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Abstract

Generative adversarial nets (GANs) have become a preferred tool for tasks in-
volving complicated distributions. To stabilise the training and reduce the mode
collapse of GANs, one of their main variants employs the integral probability met-
ric (IPM) as the loss function. This provides extensive IPM-GANs with theoretical
support for basically comparing moments in an embedded domain of the critic.
We generalise this by comparing the distributions rather than their moments via a
powerful tool, i.e., the characteristic function (CF), which uniquely and universally
comprising all the information about a distribution. For rigour, we first establish
the physical meaning of the phase and amplitude in CF, and show that this provides
a feasible way of balancing the accuracy and diversity of generation. We then
develop an efficient sampling strategy to calculate the CFs. Within this framework,
we further prove an equivalence between the embedded and data domains when a
reciprocal exists, where we naturally develop the GAN in an auto-encoder struc-
ture, in a way of comparing everything in the embedded space (a semantically
meaningful manifold). This efficient structure uses only two modules, together
with a simple training strategy, to achieve bi-directionally generating clear images,
which is referred to as the reciprocal CF GAN (RCF-GAN). Experimental results
demonstrate the superior performances of the proposed RCF-GAN in terms of both
generation and reconstruction.

1 Introduction
Generative adversarial nets (GANs) owe their success to their powerful capability in capturing
complicated data distributions [1]. In practical applications, however, their significant potential still
remains under-explored as GANs typically suffer from unstable training and mode collapse issues [2].
An effective yet elegant way to address these issues is to replace the Jensen-Shannon (JS) divergence
in measuring the discrepancy in the original form of GANs [3] by another class of metrics called the
integral probability metric (IPM) [4] given by,

d(Pd,Pg) = sup
f∈F
|Ex∼Pd [f(x)]− Ex∼Pg [f(x)]|, (1)

where the symbol F in IPMs represents a collection of (typically real) bounded functions, Pg denotes
the generated distribution, and Pd is the real data distribution. Using IPMs to improve GANs has been
justified by the fact that in real-world data distributions are typically embedded in low-dimensional
manifolds, which is intuitive because data preserve semantic information instead of being a collection
of rather random pixels. Thus, the divergence measure (“bin-to-bin” comparison) of the original GAN
could easily max out, whereas the IPMs such as the Wasserstein distance (“cross-bin” comparison)
can consistently yield a meaningful measure between the generated and real data distributions [3].
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Figure 1: The overall structure of the proposed RCF-GAN. The generator serves to minimise the CF
loss between the embedded real and fake distributions. The critic serves to minimise the CF loss
between the embedded real and the input noise distributions, whilst maximising the CF loss between
the embedded fake and the input noise distributions. Moreover, an MSE loss between the embedded
fake and the input noise distributions is regularised as the auto-encoder loss, which has not been
shown in the figure. An optional t-net can be employed to optimally sample the CF loss.

Varying collections of F in (1), therefore, defines different IPM-GANs and the supremum supf∈F
is then typically achieved by the discriminator net, or more formally, the critic in the IPM-GANs.
The first IPM-GAN was motivated by the Wasserstein GAN (W-GAN) [5], where F denotes all the
1-Lipschitz functions. However, it has been widely argued that the critic is not powerful enough to
search within all the 1-Lipschitz function spaces, which leads to limited diversity of the generator due
to an ill-posed equivalence measurement of Pd and Pg [6, 7]. Follow-up works have been proposed
to improve the W-GAN by either enhancing it to satisfy the 1-Lipschitz condition (e.g., by gradient
penalty [8] or spectral normalization [9]) or by employing easy-to-implement F for the critic. The
latter, by virtue of relaxing the critic, typically leads to a stringent comparison on the embedded
feature domain, i.e., by matching higher-order moments instead of the mean matching in the W-GAN.
This path includes many recent GANs which additionally consider the second-order moment (e.g.,
Fisher-GAN [10] and McGAN [11]), together with explicitly (e.g., Sphere GAN [12]) or implicitly
(e.g., MMD-GAN [13, 14]) comparing higher-order moments. Furthermore, generalising (1) as
moment matching problem has been justified as a natural and beneficial way to understand IPM-
GANs [15–17]. This also compensates for the deficiency where the critic may not transform the
data distributions into unimodal distributions, for example, the Gaussian distribution that is solely
determined by the first- and second-order moments.

