Let Sε denote a minimial ε−covering
of S1. That is, Sε is a finite subset of S1 such that for all x ∈ S1, there exists x̃ ∈ Sε such that
‖x− x̃‖ ≤ ε. Since S1 has dimension 2k and diameter 1, we can find a set Sε whose cardinality is at
most

(
O
(

1
ε

))2k
.

By a union bound, with probability 1− e−Ω(M)|Sε|, for all x̃ ∈ Sε there exists a subset of batches
Jx̃ ⊂ [M ] with |Jx̃| ≥ 0.95M such that

1

b
‖ABj x̃‖2 ≥

C1t
2

2
∀ j ∈ Jx̃ (42)
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Since |S|ε ≤ eO(k log 1
ε ), ifM = Ω

(
k log 1

ε

)
, the above statement holds with probability 1−e−Ω(M).

We now show that the statement of the proposition is true for all vectors in S1. Since the proposition
statement holds for an ε−cover of S1, we now only need to consider the effect of A at a scale of ε.

Now consider the set
S2 = {x− x̃ : x ∈ S1, x̃ ∈ Sε, ‖x− x̃‖ ≤ ε}.

Note that this a subset of all vectors in the span of W that have norm at most ε. That is, if

S3 = {Wz : z ∈ R2k, ‖z‖ ≤ ε},
we have S2 ⊆ S3.

For a vector v ∈ Rn, consider the random variable

Zi(v) = 1

[
〈ai, v〉 ≥

√
C1t

2
√

2

]
.

Define the random process

Ψ (a1, a2, · · · , am) = sup
v∈S2

1

m

m∑
i=1

1

[
|〈ai, v〉| ≥

√
C1t

2
√

2

]
.

By the bounded difference inequality, with probability 1− 2e−C2δ
2

,

Ψ(a1, a2, · · · , am) ≤ E [Ψ(a1, a2, · · · , am)] +
δ√
m

Since S2 ⊆ S3, we can bound the expectation of Ψ by

E [Ψ(a1, · · · , am)] ≤ E sup
v∈S3

1

m

m∑
i=1

1

[
|〈ai, v〉| ≥

√
C1t

2
√

2

]
(43)

≤ E sup
v∈S3

m∑
i=1

|〈ai, v〉|
mt
√
C1/2

√
2

(44)

= E sup
v∈S3

m∑
i=1

2
√

2|〈ai, v〉|
mt
√
C1

(45)

≤ E sup
v∈S3

∣∣∣∣∣
m∑
i=1

2
√

2
|〈ai, v〉| − E [|〈a, v〉|]

mt
√
C1

∣∣∣∣∣+ sup
v∈S3

m∑
i=1

2
√

2E [|〈a, v〉|]
mt
√
C1

(46)

Since a is isotropic and v has norm at most ε, by Jensen’s inequality, we can bound the second term
in the RHS by

E sup
v∈S3

m∑
i=1

2
√

2E [|〈a, v〉|]
mt
√
C1

.
ε

t
√
C1

. (47)

To bound the first term in the RHS, we use the Gine-Zinn symmetrization inequality [31, 68, 56]

E sup
v∈S3

∣∣∣∣∣
m∑
i=1

2
√

2
|〈ai, v〉| − E [|〈a, v〉|]

mt
√
C1

∣∣∣∣∣ . E sup
v∈S3

∣∣∣∣∣
m∑
i=1

ξi〈ai, v〉
mt
√
C1

∣∣∣∣∣ (48)

where ξi, i ∈ [m] are i.i.d ±1 Bernoulli variables.

We can bound this by

E sup
v∈S3

∣∣∣∣∣
m∑
i=1

ξi〈ai, v〉
mt
√
C1

∣∣∣∣∣ = Eξ,A
[

sup
v∈S3

∣∣∣∣ ξTAvmt
√
C1

∣∣∣∣] , (49)

= Eξ,A

[
sup

z:‖z‖≤ε

∣∣∣∣ξTAWz

mt
√
C1

∣∣∣∣
]

(50)
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≤ Eξ,A
[
ε‖ξTAW‖
mt
√
C1

]
(51)

≤
ε
√

Eξ,A‖ξTAW‖2

mt
√
C1

(52)

=
ε
√
EAtrace(AWWTAT )

mt
√
C1

(53)

=
ε
√

2km

mt
√
C1

.
ε

t

√
k

mC1
(54)

The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality.

