
Multi-Robot Collision Avoidance under Uncertainty
with Probabilistic Safety Barrier Certificates

Appendix

*Equation indexes from (1)-(17) follow the original indexes appearing in the paper submission
and new equations start from (18) in this document.

A Detailed Proofs

A.1 Proof of Theorem 3

Theorem 1. Existence of PrSBC: Assuming all pairwise robots are initially collision-free at t = 0,
i.e. equ. (2) holds true for all possible value of random state variables xi ∈ [x̂i−∆vi, x̂i+∆vi],∀i ∈ I,
then the PrSBC defined in equ. (10) is guaranteed to exist for any given confidence level σ ∈ [0, 1].

hsi,j(x) = ‖xi − xj‖2 − (Ri +Rj)
2 , ∀i > j (2)

Sσu = {u ∈ RmN | Aσiju ≤ bσij , ∀i > j, Aσ ∈ Rn×mN , bσ ∈ Rn} (10)

Proof. We start by proving the existence of PrSBC between each pairwise robots i and j with any
user-defined confidence level σ ∈ [0, 1]. Given the sufficiency condition of Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in
(9) with pairwise version of (8) rendering desired chance constrained safety Pr(xi,xj ∈ Hsi,j) ≥ σ:

Bs(x) = {u ∈ RmN : ḣsi,j(x,u) + γhsi,j(x) ≥ 0, ∀i > j}
Bsi,j(x) = {ui,uj ∈ Rm : ḣsi,j(x,u) + γhsi,j(x) ≥ 0}

(8)

Pr(ui,uj ∈ Bsi,j(x)) ≥ σ =⇒ Pr(xi,xj ∈ Hsi,j) ≥ σ, ∀i > j (9)

Consider ḣsi,j(x,u) =
∂hsi,j
∂x (x)(∆Fi,j(x) +Gi,j(x)ui,j + ∆wi,j) , we can then re-write the sufficiency

condition Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in (9) using (8) as follows:

Pr(ui,uj ∈ Bsi,j(x)) ≥ σ :

⇐⇒ Pr

(
∂hsi,j
∂x

(x)Gi,j(x)ui,j ≥ −γhsi,j(x)−
∂hsi,j
∂x

(x)
(
∆Fi,j(x) + ∆wi,j

))
≥ σ (11)

where

∂hsi,j
∂x

(x)Gi,j(x)ui,j = 2(xi − xj)
T

(
Gi(xi)ui −Gj(xj)uj

)
∂hsi,j
∂x

(x)

(
∆Fi,j(x) + ∆wi,j

)
= 2(xi − xj)

T

(
Fi(xi)− Fj(xj) + wi −wj

) (18)

Let’s denote the process noise difference ∆wi,j = wi−wj ∼ Qi,j with the finite support supp(Qi,j) =[
− (∆wi + ∆wj), (∆wi + ∆wj)

]
and state difference ∆xi,j = xi−xj ∼ Ti,j with the finite support

supp(Ti,j) =

[
(x̂i−x̂j)−(∆vi+∆vj), (x̂i−x̂j)+(∆vi+∆vj)

]
. Moreover, given the assumed uniform

distributions of wi,wj ,xi,xj , the distributions Ti,j , Qi,j are hence two different symmetric trapezoid
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distributions with finite supports. Then by substituting (18) into (11) and after re-organization, we
have

Pr

([
∆xi,j +

ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2
≥ R2

ij +

[ ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2)
≥ σ (19)

where

Gi,jui,j = Gi(xi)ui −Gj(xj)uj , ∆Fi,j = Fi(xi)− Fj(xj) , Rij = Ri +Rj > 0 (20)

Thus consider the following set of random variable ∆xi,j from its own finite support and (19):

Ωi,j(∆xi,j) = supp(Ti,j) =

[
(x̂i − x̂j)− (∆vi + ∆vj), (x̂i − x̂j) + (∆vi + ∆vj)

]

Ωu
i,j(∆xi,j) =

{
∆xi,j ∈ Rd

∣∣∣∣ [∆xi,j +

ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2
≥ R2

ij +

[ ẋi − ẋj︷ ︸︸ ︷
Gi,jui,j + ∆Fi,j + ∆wi,j

γ

]2} (21)

Note that the set of Ωu
i,j(∆xi,j) representing the space outside a (d − 1)−sphere for ∆xi,j in

d−dimensional space. It is determined by the pairwise value of ui,uj through Gi,jui,j = Gi(xi)ui−
Gj(xj)uj as defined in (20). It is thus straightforward to show that the condition in (19) is equivalent
to:

Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
≥ σ (22)

To prove the guaranteed existence of PrSBC, we need to show there always exists at least one
solution of pairwise ui,uj such that (22) holds for any given value of σ ∈ [0, 1]. First let’s consider
any pairwise ui = u0

i ,uj = u0
j leading to the joint control inputs u0 such that ẋi − ẋj = 0 in (21),

then we have the following condition representing the space outside the (d− 1)−sphere for ∆xi,j :

Ωu0

i,j (∆xi,j) =

{
∆xi,j ∈ Rd

∣∣∣∣ ∆x2
i,j ≥ R2

ij

}
(23)

Recall that all pairwise robots are assumed to be initially collision-free, i.e. ∆x2
i,j ≥ R2

ij , thus (22)

holds true at all times for any given σ ∈ [0, 1] since Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu0

i,j

)
= 1 under one possible

solution of joint control inputs u = u0 that leads to ẋi − ẋj = 0. More generally, as the value of
||ẋi − ẋj || grows from 0 with other value of u 6= u0, the corresponding (d− 1)−sphere of Ωu

i,j(∆xi,j)
in (21) will continuously shift from the origin and gradually intersect with the bounding box of

