
We thank all reviewers for their thoughtful feedback, and for recognizing that the work addresses an important question1

(R2, R3, & R5), is well-written (R2 & R3), and considers a breadth of attribution methods (R2 , R4, & R5). Below we2

address concerns raised as part of the reviews. We believe your insights and comments will make the paper stronger.3

Additional Clarification & Insights (R3 & R5). Several interpretation approaches have been proposed (see4

arXiv:2003.07631 for 35 methods); however, it is unclear when, and for what debugging tasks, an interpretation5

method is effective. Our empirical assessment is a step towards addressing this issue, and provides initial evidence6

that future work, theoretical and empirical, can build upon. For example, surprisingly, we find that methods that7

modify back-propagation to compute relevance are able to detect the spurious background bug despite being essentially8

invariant to higher layer parameters. We will clarify in the paper, the contributions that differentiate our work, and9

provide concrete recommendations for practitioners. We will highlight where future work can build upon these findings.10
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Figure 1: Assessing TCAV and in-
fluence functions.

Why only attributions? Influence Function and Concept Methods (R2 &11

R4). We focused on attribution methods to keep our inquiry thematically focused.12

However, we have tested: i) influence functions (IF) (Koh et. al. 2017) for training13

point ranking, and ii) the concept activation (TCAV) approach (Kim et. al. 2018).14

We assess IF under spurious correlation, mislabelled examples, and domain shift.15

We test TCAV under the spurious correlation and model contamination setting16

(see Figure 1). TCAV identifies reliance on the spurious background concept and17

shows sensitivity to parameter weights under the model contamination setting.18

We find that IF shows association regarding spurious correlation. For example,19

for a given input with the spurious background, we measure the fraction of the20

top 1 percent of training points (86) that are spurious. We find, on 50 examples,21

that 91 percent (2.4 standard error) of the top 1 percent of training points are22

spurious. Similarly, we use the self-influence metric to assess mislabelling (see23

arXiv:2002.08484), and find that for 50 examples, we need to check an average24

of 11 percent of the training set (5.9 standard error). These results suggest that25

both methods might be effective for model debugging.26

Structure of the Paper (R4 & R5). We will streamline the exposition to minimize fragmentation and reduce excessive27

reliance on subheading & bolded paragraphs. For example, the discussion of the user study results can be summarized28

in a single section instead of across sections 2-5 as it currently stands.29

@R2: (Fig 5b): Users were asked to chose one option, however a free form answer was provided when the need to30

select both or other motivations occurred. Participants selected the free form option in 51 out of 1130 responses (4.5%).31

Among these responses only 6 reported that a combination of both label or explanation was used to make their choice.32

The remainder contained other comments focusing on surprising and unexpected results associated with either the33

explanation or the label. (Only Correct Predictions): Since the focus of our work is model debugging, it is necessary to34

test settings where the predicted class is incorrect. (Visual Similarity vs. Feature Ranking (212-215). These findings35

indicate that similar portions of the input is important under the two different settings, but that the ranking of the36

importance of these dimensions is different. (Class Prediction). We always explain the predicted class even when the37

predicted class is incorrect. (Test-Time Debugging). We explain the ‘erroneous’ prediction on the out-of-domain model.38

Eg., the fashion MNIST input in Fig. 8 is classified as an ‘8’ for an MNIST model, so we explain this target on the39

fashion MNIST input for the MNIST model. We will clarify these details in the updated manuscript.40

@R3: (Lai & Tan FAccT 2019). Thanks for the pointer, we will include and discuss the paper. A key difference is that41

under our setting, the end user’s sole task is to assess the model’s reliability; however, Lai & Tan consider a setting42

where the human and model combine to perform a task. (Bug Categorization): We agree that the bug categorization43

addresses a simple supervised learning setting. Adversarial examples, and R3’s example on unsupervised pre-training44

do not fit, cleanly, under the current categorization. We will clarify and state the setting more clearly in the manuscript.45

(User Study Details): 80% of the participants had either trained a model, taken an ML class, or are ML researchers46

(Fig.50 Appendix). We also provided training on model attributions, training data, and the task. We will include this47

discussion in the main body of the paper rather than the appendix.48

@R4: (Image classification): We will make it clear that we focus on image classification, and that our results might not49

translate to tabular settings with semantically meaningful features. (Loss): We performed all mislabeled experiments50

again, but this time explain the loss. For methods that modify back-propagation, our findings do not change (SSIM51

& Rank Correlation ≥ 0.85). For the other methods, we observe a slight drop: SSIM 0.72-0.81, and rank correlation52

0.69-0.83. We agree that this work opens up discussion about other ways of using attribution methods to diagnose bugs.53

@R5: (SSIM): Our use of SSIM to measure visual similarity follows previous work (Adebayo et. al. 2018 & Sixt et. al.54

2020) that used it for a similar purpose.55