Since m = Mb, from the above inequality and Eqn (47) we can now bound EΨ as

E [Ψ(a1, · · · , am)] .
ε

t

√
k

MbC1
+

ε

t
√
C1

(55)

Substituting the above inequality into the bounded difference inequality, we have with probability at
least 1− e−Ω(δ2),

Ψ(a1, a2, · · · , am) .
ε

t

√
k

MbC1
+

ε

t
√
C1

+
δ√
Mb

(56)

Setting M = Ω(k), δ = O
(√

M
b

)
, ε = O

(
t
b

√
C1

)
, we can reduce the terms in the above inequality

to

ε

t

√
k

MbC1
≤ O

(
1

b
3
2

)
, (57)

ε

t
√
C1

≤ O
(

1

b

)
, (58)

δ√
Mb
≤ O

(
1

b

)
, (59)

Since b > 1, the sum of these three terms is dominated by O
(

1
b

)
. From this, we can conclude that

for small enough ε, δ, with probability 1− e−Ω(Mb ),

Ψ(a1, a2, · · · , am) ≤ 0.05

b
(60)

⇒ sup
v∈S3

m∑
i=1

1

[
|〈ai, v〉| ≥

t
√
C1

2
√

2

]
≤ 0.05M. (61)

This allows us to control the effect of A at a scale of ε. It says that there at most 0.05M samples on
which vectors with magnitude at most ε have a magnitude greater than t

√
C1

2
√

2
after interacting with A.

This implies that there at least 0.95M batches in which all samples are well behaved.

Since we have control over an ε−cover of S1 as well as vectors at a scale of ε in S1, we can now
prove our result for all vectors in S1.

For any x ∈ S1, let x̃ ∈ Sε be the point in the ε−cover which is closest to x. For a batch Bj , we can
express ‖ABjx‖ as

1√
b
‖ABjx‖ ≥

1√
b
‖ABj x̃‖ −

1√
b
‖ABj (x− x̃)‖. (62)

From (42), there exists a subset of batches Jx̃ ⊆ [M ] with |Jx̃| ≥ 0.95M such that

1√
b
‖ABj x̃‖ ≥

√
C1t√
2
∀ j ∈ Jx̃. (63)
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From (61), there exists a subset of batches Jx−x̃ ⊆ [M ] with |Jx−x̃| ≥ 0.95M such that for all
j ∈ Jx−x̃,

|〈ai, x− x̃〉| ≤
√
C1t

2
√

2
∀ i ∈ Bj (64)

⇒ 1√
b
‖ABj (x− x̃)‖ ≤

√
C1t

2
√

2
, (65)

⇒ − 1√
b
‖ABj (x− x̃)‖ ≥ −

√
C1t

2
√

2
. (66)

From the bounds on ‖ABj x̃‖ and the bound on ‖ABj (x− x̃‖, we can conclude that for all x ∈ S1

there exist a subset of batches Jx = Jx̃ ∩ Jx−x̃ with cardinality at least 0.9M such that

1√
b
‖ABjx‖ ≥

√
C1t

2
√

2
, ∀ j ∈ Jx. (67)

This completes the proof, with γ =
√
C1t

2
√

2
= t(1−t2)

C22
√

2
.

D Proof of Lemma 5.4

Lemma (Lemma 5.4). Consider the setting of Lemma 5.3 with measurements satisfying y =
AG(z∗) + η. For any t > 0 and noise variance σ2, let the batch size b and number of batches M
satisfy b = Θ(σ

2

t2 ) and M = Ω(kd log n). Then with probability at least 1− e−Ω(m), for all z ∈ Rk
there exists a set J ⊆ [M ] of cardinality at least 0.9M such that

1

b
|ηTBjABj (G(z)−G(z∗))| ≤ t‖G(z)−G(z∗)‖ ,∀j ∈ J.

