Supplementary Materials for

Cascaded Text Generation with Markov Transformers

Appendix A: Cascaded Decoding Examples

We show a decoding example in Table 3 (K = 5, $\Delta L = 1$, iters=5). We sort states by max-marginals in descending order and use - to denote invalid states (with $-\infty$ log max-marginals). In this simple sentence, using 1 iteration (m = 0, non-autoregressive model) repeats the word "woman" (m = 0, first row, $x_{4:4+m}$). Introducing higher order dependencies fixes this issue.

Table 3: Cascaded Decoding Example. When m = 4, Viterbi in \mathcal{X}_4 returns "an amazing woman . eos". The source is "eine erstaunliche frau . eos" and the target is "an amazing woman . eos".

m	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
0	an amazing incredible this remarkable	amazing woman an remarkable incredible	woman amazing an women	woman amazing eos an	eos woman amazing women	eos pad woman women	eos pad woman women	pad - - -
1	an amazing an incredible this amazing an remarkable amazing woman	amazing woman incredible woman remarkable woman woman amazing amazing women	woman . amazing woman women . woman woman an amazing	. eos woman . amazing woman . woman	eos pad . eos woman . women .	pad pad eos pad . eos woman eos -	pad pad eos pad - -	
2	an amazing woman an incredible woman this amazing woman an remarkable woman an amazing women	amazing woman . incredible woman . remarkable woman . amazing women . amazing woman woman	woman .eos woman .eos woman woman . woman woman .woman	. eos pad woman . eos eos . woman . woman	eos pad pad . eos pad woman . eos eos -	pad pad pad eos pad pad . eos pad - -	L	
3	an amazing woman . an incredible woman . this amazing woman . an remarkable woman . an amazing women .	amazing woman . eos incredible woman . eos remarkable woman . eos amazing women . eos amazing woman woman .	woman . eos pad woman . eos pad woman woman . eos woman eos woman . woman .	. eos pad pad woman . eos pad s eos pad . woman . eos woman eos	eos pad pad pad . eos pad pad woman . eos pad eos pad	L		

Table 4: Cascaded Decoding Example. When m = 4, Viterbi in \mathcal{X}_4 returns "what has happened ? eos". The source is "was ist passient ? eos" and the target is "what happened ? eos".

n	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
0	what so now and	happened has did what	happened ? what happen	? eos happened happen	eos ? happened happen	eos pad ? happened	eos pad ?	pad - -
1	well what has so what and what what 's now what	has happened what happened 's happened did what did happened	eos happened ? what happened happen ? what ? what happens	happens ? eos happened ? happens ? happen ? ? ?	eos pad ? eos happens ? happen ? happened ?	pad pad eos pad ? eos . eos happened eos	happened pad pad eos pad - -	1 -
2	what has happened so what happened what 's happened and what happened now what happened	has happened ? what happened ? 's happened ? did what ? did what happened	happened ? eos happened ? ? happen ? ? happen ? eos what happened ?	? eos pad ? ? eos happen ? eos happens ? eos happened ? eos	eos pad pad ? eos pad happened ? eos happen ? eos happens ? eos	pad pad pad eos pad pad happened eos pad . eos pad ? eos pad	l	
3	what has happened ? so what happened ? and what happened ? what 's happened ? now what happened ?	has happened ? eos what happened ? eos 's happened ? eos has happened ? ? ? what happened ? ?	happened ? eos pad happened ? ? eos what happened ? eos happen ? eos pad happen ? ? eos	? eos pad pad ? ? eos pad s happened ? eos pad happens ? eos pad happen ? eos pad	eos pad pad pad ? eos pad pad d happens ? eos pad happen ? eos pad happened ? eos pad	I		

In Tables 4, 5, 6, 7, 8 we show more examples from IWSLT14 De-En val.

