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1 In-depth Analysis

1.1 Phase and Amplitude in the CF Loss

We report the effects of α on training the overall RCF-GAN in Fig. 1. From this figure, we can
find that the proposed RCF-GAN is robust to the choice of α, as when α ranges from 0.1 to 0.9, the
RCF-GAN still achieved relatively superior generations. More importantly, we have not witnessed
any mode collapse generations in all experiments. Although α = 0.5 was a default and mainly
used in our experiments, varying α could even achieve better performances. For example, for the
dataset without complex and diversified scenarios (e.g., CelebA), imposing amplitude by α = 0.75
increased the FID (KID) from 15.86 (0.011) to 13.84 (0.009). As the amplitude relates to the diversity
measurement in the CF loss, the increment may come from enhancing the richness of generated
faces. On the other hand, for some complicated scenarios (e.g., CIFAR-10), keeping the mean of data
generation (that is, focusing on the phase) could be more beneficial (e.g., α = 0.1).

Fig. 1 further shows an illustrative example on some over-weighted examples from CelebA. When
over-weighting the phase (α = 0.1), the generated images tend to be whitened and blurred, with
their interpolation less smooth. This indicates that RCF-GAN tended to learn the average (mean)
information of the data. On the contrary, when the amplitude was over-weighted (α = 0.9), the
generated images were over-saturated and with noisy artefacts, meaning that the RCF-GAN was
likely to learn diversified content, even though some learnt faces were inaccurate. Therefore, the
physical meaning of the proposed CF loss can provide a feasible way of understanding and evaluating
generation details where the KID and FID metrics cannot reflect.

Figure 1: FID and KID scores for different α, under the DCGAN [1] structure. Observe the embedded
space (by interpolated images) of the proposed RCF-GAN, which was learnt with different α on
CelebA dataset.

∗Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Table 1: Ablation study on the CelebA dataset. The proposed RCF-GAN was evaluated and compared
to the one without (w/o) reciprocal requirement (λ = 0) and without anchor design.

FID
w/o reciprocal w/o anchor RCF-GAN

G. 59.39±0.37 17.80±0.20 15.86±0.08
R. >100 >100 14.82±0.12

KID
w/o reciprocal w/o anchor RCF-GAN

G. 0.046±0.001 0.010±0.000 0.011±0.001
R. >0.060 >0.060 0.009±0.000
Note: G. is for image random generation and R. for image
reconstruction.

1.2 Ablation Study

The roles of the two key distinguishing elements of the proposed RCG-GAN are now evaluated via an
ablation study on the CelebA dataset. There are the term λ that controls the reciprocal together with
the anchor design. The results in Table 1 showed that without the reciprocal loss (by setting λ = 0)
the overall generation was largely degraded and the reconstruction even completely failed. This, on
the one hand, highlights the necessity of the reciprocal loss in our work; on the other hand, it also
validates the correctness of the theoretical guarantee in Lemma 4, which is an important requirement
that also motivates the auto-encoder structure in our RCF-GAN. Moreover, Table 1 also validates
the effectiveness of the proposed anchor design. Without the anchor design, the generation still
works, however, because the minimisation of CT (f(X ),Z) by the anchor does no longer exist, the
mapping of real images f(X ) might not completely fall into the support of Z , thus leading to poor
reconstructions. Therefore, in order to successfully generate and reconstruct images, the reciprocal
and anchor architecture are necessary in the proposed RCF-GAN.

Figure 2: The ResNet 128× 128 structure adopted in this work. Note that the numbers in red colour
represent the channel setting of ResNet 64× 64.

2 Advancements under ResNet Structure

The scalability of the proposed RCF-GAN was further evaluated over complex net structures and
higher image sizes. Specifically, we trained RCF-GAN under the ResNet structure, in terms of image
sizes of 64× 64 and 128× 128. The ResNet structure under image size 64× 64 was exactly the same
as that in [4]. We extended this structure to the image size 128× 128 in a similar way to the DCGAN,
which is shown2 in Fig. 2. We adopted the spectral normalisation instead of the layer normalisation
in the ResNet experiments and also encourage to refer to our implementations for more detail.

The FID and KID scores are given in Table 2, and the results of randomly generating, reconstructing
and interpolating 128× 128 images are provided in Fig. 3. More results on image sizes of 64× 64
can be found in Fig. 4.