Proof. Proposition A.1 shows that the set SG = {G(z1) − G(z2) : z1, z2 ∈ Rk} lies in the range
of eO(kd logn) different 2k−dimensional subspaces. This trivially implies that for a fixed z∗ ∈ Rk,
the set {G(z) − G(z∗) : z ∈ Rk} also lies in the range of eO(kd logn) different 2k−dimensional
subspaces.

Proposition D.1 guarantees the result for a single subspace with probability 1 − e−Ω(M). Since
M = Ω(kd log n) and the batch size is constant which depends on the noise variance σ2 and t2, the
lemma follows from a union bound over the eO(kd logn) subspaces.

Proposition D.1. Consider a single 2k−dimensional subspace given by S = {Wz : W ∈
Rn×2k,WTW = I2k, z ∈ R2k}. Let A ∈ Rm×n be a matrix with i.i.d rows drawn from a

distribution satisfying Assumption (1) with constant C. If the batch size b = Θ
(
σ2

t2

)
and the number

of batches satisfies M = Ω
(
k log 1

ε

)
, with probability 1− e−Ω(M), for all x ∈ S, there exist a subset

of batches Jx ⊆ [M ] with |Jx| ≥ 0.90M such that

1

b
|ηTBjABjx| ≤ t‖x‖ ,∀j ∈ J.

Proof. Since the bound we want to prove is homogeneous, it suffices to show it for all vectors in S
that have unit norm. Let W ∈ Rn×2k be the orthonormal matrix spanning S, and S1 denote the set
of unit norm vectors in its span. That is,

S1 = {Wz : z ∈ R2k, ‖z‖ = 1,W ∈ Rn×2k,WTW = I2k}.

Consider the set Sε, which is a minimal ε−covering of S1. That is, for every x ∈ S1, there exists
x̃ ∈ Sε such that ‖x̃− x‖ ≤ ε.
For a fixed x̃ ∈ Sε, and t > 0, by Chebyshev’s inequality,

Pr

[
1

b
|ηTABj x̃| ≥

t

2

]
≤
∑
i∈Bj

(
η2
i 〈ai, x̃〉2

)
b2t2/4

(68)
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=
bσ2‖x̃‖2

b2t2/4
(69)

=
σ24

bt2
≤ 1

40
, (70)

if b ≥ 160σ2

t2 .

Define the indicator random variable

Yi(x) = 1

{
1

b
|ηTABix| ≥

t

2

}
.

From Eqn (70) we have

E [Yi(x̃)] ≤ 1

40
.

By concentration of Bernoulli variables, with probability 1− e−Ω(M),

M∑
j=1

Yi(x̃) ≤ 2E [Y1(x̃)] ≤ 1

20
.

This implies that for a fixed x̃ ∈ Sε, with probability 1 − e−Ω(M), there exist a subset of batches
Jx̃ ⊆ [M ] with cardinality 0.95M such that

1

b
|ηTABj x̃| ≤

t

2
∀ j ∈ Jx̃. (71)

Since the size of Sε is at most
(
O
(

1
ε

))2k
, we can union bound over all x̃ in Sε. Hence, if M =

Ω
(
k log 1

ε

)
, then with probability 1 − e−Ω(M), for all x̃ ∈ Sε, there exist a subset Jx̃ ⊆ [M ] with

cardinality 0.95M such that

1

b
|ηTABj x̃| ≤

t

2
∀ j ∈ Jx̃. (72)

This shows that the multiplier component is well behaved on a large fraction of the batches for an
ε−cover of S1. Now we need to extend the argument to all vectors in S1.

Now consider the set
S2 = {x− x̃ : x ∈ S1, x̃ ∈ Sε, ‖x− x̃‖ ≤ ε}.