n	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
0	you happy your and i	're are you 's be	happy lucky gla@@ good fortun@@	eos happy lucky ful	eos happy ? you	eos pad happy ?	eos pad happy ?	pad - - -
1	you 're you are you be you 's and you	're happy are happy are lucky be happy 're lucky	happy . lucky . good . happy happy happy ful	. eos happy . ful . lucky .	eos pad . eos happy . ? eos you .	pad pad eos pad . eos ? eos happy eos	pad pad eos pad - - -	
2	you 're happy you are happy you be happy you 're lucky you are lucky	're happy . are happy . be happy . 're lucky . are lucky .	happy . eos lucky . eos happy happy happy . happy ful .	. eos pad eos happy . eos ful . eos lucky . eos	eos pad pad . eos pad you . eos ? eos pad happy . eos	pad pad pad eos pad pad happy eos pad ? eos pad . eos pad	1	
3	you 're happy you are happy you be happy . you 're lucky . you are lucky .	re happy . eos . are happy . eos be happy . eos 're lucky . eos are lucky . eos	happy . eos pad s lucky . eos pad happy eos happy ful . eos happy happy . eos	. eos pad pad eos pad lucky . eos pad ful . eos pad s happy . eos pao	eos pad pad pad . eos pad pad l happy . eos pad ? eos pad pad d you . eos pad	1		

Table 5: Cascaded Decoding Example. When m = 4, Viterbi in \mathcal{X}_4 returns "you 're happy . eos". The source is "du bist glücklich . eos" and the target is "you 're happy . eos".

Table 6: Cascaded Decoding Example. When m = 4, Viterbi in \mathcal{X}_4 returns "let 's move . eos". The source is "bewe@@ g dich . eos" and the target is "move it . eos".

\overline{m}	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
	move	move		eos	eos	eos	eos	pad
	let		eos			pad	pad	-
0	so	moving	move	?	?			-
	just	's	forward	forward	here	?	?	-
	now	let	moving	it	forward	here	here	-
_	let 's	's move	move.	. eos	eos pad	pad pad	pad pad	
	just move	's moving	moving .	it.	. eos	eos pad	eos pad	
1	so move	move forward	move it	forward .	here .	.eos	-	
	move .	. forward	move forward	?eos	? eos	? eos	-	
	move 's	. moving	move ?		forward .	-	-	
	let 's move	's move .	move.eos	. eos pad	eos pad pad	pad pad pad	1	
	let 's moving	's move it	move it .	it.eos	. eos pad	eos pad pad	1	
2	move 's move	's move forward	move forward .	forward . eos	? eos pad	? eos pad		
	move . moving	's moving .	moving . eos	? eos pad	here . eos	. eos pad		
	move 's moving	's move ?	move ? eos	eos	-	-		
	let 's move .	's move . eos	move . eos pad	. eos pad pad	eos pad pad pad	1		
	let 's move it	's move it .	move it . eos	it . eos pad	. eos pad pad			
3	let 's moving .	's moving . eos	moving . eos pad	forward . eos pa	d here . eos pad			
	let 's move forwar	d 's move forward	. move forward . eos	s ? eos pad pad	? eos pad pad			
	let 's move ?	's move ? eos	move ? eos pad	eos pad	-			

Table 7: Cascaded Decoding Example. When $m = 4$, Viterbi in \mathcal{X}_4 returns "very, very hard. eos"
The source is "sehr sehr schwer . eos" and the target is "very very hard . eos".

n	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
	very	difficult	difficult		eos	eos	eos	pad
	it	hard	hard	eos		pad	pad	-
0	really	very		difficult	difficult			-
	extremely	tough	very	hard	hard	difficult	difficult	-
	that	,	tough	very	very	hard	hard	-
_	very,	, very	very difficult	difficult .	. eos	eos pad	pad pad	l
	very very	very hard	very hard	hard .	eos pad	pad pad	eos pad	L
1	really,	very difficult	hard .	. eos	difficult .	. eos	-	
	it very	, hard	difficult .	hard eos	hard .	difficult eos	-	
	extremely,	, difficult	tough .	difficult eos		hard eos	-	
	very, very	, very hard	very hard .	hard . eos	. eos pad	eos pad pad		
	very very difficult	, very difficult	very difficult .	difficult . eos	eos pad pad	pad pad pad		
2	very very hard	very difficult .	difficult . eos	. eos pad	eos	. eos pad		
	really, very	very hard .	hard.eos	hard eos pad	hard . eos	hard eos pad		
	it very difficult	, hard .	very hard eos	difficult eos pad	difficult . eos	difficult eos pad	1	
	very, very hard	, very hard .	very hard . eos	hard . eos pad	. eos pad pad			
	very, very difficul	t, very difficult.	very difficult . eo:	s difficult . eos pad	eos pad pad pad			
3	very very difficult	. very difficult . eo	s difficult . eos pad	l . eos pad pad	difficult . eos pao	1		
	very very hard .	very hard . eos	hard . eos pad	hard eos pad pad	hard . eos pad			
	really , very hard	, very hard eos	very hard eos pao	l difficult eos pad pao	d eos pad			