Moreover, it is more safe and elegant to compare the distributions because the equivalence in
distributions ensures the equivalence in the moments; the inverse, however, does not necessarily
hold. As a powerful tool of containing all the information relevant to a distribution, the characteristic
function (CF) provides a universal way of comparing distributions, even when their probability density
functions (pdfs) do not exist. The CF also has a one-to-one correspondence with the cumulative
density function (cdf), which has also been verified to benefit the design of GANs [18]. Compared
to the moment generating function (mgf) that has been reflected in the MMD-GAN [13], the CF is
unique and universally existent. More importantly, the CF is automatically aligned at 0; this means
that even a simple “bin-to-bin” comparison between CFs can consistently provide a meaningful
measure and thus avoid gradient vanishing that appears in the original GAN [5]. On the other hand,
the weak convergence property of CFs ensures that the convergence in the CF also indicates the
convergence in the distributions.

In this paper, we propose a reciprocal CF GAN (RCF-GAN) as a natural generalisation of the existing
IPM-GANs, with the overall structure shown in Fig. 1. It needs to be pointed out that incorporating
the CF in a GAN is non-trivial because the CF is basically complex-valued and the comparison
has to be performed on functions as well. To address these difficulties, we first demystify the role
of CFs by finding that its phase is closely related to the distribution centre, whereas the amplitude
dominates the distribution scale. This provides a feasible way of balancing the accuracy and diversity
of generation. Then, as for the comparison over functions, we prove that other than in the whole
space of CFs, sampling within a small ball around 0 of CFs is sufficient to compare two distributions,
and also enables the proposed CF loss to be bounded and differentiable almost everywhere. We
further optimise the sampling strategy by automatically adjusting sampling distributions under the
umbrella of the scale mixture of normals [19].
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Benefiting from our powerful CF design in comparing distributions, we propose to purely compare
in the embedded domain and prove its equivalence to the counterpart in the data domain when a
reciprocal theory between the generator and the critic holds. This motivates us to incorporate an auto-
encoder structure to satisfy this theoretical requirement. In this way, the critic in our RCF-GAN is
further relaxed and only focuses on learning a fruitful embedding. Furthermore, different from many
existing adversarial works with auto-encoders incorporating at least three modules2 [13, 14, 21–26],
our RCF-GAN only requires two modules that already exist in a GAN; the critic is an encoder and
the generator is a decoder as well, which is neat and reasonable as this comes without increasing
computational complexity and complicated (unstable) training strategies, as well as without other
requirements such as the Lipschitz continuity. More importantly, the framework of comparing
everything in the embedded domain enables the CF-GAN to learn a semantic and meaningful latent
space, and to also avoid the smoothing artefact that arises from the use of point-wise mean square
error (MSE) employed in the data domain. This benefits from both the auto-encoder and the GANs,
i.e., bi-directionally generating clear images. Our experimental results show that our RCF-GAN
achieves remarkable improvements on the generation, together with an additional capability in the
reconstruction and interpolation3.

2 Characteristic Function Loss and Efficient Sampling Strategy
2.1 Characteristic Function and Elliptical Distribution
The CF of a random variable, X ∈ Rm, represents the expectation of its complex unitary transform,
given by

ΦX (t) = EX [ejt
Tx] =

∫
x

ejt
TxdFX (x), (2)

where FX (x) is the cdf of X . We thus have ΦX (0) = 1 and |ΦX (t)| ≤ 1 for all t. This property
ensures that CFs can be straightforwardly compared in a “bin-to-bin” manner, because all CFs are
automatically aligned at t=0. Moreover, when the pdf of X exists, the expression in (2) is equal to
its inverse Fourier transform; this ensures that ΦX (t) is uniformly continuous. Another important
property of the CF is that it uniquely and universally retains all the information regarding a random
variable. In other words, a random variable does not necessarily need to possess a pdf (e.g., when it
is an α-stable distribution), but its CF always exists.

As the cdf, FX (x), is unknown and is to be compared, we employ the empirical characteristic function
(ECF) as an asymptotic approximation in the form of Φ̂Xn(t) =

∑n
i=1 e

jtTxi , where {xi}ni=1 are n
i.i.d. samples drawn from X . As a result of the Levy continuity theorem [28], the ECF converges
weakly to the population CF [29]. More importantly, the uniqueness theorem guarantees that two
random variables have the same distribution if and only if their CFs are identical [30]. Therefore,
together with the weak convergence, the ECF provides a feasible and good proxy to the distribution,
which has also been preliminarily applied in two sample test [31, 32]. Before proceeding further, we
introduce an important class of distributions that will be used in this work.