Note that this a subset of all vectors in the span of W that have norm at most ε. That is, if

S3 = {Wz : z ∈ R2k, ‖z‖ ≤ ε},

we have S2 ⊆ S3.

For any v ∈ Rn, define the random variable

Zj(v) = 1

{
|ηiaTi v| ≥

t

2

}
. (73)

Now define the random process

Ψ(a1, · · · , am) = sup
v∈S2

1

m

m∑
i=1

Zi(v) (74)

Since S2 ⊆ S3, we can bound E [Ψ] via

E [Ψ] ≤ E

[
sup
v∈S3

1

m

m∑
i=1

Zi(v)

]
(75)
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≤ E

[
sup
v∈S3

1

m

m∑
i=1

|ηiaTi v|
t/2

]
(76)

≤ E

[
sup
v∈S3

∣∣∣∣∣ 1

m

m∑
i=1

|ηiaTi v| − E|ηiaTi v|
t/2

∣∣∣∣∣
]

+ E

[
sup
v∈S3

1

m

m∑
i=1

E|ηiaTi v|
t/2

]
(77)

We can bound the term on the right by

E

[
sup
v∈S3

1

m

m∑
i=1

E|ηiaTi v|
t/2

]
≤

E
[

sup
v∈S3

‖ηi‖2 |〈ai, v〉|
]

t/2
(78)

.
σε

t
, (79)

where we have used the Cauchy Schwartz inequality, followed by the fact that η is independent noise
and has variance σ2, a is isotropic, and v ∈ S3 has norm at most ε.

To bound the term on the left, we use the Gine-Zinn symmetrization inequality [31, 68, 56]

E

[
sup
v∈S3

∣∣∣∣∣ 1

m

m∑
i=1

|ηiaTi v| − E|ηiaTi v|
t/2

∣∣∣∣∣
]
. E

[
sup
v∈S3

∣∣∣∣∣ 1

m

m∑
i=1

ξiηia
T
i v

t/2

∣∣∣∣∣
]

(80)

where ξi, i ∈ [m] are i.i.d ± Bernoulli random variables.

Let ξη = (ξ1η1, ξ2η2, · · · , ξmηm) denote the the element wise product of the vectors ξ =
(ξ1, ξ2, · · · , ξm) and η = (η1, η2, · · · , ηm). We can bound the above inequality by

E sup
v∈S3

∣∣∣∣∣
m∑
i=1

ξiηi〈ai, v〉
mt/2

∣∣∣∣∣ = Eξ,η,A
[

sup
v∈S3

∣∣∣∣ (ξη)TAv

mt/2

∣∣∣∣] , (81)

= Eξ,η,A

[
sup

z:‖z‖≤ε

∣∣∣∣ (ξη)TAWz

mt/2

∣∣∣∣
]

(82)

≤ Eξ,η,A
[
ε‖(ξη)TAW‖

mt/2

]
(83)

≤
ε
√
Eξ,η,A‖(ξη)TAW‖2

mt/2
(84)

=
εσ
√

EAtrace(AWWTAT )

mt/2
(85)

=
εσ
√

2km

mt/2
.
εσ

t

√
k

m
(86)

The third line follows from the Cauchy-Schwartz inequality, and the fourth line follows from Jensen’s
inequality, and the fifth line follows from the fact that ξη has i.i.d coordinates that are independent of
A and have variance σ2.

From the above inequality and eq. (78), we get

E[Ψ(a1, a2, · · · , am)] .
σε

t

√
k

m
+
σε

t
.
σε

t
(87)

If we choose ε = c1
t
σb for a small enough constant c1, then we can bound the expectation as

E [Ψ(a1, · · · , am)] ≤ 0.025

b
(88)
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By the bounded differences inequality, with probability 1− e−Ω(δ2),

Ψ(a1, · · · , am) ≤ E [Ψ(a1, · · · , am)] +
δ√
m

(89)