2Please note that the critic of our ResNet 128× 128 structure is slightly different from that in the spectral
GAN [5]. We adopted a symmetric (mirror) structure of the generator, whereby the spectral GAN used an
asymmetric one. Although RCF-GAN still works under the structure of the spectral GAN, we believe that
the mirror structure can well reflect the proposed reciprocal idea and is also a natural extension of the ResNet
64× 64 in [4]. The parameter size in our ResNet structure is slightly smaller than that in the spectral GAN.
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Table 2: The FID and KID scores under the ResNet structure in terms of 64×64 and 128×128 image
sizes. The result of Sphere GAN was obtained from the original article [2]. We ran the available code
of the OCF-GAN-GP [3] with its implemented ResNet structure because it failed to converge in our
structure given in Fig. 2.

64× 64
FID KID

Celeba LSUN_B Celeba LSUN_B
Sphere GAN — 16.9 [2] —- —-
RCF-GAN 9.02±0.22 8.76±0.07 0.006±0.001 0.005±0.001

RCF-GAN (R.) 8.06±0.08 7.89±0.05 0.003±0.000 0.002±0.000
128× 128

OCF-GAN-GP 20.78±0.15 21.82±0.20 0.015±0.001 0.014±0.001
RCF-GAN 10.71±0.11 10.32±0.13 0.006±0.000 0.005±0.001

RCF-GAN (R.) 13.01±0.15 8.64±0.10 0.006±0.000 0.003±0.000
Note: R. is for image reconstruction.

(a) Generation (b) Reconstruction (c) Interpolation

Figure 3: Random generation, reconstruction and interpolation by the proposed RCF-GAN by ResNet
in terms of image size 128× 128. The upper panel shows images of the CelebA dataset and the lower
panel is for the LSUN_B dataset.

3 Proofs

We repeat the CF loss in the paper for the convenience of referring in the following proofs.

CT (X ,Y) =

∫
t

(
(ΦX (t)− ΦY(t))(Φ∗X (t)− Φ∗Y(t))︸ ︷︷ ︸

c(t)

)1/2
dFT (t), (1)

Lemma 1. The discrepancy between X and Y , given by CT (X ,Y) in (1), is a distance metric when
the support of T resides in Rm.

Proof. We here prove the non-negativity, symmetry and triangle properties that are required as a
valid distance metric.

Non-negativity: Based on the definition of CT (X ,Y) in (1), the term CT (X ,Y) is non-negative
because c(t) ≥ 0 for all t. We next prove when the equality holds.

• X =d Y → CT (X ,Y) = 0: This is evident because ΦX (t) = ΦY(t) for all t.
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(a) Generation (b) Reconstruction (c) Interpolation

Figure 4: LSUN Church images generated, reconstructed and interpolated by the RCF-GAN by
ResNet in terms of image size 64×64. In this experiment, the employed ResNet was slightly different
from the one in Fig. 2 by using the layer normalisation.

• X =d Y ← CT (X ,Y) = 0: Given that the support of T is Rm,
∫
t

√
c(t)dFT (t) = 0

exists if and only if c(t) = 0 everywhere. Therefore, ΦX (t) = ΦY(t) for all t ∈ Rm.
According to the Uniqueness Theorem of the CF, we have X =d Y .

Therefore, CT (X ,Y) ≥ 0, and the equality holds if and only if X =d Y .

Symmetry: This is obvious for the symmetry of c(t), thus yielding CT (X ,Y) = CT (Y ,X ).

Triangle: Because the CFs ΦX (t) and ΦX (t) are the elements of the normed vector space, we have
the following inequality (also known as the Minkowski inequality),∫

t

|ΦX (t)− ΦZ(t) + ΦZ(t)− ΦY(t)|dFT (t)

≤
∫
t

|ΦX (t)−ΦZ(t)|dFT (t)+

∫
t

|ΦZ(t)−ΦY(t)|dFT (t).

(2)

Therefore, the triangle property of CT (X ,Y) follows as

CT (X ,Y) ≤ CT (X ,Z) + CT (Z,Y). (3)

This means that CT (X ,Y) is a valid distance metric in measuring discrepancies between two random
variables X and Y .

This completes the proof.

Lemma 2. If X and Y are supported on a finite interval [−1, 1]m, CT (X ,Y) in (1) is still a distance
metric for distinguishing X from Y for any FT (t) that samples t within a small ball around 0.

Proof. The proof of the triangle and symmetry properties is the same as those in Lemma 1. The
non-negativity is also evident and the same as that in Lemma 1 but the equality holds for different
conditions. We provide its proof in the following.

Before proceeding with the proof, we first quote Theorem 3 from Essen [6].

Theorem 3 ([6]) The distributions of two random variables X and Y are the same when

• ΦX (t) = ΦY(t) in an interval around 0;

• βk =
∫
x
xkdFX (x) <∞ for k = 0, 1, 2, 3, . . .