Example 1. Within unimodal distributions, one broad class of distributions is called the elliptical
distribution, which is general enough to include various important distributions such as the Gaussian,
Laplace, Cauchy, Student-t, α-stable and logistic distributions. The elliptical distributions do not
necessarily have pdfs, and we refer to [33] for more detail. The CF of an elliptical distribution, X ,
however, always exists and has the following form

ΦX (t) = ejt
Tµψ(tTΣt), (3)

where µ denotes the distribution centre, Σ is the distribution scale, and ψ(·) is a real-valued function
R→ R, for example, ψ(s) = e(−s/2) for the Gaussian distribution. By inspecting (3) we can see that
the phase of the CF is solely related to the location of data centre and the amplitude is only governed
by the distribution scale (diversity).

2To our best knowledge, the only exception is the AGE [20], which adopts two modules in an auto-encoder
under a max-min problem and different losses. Please see the Related Works for the difference.

3A very recent independent work [27] named OCF-GAN also employs the CF as a replacement by using the
same structure of MMD-GANs. The proposed RCF-GAN is substantially different from that in [27]. We refer to
the Related Works in the supplementary material for a detailed explanation.
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2.2 Distance Measure via Characteristic Functions
The auto alignment property of the CFs allows us to incorporate a simple “bin-to-bin” comparison
over two complex-valued CFs (corresponding to two random variables X and Y), in the form

CT (X ,Y)=

∫
t

(
(ΦX (t)−ΦY(t))(Φ∗X (t)−Φ∗Y(t))︸ ︷︷ ︸

c(t)

) 1
2 dFT (t), (4)

where Φ∗ denotes the complex conjugate of Φ and FT (t) is the cdf of a sampling distribution
on t. For the convenience of subsequent analysis, we represent the quadratic term for each t as
c(t) = (ΦX (t)−ΦY(t))(Φ∗X (t)−Φ∗Y(t)). More importantly, CT (X ,Y) is a valid distance that
measures the difference of two random variables via CFs, of which the proof is provided in Lemma
1; this means CT (X ,Y)=0 if and only if X =dY . A specific type of CT (X ,Y) in (4) is when the
pdf of t is proportional to ||t||−1, and its relationship to other metrics, including the Wasserstein and
Kolmogorov distances, has been analysed in detail [34].
Lemma 1. The discrepancy between X and Y , given by CT (X ,Y) in (4), is a distance metric when
the support of T resides in Rm.

Furthermore, as the phase and amplitude of a CF indicate the data centre and diversity, we inspect
c(t) and rewrite it in a physically meaningful way, i.e., through the differences in the corresponding
phase and amplitude terms as [35, 36],

c(t) = |ΦX (t)|2 + |ΦY(t)|2 − ΦX (t)Φ∗Y(t)− ΦY(t)Φ∗X (t)

= |ΦX (t)|2 + |ΦY(t)|2 − |ΦX (t)||ΦY(t)|(2 cos(aX (t)− aY(t)))

= |ΦX (t)|2 + |ΦY(t)|2 − 2|ΦX (t)||ΦY(t)|+ 2|ΦX (t)||ΦY(t)|
(
1− cos(aX (t)− aY(t))

)
= (|ΦX (t)| − |ΦY(t)|)2︸ ︷︷ ︸

amplitude difference

+2|ΦX (t)||ΦY(t)| (1− cos(aX (t)− aY(t)))︸ ︷︷ ︸
phase difference

,

(5)
where aX (t) and aY(t) represent the angles (phases) of ΦX (t) and ΦY(t), respectively. Therefore,
we can clearly see that CT (X ,Y) basically measures the amplitude difference and the phase differ-
ence weighted by the amplitudes. We can further consider a convex combination of the two terms via
0≤α≤ 1, to yield

cα(t) = α
(
(|ΦX (t)| − |ΦY(t)|)2

)
+ (1−α)

(
2|ΦX (t)||ΦY(t)|(1−cos(aX (t)−aY(t))

)
. (6)

Recall that for the elliptical distributions in Example 1, the phase represents the distribution centre
while the amplitude represents the scale; CT (X ,Y) thus measures the both discrepancy of the
centres and diversity of two distributions. We show in Figure 2-(a) that by swapping the phase and
amplitude parts, the saliency information follows the phase part of the CF, which captures the centres
of the distribution4. We further illustrate in Figure 2-(b) that this property still holds in real data
distributions, even though they are much complicated and even non-unimodal. From Figure 2-(b)-(d),
mainly training the phase (shown in Figure 2-(c)) results in generating images similar to an average
of the real data, as a result of minimising the difference of the data centres. On the other hand,
when mainly training the amplitude (shown in Figure 2-(b)), we can obtain diversified but inaccurate
images (“wrong” numbers such as “1” for digit 7 and “6” for digit 5, uneven characters, disconnected
artefacts, etc.). Therefore, by using different weights in cα(t), we can flexibly capture the main
content via minimising the phase difference, whilst enriching the diversity of generated images by
increasing the amplitude loss. This provides a meaningful and feasible way of understanding the
GAN loss in controlling the generation.