Setting δ = 0.025
√

M
b , we get δ√

m
= 0.025√

Mb

√
M
b = 0.025

b . This gives

Ψ(a1, · · · , am) ≤ 0.025

b
+

0.025

b
=

0.05

b
. (90)

From which we conclude that

⇒ sup
v∈S2

m∑
i=1

1

{
|ηiaTi v| ≥

t

2

}
≤ 0.05m

b
= 0.05M. (91)

Now consider any x ∈ S1. There exists x̃ ∈ Sε such that ‖x̃− x‖ ≤ ε . From eq. (72) there exist a
subset Jx̃ ⊆ [M ] with cardinality 0.95M such that

1

b
|ηTBjABj x̃| ≤

t

2
∀ j ∈ Jx̃. (92)

Similarly, from eq. (91), there exists a subset Jx−x̃ ⊆ [M ] with cardinality 0.95M such that for all
j ∈ Jx−x̃, we have

|ηiaTi (x− x̃)| ≤ t

2
∀ i ∈ Bj , (93)

⇒ 1

b
|ηTBjABj (x− x̃)| ≤ t

2
. (94)

From the triangle inequality and a simple union bound, for all x ∈ S1, there exists a subset Jx =
Jx̃ ∩ Jx−x̃ with cardinality 0.9M such that

1

b
|ηTBjABjx| ≤

1

b
|ηTBjABj (x− x̃)|+ 1

b
|ηTBjABj x̃| (95)

≤ t

2
+
t

2
= t (96)

This completes the proof.

E Proof of Theorem 5.5

Proof. In Theorem 5.5, we fix the batch size b to be a suitable constant, specified in Lemma 5.3,
Lemma 5.4. Then for ε ≤ 0.01

b , the number of arbitrarily corrupted samples of A and y are at most
0.01
b bM = 0.01M . This implies that there exist 0.99M batches with uncorrupted samples of A, y.

For the rest of the proof, consider only these uncorrupted batches, and ignore the corrupted batches.

For a batch j, define the following

Qj(ẑ, z∗) :=
1

b
‖ABj (G(ẑ)−G(z∗))‖2, (97)

Mj(ẑ) :=
2

b
η>Bj (ABj (G(ẑ)−G(z∗))). (98)

it is easy to verify that `j(ẑ)− `j(z∗) = Qj(ẑ, z∗)−Mj(ẑ). The component Qj(ẑ, z∗) is commonly
called the quadratic component, and Mj(ẑ) is called the multiplier component.

By Lemma 5.2, the minimum value of the MOM objective is at most 4σ2 with high probability. Since
ẑ minimizes the objective eq. (2) to within additive τ of the optimum, it implies that the median batch
satisfies

Qj(ẑ, z∗)−Mj(ẑ) ≤ 4σ2 + τ. (99)
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Using Lemma 5.3, Lemma 5.4 on the 0.99M batches that do not have corruptions, if the batch
size is a large enough constant, we see that there exist 0.78M batches on which both the following
inequalities hold

γ2‖G(ẑ)−G(z∗)‖2 ≤ Qj(ẑ, z∗) and − σ‖G(ẑ)−G(z∗)‖ ≤ −Mj(ẑ). (100)

Putting the above two inequalities together, the median batch satisfies

γ2‖G(ẑ)−G(z∗)‖2 − σ‖G(ẑ)−G(z∗)‖ ≤ 4σ2 + τ.

Solving the quadratic inequality for ‖G(ẑ)−G(z∗)‖, we have

‖G(ẑ)−G(z∗)‖2 . σ2 + τ.

F Experimental Setup

F.1 MNIST dataset

We first compare Algorithm 1 with the baseline ERM [15] for heavy tailed dataset without arbitrary
corruptions on MNIST dataset [55]. We trained a DCGAN [80] to produce 64× 64 MNIST images.3
We choose the dimension of the latent space as k = 100, and the model has 5 layers.