•
∑∞
k=1

1/β
1/2k
2k diverges, which means that the moment problem of βk is determined and

unique.
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It is the fact that only requiring ΦX (t) = ΦY(t) in an interval around 0 does not ensure the
equivalence between two distributions without any other constraints, also given the counterexample
provided in [6]. This equivalence cannot be ensured even when all the moments are matched. The
third condition, intuitively, guarantees this equivalence by restricting that the moment does not
increase “extremely” fast when k →∞.

In Lemma 2 of this work, we bound X and Y by [−1, 1], thus having |βk| ≤ 1 <∞ and 1/β
1/2k
2k ≥ 1

so that
∑∞
k=1

1/β
1/2k
2k diverges. In this case, according to Theorem 3, we have ΦX (t) = ΦY(t) when t

samples around 0→ X =d Y . Conversely, it is obvious that X =d Y → ΦX (t) = ΦY(t) for all t.
Therefore, as for bounded X and Y , sampling around 0 is sufficient to ensure the symmetry, triangle,
non-negativity (together with the uniqueness when the equality holds) properties of CT (X ,Y).

This completes the proof.

Lemma 3. The metric CT (X ,Y) is bounded and differentiable almost everywhere.

Proof. We first show the boundedness of CT (X ,Y) by observing

0 ≤ CT (X ,Y) =

∫
t

|ΦX (t)− ΦY(t)|dFT (t)

≤
∫
t

|ΦX (t)|dFT (t) +

∫
t

|ΦY(t)|dFT (t) ≤ 1 + 1 = 2,

(4)

where the second inequality is obtained via the Minkowski inequality and the third one by the fact
that the maximal modulus of the CF is 1. It should be pointed out that this property is important and
advantageous because in this way our cost is bounded automatically. Otherwise, we may need to
bound f ∈ F to ensure an existence of the supremum of some IPMs (such as the dual form of the
Wasserstein distance used in the W-GAN).

To prove the differentiable property, we first expand c(t) in CT (X ,Y) =
∫
t

√
c(t)dFT (t) as

c(t) = (Re{ΦX (t)} − Re{ΦY(t)})2

− (Im{ΦX (t)} − Im{ΦY(t)})2,
(5)

where Re{ΦX (t)} = EX [cos(tTx)] denotes the real part of the CF and Im{ΦX (t)} =
EX [sin(tTx)] for its imaginary part. Therefore, by regarding c(t) as a mapping Rm → R, it
is differentiable almost everywhere3.

This completes the proof.

Lemma 4. Denote the distribution mapping by Y =d g(Z). Given two functions f(·) and g(·) that
are reciprocal on the supports of Y and Z , that is, EZ [||z− f(g(z))||22] = 0, we also have EY [||y−
g(f(y))||22] = 0. More importantly, this yields the following equivalences: CT (f(X ), f(Y)) = 0⇔
CT (X ,Y) = 0⇔ CT (f(Y),Z) = 0 and CT (f(X ),Z) = 0.

Proof. Because EZ [||z − f(g(z))||22] = 0 and ||z − f(g(z))||22 ≥ 0, we have z = f(g(z)) for any
z and g(z) under the supports of Z and Y , respectively. We can obtain g(z) = g(f(g(z))) under
the supports of Z and Y as well; given that y = g(z) by the definition, this results in y = g(f(y)).
Then, we have EY [||y − g(f(y))||22] = 0. Therefore, the function g(·) is a unique inverse of the
function f(·), and vice versa, which also indicates that the two functions are bijective.

The bijection of the function f(·) possesses many desirable properties between the domains of Y
and Z , thus ensuring the equivalences between their CFs. Specifically, without loss of generality, we
assume CT (X ,Y) = 0, which means∫

x

ejt
T
xdFX (x) =

∫
y

ejt
T
ydFY(y), for all t. (6)

3We note that c(t) is not necessarily complex differentiable because it does not satisfy the Cauchy-Riemann
equations. It is the fact that nonconstant purely real-valued functions are not complex differentiable because
their Cauchy-Riemann equations are not satisfied. However, in our case, it is differentiable as it is regarded as
mappings in the real domain. Please refer to [7, 8] for more detail in the CR calculus.
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Then, given the bijection f(·) by X = f(X ) and Y = f(Y), we obtain x = f(x) = f(y) = y⇔
x = y, for any realisations x and y from X and Y . We then have the following equivalence between
the CFs of X = f(X ) and Y = f(Y),∫

x

ejt
T
xdFX (x) =

∫
y

ejt
T
ydFY(y), for all t

⇔
∫
x

ejt
T f(x)dFX (x) =

∫
y

ejt
T f(y)dFY(y), for all t

⇔
∫
x

ejt
TxdFX (x) =

∫
y

ejt
TydFY(y), for all t.