2.3 Sampling the Characteristic Function Loss
In practice, to calculate CT (X ,Y) efficiently, as mentioned in Section 2.1, ΦX (t) and ΦY(t) can be
evaluated by the ECFs of X and Y , which are weakly convergent to the corresponding population
CFs. The remaining task is to sample from FT (t). A direct approach is to use the neural net where
the input is Gaussian noise and the output is the samples of FT (t). However, Proposition 1 indicates
that this can lead to ill-posed optima whereby FT (t) converges to some point mass distributions and

4This phenomenon has been discovered in the Fourier representation of signals [37, 38]. We validate that
this also holds in probabilistic distributions.
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(a) Swapping (b) Training amplitude (c) Training phase (d) Training both

Figure 2: Two experiments on the MNIST dataset which show the physical meaning of the phase
and amplitude of the CF. (a) A multivariate Gaussian fit to the images of digits 1 and 2, by naively
assuming that each pixel is independent from other pixels. Then, the phase and amplitude information
of the CFs between the two multivariate distributions were swapped, and then randomly sampled
from the swapped distributions. (b)-(d) A generator was directly trained on the given images of
each digit. To avoid the impact from the critic, we DO NOT employ the critic in this experiment
but directly calculate the loss between images after the generator with different α. We performed
training for amplitude for α = 0.999 in (b), phase only for α = 0.001 in (c) and equally training the
amplitude and phase information for α = 0.5 in (d).

thus is no longer supported in Rm as required in Lemma 1. In other words, for the degenerated FT (t),
we may have CT (X ,Y) but X 6=d Y . In our experiment, we also found that directly optimising
FT (t) can cause instability.

Proposition 1. The maximum of CT (X ,Y) is reached when FT (t) attains a mass point at t∗, where
t∗ = arg maxt c(t). The minimum of CT (X ,Y) is reached when FT (t) attains a mass point at 0.

In the way of addressing this ill-posed optimisation on FT (t), we can impose some constraints
on FT (t), for example, by assuming some parametric distributions. On the other hand, we may
also be concerned that the constraints on FT (t) can impede the ability of CT (X ,Y) as a metric to
distinguish X from Y . Lemma 2 provides an efficient and feasible way of choosing FT (t).

Lemma 2. If X and Y are supported on a finite interval [−1, 1]m, CT (X ,Y) in (4) is still a distance
metric for distinguishing X from Y for any FT (t) that samples t within a small ball about 0.

As shown in the next section, we employ CT (X ,Y) as the loss to compare two distributions from
the critic. By employing bounded activation functions (tanh, sigmoid, etc.), the requirement of
Lemma 2 is automatically satisfied. Therefore, instead of searching within all the real distribution
spaces, the choices of FT (t) can be safely restricted to some zero-mean distributions, e.g., the
Gaussian distribution. Furthermore, compared to the fixed Gaussian distribution, it is preferable,
whilst avoiding the ill-posed optimum, that FT (t) could be optimised to better accommodate the
difference between two distributions.

In this paper, we choose FT (t) as the cdf of a broad class of distributions called the scale mixture of
normals, in the form of

pT (t) =

∫
Σ

pN (t|0,Σ)pΣ(Σ)dΣ, (7)

where pT (t) is the pdf of FT (t), while pN (t|0,Σ) denotes the zero-mean Gaussian distribution
with the covariance given by Σ, and pΣ(Σ) denotes distributions of Σ. It needs to be pointed out
that the scale mixture of normals constitutes a large portion of the elliptical distributions and includes
many important distributions (e.g., the Gaussian, Cauchy, Student-t, hyperbolic distributions [39]) by
choosing different pΣ(Σ). Therefore, instead of directly optimising FT (t), which leads to ill-posed
solutions, we alternatively optimise the neural net to output the samples of pΣ(Σ). By using the
affine transformation (or the re-parametrisation trick), we are able to propagate back the gradients.

We should point out that the term
∫
t
c(t)dFT (t) contained in our CF loss can also be interpreted as

certain well behaved kernels in the MMD metric. This is due to the fact that the shift invariant and
characteristic kernels in the MMD metric have to satisfy k(x,y) =