Ωi,j(∆xi,j) = supp(Ti,j) in (21). This leads to Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
continuously decrease from

1 to 0. Hence for any given value σ ∈ [0, 1], it is always feasible to solve for at least a particular

pairwise ui,uj such that Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
= σ, or Pr

(
∆xi,j ∈ Ωi,j ∩ Ωu

i,j

)
> σ so that

(22) holds true. This pairwise ui,uj could then serve as a hyperplane dividing the corresponding
subspace of joint control space of u with one side in the form of (10) rendering the satisfying
probabilistic safety between robot i, j. And by repeatedly updating the hyperplane at each time
step in (10), the constrained step-wise controllers ui,uj ensure the probabilistic safety is guaranteed
at all times given the forward invariance in (9). It is then straightforward to extend to all pairwise
inter-robot collision avoidance constraints and thus concludes the proof.

2



A.2 Computation of PrSBC

In this part we will provide computation of PrSBC that yield the solution in equation (12) and
(13). Lets consider inter-robot collision avoidance first. Given any confidence level σ ∈ [0, 1], from
Section A.1 the equivalent chance constraint of Pr(ui,uj ∈ Bsi,j(x)) ≥ σ in (11) and its re-written
form in (19) can be transformed into a deterministic linear constraint over pairwise controllers
ui,uj in the form of (10). While it is computationally intractable to get closed form solutions from
(19), we obtain an approximate solution by considering the condition on each individual dimension
∆xli,j ∈ {∆x1

i,j , . . . ,∆xdi,j} ⊂ Rd of ∆xi,j ,∀l = 1, . . . , d for (19). Hence, we introduce a sufficiency
condition to (19) in each dimension as follows, so that ensuring (24) =⇒ (19).

Pr

(
(∆xli,j)

2 + 2 ·
(Gi,jui,j)l + ∆F li,j

γ
∆xli,j ≥ R2

ij −Bl
i,j

)
≥ σ (24)

where (Gi,jui,j)l = (Giui − Gjuj)l ∈ R and ∆F li,j = F li − F lj ∈ R denote the lth element of

Gi,jui,j ∈ Rd×1 and ∆Fi,j ∈ Rd×1 respectively. Bl
i,j = − 2

γ max ||∆wl
i,j || · ||∆xli,j || ∈ R with

∆wl
i,j ∈ R as the lth element in ∆wi,j ∈ Rd. To simplify the discussion we assume piece-wise

Gi, Gj ∈ Rd×m, Fi, Fj ∈ Rd×1 in (1) are known and deterministic. Then, we have equivalent
condition of (24) as follows

Pr

(
∆xli,j ≤ −

(Gi,jui,j)l + ∆F li,j
γ

−Dl
i,j OR ∆xli,j ≥ −

(Gi,jui,j)l + ∆F li,j
γ

+Dl
i,j

)
≥ σ (25)

where

Dl
i,j =

√(
(Gi,jui,j)l + ∆F li,j

)2
γ2

+R2
ij −Bl

i,j

Recall the finite support of ∆xi,j with its symmetric trapezoid distribution Ti,j in (21), we can
find alternative condition to enforce either of the condition in (25), e.g. Pr(∆xli,j ≤ ·) ≥ σ

or Pr(∆xli,j ≥ ·) ≥ σ so that (25) is definitely lower bounded by σ. We assume σ > 0.5 and

denote el,1i,j = Φ−1(σ) and el,2i,j = Φ−1(1 − σ) with Φ−1(·) as the inverse cumulative distribution

function (CDF) of the random variable ∆xli,j = xli − xlj in (18) along each lth dimension. We have

σ > 0.5 =⇒ el,1i,j > el,2i,j . Thus, we derive a formal sufficiency condition for (25) as follows.

∃l = 1, . . . , d : −2eli,j(Gi,jui,j)l/γ ≤ (eli,j)
2 −R2

ij +Bl
ij + 2eli,j∆F

l
i,j/γ (12)

where

eli,j =


el,2i,j , el,2i,j > 0

el,1i,j , el,1i,j < 0

0, el,2i,j ≤ 0 and el,1i,j ≥ 0

Note that eli,j = 0 implies the two robots i and j overlap along the lth dimension, e.g. two drones
flying to the same 2D locations but with different altitudes. As it is assumed any pairwise robots
are initially collision free and from the forward invariance property discussed above, eli,j = 0 only
happens along at most d− 1 dimensions. To that end, we can formally construct the PrSBC as in
(10) with the following linear deterministic constraints in closed form.

Sσu = {u ∈ RmN | − 2eTi,j(Giui −Gjuj)/γ ≤ ||ei,j ||2 − d ·R2
ij +Bij + 2eTi,j∆Fi,j/γ, ∀i > j} (13)

where ei,j = [e1i,j , . . . , e
d
i,j ]

T ∈ Rd×1 and Bij = Σd
l=1B

l
ij . This invokes a set of pairwise linear

constraints over the robot controllers such that the inter-robot probabilistic collision avoidance in (4)
holds true at all times. Note the PrSBC constraint in (13) is a conservative approximation of (12)
by adding up the constraints for each dimension, and therefore guarantee Pr(ui,uj ∈ Bsi,j(x)) ≥ σ.
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