(7)

Therefore, we have CT (f(X ), f(Y)) = 0. Furthermore, we also have f(Y) =d Z due to
EZ [||z − f(g(z))||22] = 0. Therefore, we have the following equivalences: CT (X ,Y) = 0 ⇔
CT (f(X ), f(Y)) = 0⇔ CT (f(Y),Z) = 0 and CT (f(X ),Z) = 0.

This completes the proof.

4 Related Works

IPM-GANs: Instead of the naive weight clipping in the W-GAN [9], the gradient penalty in W-GAN
(W-GAN-GP) was proposed to mitigate the heavily constrained critic by penalising the gradient
norm [4], followed by a further elegant treatment by restricting the largest singular value of the net
weights [5]. It has been understood that although the critic cannot search within all satisfied Lipschitz
functions [10, 11], the critic still performs as a way of transforming high dimensional but insufficiently
supported data distributions into low dimensional yet broadly supported (simple) distributions in the
embedded domain [12]. Comparing the embedded statistics, however, is much easier. For example,
Cramer GAN compares the mean with an advanced F from the Cramer distance to correct the
biased gradient [13], whilst McGAN [14] explicitly compares the mean and the covariance in the
embedded domain. Fisher GAN employs a scale-free Mahalanobis distance and thus a data dependent
F [15], which is basically the Fisher-Rao distance in the embedded domain between two Gaussian
distributions with the same covariance. The recent Sphere GAN further compares higher-order
moments up to a specified order, and avoids the Lipschitz condition by projecting onto a spherical
surface [2]. Moreover, in a non-parametric way, BE-GAN directly employs an auto-encoder as the
critic, whereby the auto-encoder loss was compared through embedded distributions [16]. The sliced
Wasserstein distance has also been utilised into measure the discrepancy in the embedded domain
[17]. Another non-parametric metric was achieved by the kernel trick of the MMD-GAN [18, 12],
which treats F as the reproducing kernel Hilbert space. However, one of the most powerful ways of
representing a distribution, the CF, is still to be fully explored. More importantly, our RCF-GAN
both directly compares the embedded distributions and also potentially generalises the MMD-GAN
by flexible sampling priors.

Moreover, a very recent independent work [3] named OCF-GAN also employs the CF as a replacement
by using the same structure of MMD-GANs. Our RCF-GAN is substantially different from that in
[3]:

• Our critic operates as semantic embeddings and learns a meaningful embedded space, instead of
being a component to build complete metrics as the existing GANs (e.g., OCF-GAN, MMD-GANs
and W-GANs) do.

• Our CF design, is novel in its triangle anchor design with l1-norm (to stabilise convergence),
meaningful analysis of amplitude and phase (to favour other distribution alignment tasks), t-net of
outputting scales (to automatically optimise T distribution types), and useful supporting theory (to
correctly and efficiently use CF in practice).

• Our RCF-GAN seamlessly combines the auto-encoder and GANs by using only two neat modules
while achieving the state-of-the-art performances, whereas the majority of adversarial learning
structures use at least three modules with auto-encoding separated from GANs.

Consequently, the results in [3] were reported given all images rescaled to the size of 32× 32, while
our RCF-GAN consistently outperforms in various ways including high resolutions, net structures
and functionalities.
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Auto-encoders in an adversarial way: To address the smoothing artefact of the variational auto-
encoder [19], several works aim to incorporate the adversarial style in (variational) auto-encoders,
in the hope of gaining clear images whilst maintaining the ability of reconstruction. These mostly
consist of at least three modules, an encoder, a decoder, and an adversarial modules [20–25]. To the
best of our knowledge, there is one exception, called the adversarial generator encoder (AGE) [26],
which incorporates two modules in adversarially training an auto-encoder under a max-min problem.
The AGE still assumes the Gaussianity in the embedded distributions and only compares the mean
and the diagonal covariance matrix; this is basically insufficient in identifying two distributions, and
requires the pixel domain loss to be utilised supplementally in implementations. Our work, stilling
playing a min-max problem, is fundamentally different from the AGE, as the auto-encoder in our
RCF-GAN is a necessity to achieve the theoretical guarantee of a reciprocal, with the proposed
anchor design. In contrast, without the auto-encoder, the AGE could still work by its Theorems 1 and
2 [26]. Furthermore, other than the first- and second-order moments, our work fully compares the
discrepancies in the embedded domain via CFs. Benefiting from the powerful non-parametric metric
via the CFs, our RCF-GAN only adversarially learns distributions in the embedded domain, that is,
on a semantically meaningful manifold, without the need of any operation on the data domain.
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