∫
t
e−jt

T (x−y)dFT (t) for some
compactly supported FT (t) [40]. In contrast to the predefined and fixed kernels in the MMD-GANs,
the proposed optimisation on the types of FT (t) is thus able to learn this important hyperparameter,
i.e., the type of kernels. On the other hand, the elliptical distributions in Example 1 potentially
provide a set of well-defined characteristic kernels, by choosing FT (t) as a normalised version of
the CFs in (3). Then, the corresponding real-valued kernels are the density generators in [19].
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3 Reciprocal Adversarial Learning
3.1 Characteristic Function Loss in RCF-GAN
Although the CF loss is a complete metric for measuring any forms of data distributions (e.g., Fig. 2-
(b)-(d)), the CF loss in (4) works more efficiently and effectively in the embedded domain, with higher
likelihood of learning fruitful representations of data. To this end, we first express our RCF-GAN in
the IPM-GAN format as

d(Pd,Pg) = sup
T ,f∈F

CT (f(X ), f(Y)), X ∼ Pd and Y ∼ Pg, (8)

where we make a distinction between the random variables (X and Y) in the data domain and those
(X and Y) in the embedded domain, i.e., X =d f(X ) and Y =d f(Y). Lemma 3 below shows that
this metric is well-defined for neural net training.
Lemma 3. The metric CT (X ,Y) is bounded and differentiable almost everywhere.
Because CT (·, ·) is bounded by construction, it relaxes the requirements on the critic f ∈ F .
Otherwise, we may need to bound F to ensure the existence of the supremum [10].

3.2 Matching in the Embedded Space
Having proved that CT (X ,Y) = 0 ⇔ X =d Y , we also need to prove the equivalence between
CT (f(X ), f(Y))=0 and X =dY , to ensure that our RCF-GAN correctly learns the real distribution
in the data domain. This result is provided in Lemma 4.
Lemma 4. Denote the distribution mapping by Y =d g(Z). Given two functions f(·) and g(·) that
map between the supports of Y and Z , if EZ [||z − f(g(z))||22] = 0, we also have the reciprocal
property EY [||y − g(f(y))||22] = 0, and vice versa. More importantly, this yields the following
equivalences: CT (f(X ), f(Y))=0⇔ CT (X ,Y)=0⇔ CT (f(Y),Z)=0 and CT (f(X ),Z)=0.

As a prerequisite of Lemma 4, the co-domains between f(·) and g(·) need to reside on the supports of
Y and Z . Otherwise, the reciprocal may not hold. In our RCF-GAN, we propose an anchor design to
our critic, by rewriting the critic loss (by minimising) as −(CT (f(Y),Z)−CT (f(X ),Z)). Thus,
Z operates as the static anchor (or pivot) in the dynamic training process. Besides stabilising and
improving the convergence in training, this further enables the critic to quickly map real data, X , to
the support of Z , whilst the generator tries to map the generated distribution, Y , to the real data, X .
The adversarial part to maximise CT (f(Y),Z) aims to improve the generation quality against the
generator loss, i.e., CT (f(X ), f(Y)). Fig. 1 illustrates the triangle relationship in our anchor design.

Furthermore, Lemma 4 indicates that instead of being regarded as components of some IPMs (e.g.,
the W-GAN) to be optimised with strict restrictions, the critic can be basically regarded as a feature
mapping because in the embedded domain the CF loss is a valid distance metric of distributions.
The critic can then be relaxed to satisfy the reciprocal property. Therefore, we incorporate the
auto-encoder in only two modules by interchangeably treating the critic as the encoder and the
generator as the decoder. More importantly, Lemma 4 ensures that matching in the embedded space
is sufficient due to EZ [||z − f(g(z))||22] = 0 → EY [||y − g(f(y))||22] = 0. This is beneficial in
various applications such as the image generation (and reconstruction), where in the data domain, the
MSE loss typically leads to smooth artefacts.

3.3 Putting Everything Together
In practice, in Lemma 4, we regard f(·) as the critic and g(·) as the generator. The t-net is denoted
by h(·) and the covariance matrix of its output is assumed to be diagonal (we thus represent it as
σ), which is reasonable as in the embedded domain the multiple dimensions tend to be uncorrelated
[41]. We also need to clarify that because the t-net is optional and in our RCF-GAN, fixed Gaussian
can be directly sampled for t, we separate the t-net from f(·). However, if the t-net is employed,
since they (the t-net and critic) have the same goal of distinguishing the generated distribution from
the real data distribution, they are optimised simultaneously and share the same critic loss, i.e.,
−(CT (f(Y),Z)−CT (f(X ),Z)). Moreover, the critic additionally minimises an MSE loss to
ensure the reciprocal property. On the other hand, the generator is trained by minimising (8) as usual.
The pseudo-code for the proposed RCF-GAN is provided in Algorithm 1.