Based on this generative model, the uncorrupted compressed sensing model P has heavy tailed
measurement matrix and stochastic noise: y = AG(z∗) + η. We consider a Student’s t distribution
(a typical example of heavy tails) – the measurement matrix A is generated from a Student’s t
distribution with degrees of freedom 4, and η with degrees of freedom 3 with bounded variance σ2.
We vary the number of measurement m and obtain the reconstruction error ‖G(ẑ) − G(z∗)‖2 for
Algorithm 1 and ERM, where G(z∗) is the ground truth image. Each curve in Figure 1a demonstrates
the averaged reconstruction error for 50 trials. In Figure 1a, Algorithm 1 and ERM both have
decreasing reconstruction error per pixel with increasing number of measurement. In particular,
Algorithm 1 obtains significantly smaller reconstruction error comparing with the baseline ERM.

F.2 CelebA-HQ dataset

We continue the study of empirical performance of our algorithm on real image datasets with higher
quality. We generate high quality RGB images with size 256× 256 from CelebA-HQ4. Hence the
dimension of each image is 256× 256× 3 = 196608. In all of our experiments, we fix the dimension
of the latent space as k = 512, and train a DCGAN on this dataset to obtain a generative model G.

We first compare our algorithm with the baseline ERM [15] for heavy tailed dataset without arbitrary
corruptions, and then deal with the situation of outliers.

Heavy tailed samples. In this experiment, we deal with the uncorrupted compressed sensing model
P , which has heavy tailed measurement matrix and stochastic noise: y = AG(z∗) + η. We also
use a Student’s t distribution for A and η – the measurement matrix A is generated from a Student’s
t distribution with degrees of freedom 4, and stochastic noise η with degrees of freedom 3 with a
bounded variance.

We obtain the reconstruction error ‖G(ẑ) − G(z∗))‖ vs. the number of measurement m for our
algorithm and ERM, where z∗ is the ground truth. In Figure 1b, each curve is an average of 20
trials. For heavy tailed y and A without any corruption, both methods are consistent, and have
decaying reconstruction error with increasing sample size. Our method obtains significantly smaller
reconstruction error, and shows competitive results over the baseline ERM for heavy tailed data set,
even without any arbitrary outliers.

3Code was cloned from the following repository https://github.com/pytorch/examples/tree/
master/dcgan.

4Code was cloned from the following repository: https://github.com/facebookresearch/pytorch_
GAN_zoo.
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F.3 Hyperparameter selection

When using the Adam [52] optimizer, we varied the learning rate over [0.1, 0.05, 0.01, 0.005] for our
algorithm and baselines. When using the Yellowfin [91] optimizer, we varied our learning rates over
[10−4, 5 ·10−5, 10−5, 5 ·10−6, 10−6]. We selected the best learning rate based on fresh measurements
that were not used for optimization.

G Background

Theorem G.1 (Ledoux-Talagrand Contraction Inequality). For a compact set T , let x1, · · · , xm be
i.i.d vectors whose real valued components are indexed by T , i.e., xi = (xi,s)s∈T . Let φ : R→ R
be a 1-Lipschitz function such that φ(0) = 0. Let ε1, · · · , εm be independent Rademacher random
variables. Then

E

[
sup
s∈T

∣∣∣∣∣
m∑
i=1

εiφ(xi,s)

∣∣∣∣∣
]
≤ 2E

[
sup
s∈T

∣∣∣∣∣
m∑
i=1

εixi,s

∣∣∣∣∣
]
.

Theorem G.2 (Talagrand’s Inequality for Bounded Empirical Processes). For a compact set T , let
x1, · · · , xm be i.i.d vectors whose real valued components are indexed by T , i.e., xi = (xi,s)s∈T .
Assume that Exi,s = 0 and |xi,s| ≤ b for all s ∈ T . Let Z = sups∈T

∣∣ 1
m

∑m
i=1 xi,s

∣∣. Let
σ2 = sups∈T Ex2

s and ν = 2bEZ + σ2. Then

Pr [Z ≥ EZ + t] ≤ C1 exp

(
−C2mt

2

ν + bt

)
.

where C1, C2 are absolute constants.
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