It also needs to be pointed out that here we choose Z as the Gaussian distribution for a fair com-
parison to other GANs; other complex distributions can be seamlessly adopted in our framework
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according to different tasks, for example, finite mixture models for un-supervised and semi-supervised
classifications, and learnt distributions for sequential data processing.
Remark 1. Besides the case of computation, the structure of the proposed RCF-GAN benefits from its
interpretation as both a GAN and an auto-encoder, as a way of unifying them. As an auto-encoder, the
RCF-GAN enables us to compare reconstructions solely on a meaningful embedded manifold, instead
of in the data domain. When regarded as a GAN, the auto-encoder part theoretically and practically
indicates the convergence; it also stabilises the training by pushing the embedded distributions to the
static anchor Z .

Algorithm 1: RCF-GAN. In all the experiments in this paper, the generator and the critic are
trained once at each iteration. The optional t-net with parameter θt is designated by hθt(·).
input: Real data distribution Pd; Gaussian noise PN ; batch sizes bd, bg , bt and bσ for the data,

the generator input noise, T and t-net input noise, respectively; learning rate lr;
reciprocal regularisation in the embedded domain λ

output: Net parameters θc and θg for the critic and generator, respectively
while θc and θg not converge do

/* train the critic */

Sample from distributions: {xi}bdi=1 ∼ Pd; {zi}
bg
i=1 ∼ PN ; {ti}bti=1 ∼ PN ; {σi}bσi=1 ∼ PN

Affine transform: {ti}bti=1 ←
(
{ti}bti=1, hθt({σi}

bσ
i=1)

)
// optional

Calculate adversarial loss: // emperical version of −
(
CT (f(Y),Z)− CT (f(X ),Z)

)
L = −

(
C{ti}bti=1

(
fθc(gθg ({zi}

bg
i=1)), {zi}

bg
i=1

)
− C{ti}bti=1

(
fθc({xi}

bd
i=1), {zi}

bg
i=1

))
Update: θt ← θt + lr ·Adam(θt,∇θt

[
L
]
)

θc ← θc + lr ·Adam(θc,∇θc

[
L+ λ

∑bg
i=1 ||zi − fθc(gθg (zi))||22

]
)

/* train the generator */

Sample from distributions: {xi}bdi=1 ∼ Pd; {zi}
bg
i=1 ∼ PN ; {ti}bti=1 ∼ PN ; {σi}bσi=1 ∼ PN

Affine transform: {ti}bti=1 ←
(
{ti}bti=1, hθt({σi}

bσ
i=1)

)
// optional

Calculate adversarial loss: // emperical version of CT (f(Y), f(X ))

L = C{ti}bti=1

(
fθc(gθg ({zi}

bg
i=1)), fθc({xi}

bd
i=1)

)
Update: θg ← θg + lr ·Adam(θg,∇θg

[
L
]
)

4 Experimental Results
In this section, our RCF-GAN is evaluated in terms of both image generation, reconstruction and
interpolation, with our code available at https://github.com/ShengxiLi/rcf_gan. We also
show in the supplementary material advanced results including phase and amplitude analysis, ablation
study and superior performances under the ResNet structure.

Datasets: Three widely applied benchmark datasets were employed in the evaluation: CelebA (faces
of celebrities) [44], CIFAR-10 [45] and LSUN Bedroom (LSUN_B) [46]. The images of the CelebA
and LSUN_B were cropped to the size 64× 64, whist the image size of the CIFAR10 was 32× 32.
When evaluating the reconstruction, the test sets of the CIFAR10 and LSUN_B were employed, of
which the samples were not used in the training.

Baselines: As our work is mainly related to the IPM-GANs, we compared our RCF-GAN with
the W-GAN [5], W-GAN with gradient penalty (W-GAN-GP) [8] and MMD-GAN [13, 14]. As an
advancement of the MMD-GAN, the most recent work, OCF-GAN [27], together with its gradient
penalty version (OCF-GAN-GP) was also compared. We need to point out that all the results reported
in [27] were evaluated for the image size of 32× 32. We thus ran the experiments for the CelebA and
LSUN_B for image sizes 64× 64 by using its provided code. For image reconstruction, we compared
our RCF-GAN with the recent adversarial generator-encoder (AGE) work [20], which empirically
performs better than the adversarially learned inference (ALI) [26].

Metrics: The Fréchet inception distance (FID) [43] was employed as a performance metric, which
is basically the Wasserstein distance between two Gaussian distributions, together with the kernel
inception distance (KID) that arises from the MMD metric [14]. In evaluating the FID and KID
scores, we randomly generated 25,000 samples for both generation and true images, and obtained
these metrics in terms of mean and standard deviation by 10 times repeated random selections.
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Table 1: The FID and KID scores obtained from the DCGAN [42] structure. The results of the
DCGAN and W-GAN-GP are from [43] and [14]. The corresponding publicly available codes were
run to obtain the results of the W-GAN [5], MMD-GAN [13], OCF-GAN and OCF-GAN-GP [27].
The results of the AGE were tested from its pre-trained models [20].

Methods
FID KID

CIFAR-10 Celeba LSUN_B CIFAR-10 Celeba LSUN_B
DCGAN 37.7 [43] 21.4 [43] 70.4 [43] —- —- —-
W-GAN 42.64±0.26 31.85±0.28 57.05±0.37 0.025±0.001 0.023±0.001 0.048±0.002

W-GAN-GP 37.52±0.19[14] —- 41.39±0.25[14] 0.026±0.001[14] —- 0.039±0.002[14]
MMD-GAN 42.8±0.27 32.5±0.16 56.52±0.34 0.025±0.001 0.024±0.001 0.047±0.002
OCF-GAN 40.99±0.15 32.66±0.16 61.48±0.23 0.024±0.001 0.024±0.001 0.052±0.002

OCF-GAN-GP 33.68±0.21 16.09±0.25 65.18±0.317 0.021±0.001 0.011±0.001 0.060±0.002
AGE 32.54±0.24 23.19±0.14 —- 0.020±0.001 0.017±0.001 —-

RCF-GAN(t_norm) 31.55±0.20 19.34±0.22 38.16±0.286 0.019±0.001 0.012±0.001 0.032±0.001
RCF-GAN(t_net) 31.21±0.21 15.86±0.08 40.15±0.40 0.018±0.001 0.011±0.001 0.034±0.001

AGE(R) 47.37±0.32 30.77±0.19 —- 0.022±0.001 0.024±0.001 —-
RCF-GAN(t_net)(R) 28.70±0.16 14.82±0.12 44.16±0.42 0.014±0.001 0.009±0.000 0.036±0.001
Note: t_norm corresponds to use the fixed Gaussian samples and t_net to the t-net. (R) denotes for the reconstruction.

Net structure and technical details: For a fair comparison, all the reported results were compared
under the batch sizes of 64 (i.e., bd=bg=bt=bσ=64). Moreover, all variances of Gaussian noise
were set to 1, except for the input noise of the generator that was 0.3, because the reciprocal loss had
to be minimised given the fact that the output of the critic is restricted to [−1, 1]. Furthermore, we do
not require the Lipschitz constraint, which allows for a relatively larger learning rate (lr = 0.0002
for both nets). Moreover, for the CIFAR10 and LSUN_B datasets, the dimension of the embedded
domain was set to 128 and for the CelebA dataset the dimension was 64. The optional t-net, if used,
was a small three layer fully connected net, with the dimension of each layer being the same as the
embedded dimension. Our default RCF-GAN used t-net and layer normalisation, and was trained
with the vanilla CF loss (i.e., α = 0.5 in (6)).

Image generation: The images generated from random Gaussian noise are shown in Fig. 3. Observe
that by using the proposed CF loss in the RCF-GAN, the generated images are clear and close to
the real images; the FID and KID scores are further provided in Table 1. This table shows that the
proposed RCF-GAN consistently achieved the best performances across the three datasets. The
OCF-GAN-GP achieved comparable generation performance on the CelebA dataset, but had relatively
inferior performances compared to our RCF-GAN on the CIFAR-10 and LSUN_B datasets. Thus,
although the most recent independent work, OCF-GAN, also adopts the characteristic function in
designing the loss, it still operates under the MMD-GAN framework, without the interpretation of the
physical meaning of the characteristic function and the consideration of the t-net proposed in this
paper. More importantly, the reciprocal structure introduced in this paper, together with the proposed
CF loss, stably and significantly improves the image generation performance.

By inspecting the achieved best performances of RCF-GAN, the use of the t-net in outputting optimal
FT (t) proved beneficial. Moreover, solely training g(z) via the CF typically performs inferior,
which in our experiments on CelebA, obtained a 165 FID score (i.e., rough faces). This also verifies
the benefit of latent space comparison via our critic. We also need to point out that in the default
setting, our critic and generator were evaluated under almost the same number of model parameters
as W-GANs, whereas MMD-GANs need an extra decoder net. The only extra cost in our t-net is
negligible because it is a 3-layer fully connected net with the dimension of each layer less than 128.

More importantly, compared to a fluctuated generator loss that is caused by the adversarial module
in GANs, we take the advantages of the auto-encoder structure in utilising the reciprocal loss (i.e.,
EZ [||z− f(g(z))||22] indicates the reciprocal loss in the embedded space), together with the distance
between the embedded real distribution f(X ) and the Gaussian distribution Z (i.e., CT (f(X ),Z))
to better indicate the convergence, as shown in Figure 3. Intuitively, the reciprocal loss measures the
convergence on reconstructions, whereas the real image embedding distance CT (f(X ),Z) indicates
the performance on generating images.

Image reconstruction: Benefiting from the reciprocal requirement introduced in Lemma 4, the
proposed RCF-GAN can also reconstruct images and learn a semantic meaningful space. Images
reconstructed and interpolated by RCF-GAN, AGE and MMD-GAN are shown in Fig. 4. As seen
from this figure, because the RCF-GAN only matches the distributions in the embedded domain, the
reconstructed images are thus clear and semantically meaningful, resulting in a superior interpolation
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(a) CelebA (b) CIFAR10 (c) LSUN_B

Figure 3: The convergence curves and images generated by the proposed RCF-GAN from Gaussian
noise, under the DCGAN [42] structure. Note that the curves were plotted by an average over a
moving window, with 500 iterations.

(a) RCF-GAN (b) AGE (c) MMD-GAN

Figure 4: Image reconstruction (upper panel) and interpolation (lower panel) by the proposed RCF-
GAN, AGE [20] and MMD-GAN [13] in the CelebA dataset, under the DCGAN [42] structure. The
upper panel shows the reconstructed images (in even columns) corresponding to the original images
(in odd columns). The lower panel displays the linear interpolation in the embedded domain.

and reconstruction. This is beneficial because besides randomly generating real images, RCF-GAN is
able to bi-directionally reconstruct and interpolate real images. In contrast, although MMD-GANs
employ a third module to implement an auto-encoder, the decoded images are severely blurred.

Moreover, the proposed RCF-GAN subjectively achieved better reconstruction and interpolation than
the AGE, by generating less blurred and more accurate images (for example, correct skin and hair
colours). This is quantified in Table 1, which shows that the images reconstructed by our RCF-GAN
are superior to those from the AGE. More importantly, by comparing with the FID and KID scores in
Table 1, the images from the proposed RCF-GAN are consistently superior, whilst the quality of the
reconstructed images in the AGE is significantly inferior to its random generated images. This also
indicates the effectiveness of the unified structure of our RCF-GAN.

5 Conclusion
We have introduced an efficient generative adversarial net (GAN) structure that seamlessly combines
the IPM-GANs and auto-encoders. In this way, the reciprocal in the proposed RCF-GAN ensures
the equivalence between the embedded and data domains, whereas in the embedded domain the
comparison of two distributions is strongly supported by the proposed powerful characteristic function
(CF) loss, together with the physically meaningful phase and amplitude information, and an efficient
sampling strategy. The reciprocal, accompanied with the proposed anchor design, has been shown
to also stabilise the convergence of the adversarial learning in the proposed RCF-GAN, and at
the same time to benefit from meaningful comparisons in the embedded domain. Consequently,
the experimental results have demonstrated the superior performances of our RCF-GAN in both
generating images and reconstructing images.
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6 Broader Impact

A combination of the auto-encoder and GANs has been extensively studied, and has been shown
to achieve a broader data generation and reconstruction. The RCF-GAN proposed in this paper
provides a neat and new structure in the combination. The studies of GANs and those design on
probabilistic auto-encoders basically start from different perspectives because the former serves for
the generation, or it “decodes” from random noise, whilst the latter, as its name implies, focuses on
encoding to summarise information. Although there are extensive attempts on combining those two
structures, they typically embed one into the other as components such as by using an auto-encoder as
a discriminator in GANs or using an adversarial idea in an auto-encoder. This paper provides a way
of equally treating the two structures; the proposed structure, which contains only two modules, can
be regarded both as an “encoder-decoder” and “discriminator-generator”. The proposed combination
benefits both, that is, it equips an auto-encoder the ability to meaningfully encode via matching in the
embedded domain, whilst ensuring the convergence of the adversarial as a GAN.

Moreover, instead of being a component to measure the distance as in the W-GAN, regarding the
critic as an independent feature mapping module with a sufficient distance metric is beneficial to
allow learning in the embedded domain for any types of feature extraction models, such as the deep
canonical correlation analysis net and graph auto encoder. A large amount of unsupervised learning
models, then, can be connected and improved with the adversarial learning.

Another potential benefit of our work is to bring the general concept of the characteristic function
(CF) into practice, by providing efficient sampling methods. The CF has been previously studied
as a powerful tool in theoretical probabilistic analysis, while its practical applications have been
limited due to complex functional forms. We should also highlight the physical meaning of the CF
components introduced in this paper. It is a well known experimental phenomenon that the phase
of discrete Fourier transform of images captures the saliency information, which motivates a large
volume of works in saliency detection. This paper gives a probabilistic explanation to this, paving the
way for future work to embark upon this intrinsic relationship.
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