Table 8: Cascaded Decoding Example. When m = 4, Viterbi in \mathcal{X}_4 returns "the opposite thing happened . eos". The source is "das gegenteil passierte . eos" and the target is "the opposite happened . eos".

n	$x_{1:1+m}$	$x_{2:2+m}$	$x_{3:3+m}$	$x_{4:4+m}$	$x_{5:5+m}$	$x_{6:6+m}$	$x_{7:7+m}$	x_8
0	the and so but well	opposite contr@@ other the conver@@	opposite thing ary happened was	happened was thing did opposite	eos happened happening happen	eos pad happened happen	eos pad happened happen	pad - - -
1	the opposite the contr@@ and the the other so the	opposite thing contr@@ ary the opposite other thing opposite opposite	thing happened ary happened opposite happened thing was was happened	happened . was happening thing happened did . was happened	. eos happening . happened . eos pad 	eos pad . eos pad pad . happened eos -	pad pad eos pad - -	
2	the opposite thing the contr@@ ary and the opposite the other thing so the opposite	opposite thing happened contr@@ ary happened the opposite happened other thing happened opposite thing was	thing happened . ary happened . opposite happened . thing was happening thing was happened	happened . eos was happening . was happened . happened thing happened .	. eos pad happening . eos happened . eos eos -	eos pad pad . eos pad happened eos pad pad pad pad -	L	
3	the opposite thing happened the contr@@ ary happened and the opposite happened the other thing happened the opposite thing was	d opposite thing happened . contr@@ ary happened . the opposite happened . other thing happened . opposite thing was happening	thing happened . eos ary happened . eos opposite happened . eos thing was happening . g thing was happened .	happened . eos pad was happening . eos s was happened . eos happened eos	. eos pad pad s happening . eos pad happened . eos pad eos pad -	L		

Figure 4: Illustration of cascaded decoding (K = 10, iters=4) for $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$.

Figure 5: Illustration of cascaded decoding (K = 10, iters=4) for $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$.

We include more visualizations of \mathcal{X}_1 , \mathcal{X}_2 and \mathcal{X}_3 in Figure 4 and Figure 5. These examples are taken from IWSLT14 De-En val.

Appendix C: Variable Length Generation Potentials

To handle length, we introduce an additional padding symbol pad to \mathcal{V} , and change the log potentials to enforce the considered candidates are of length $L - \Delta L$ to $L + \Delta L$. Note that we can only enforce that for $m \ge 1$, and for m = 0 we manually add pad to the pruned vocabulary.

We start cascaded search using a sequence of length $L + \Delta L + 1$. The main ideas are: 1) We make eos and pad to always transition to pad such that sequences of different lengths can be compared; 2) We disallow eos to appear too early or too late to satisfy the length constraint; 3) We force the last token to be pad such that we don't end up with sentences without eos endings. Putting these ideas together, the modified log potentials we use are:

$$\begin{split} f_{l}^{\prime(m)}(x_{l:l+m}) \\ &= \begin{cases} 0, \text{ if } x_{l+m-1} = \cos \wedge x_{l+m} = \text{pad} \\ -\infty, \text{ if } x_{l+m-1} = \cos \wedge x_{l+m} \neq \text{pad} \ (\cos \rightarrow \text{pad}) \\ 0, \text{ if } x_{l+m-1} = \text{pad} \wedge x_{l+m} = \text{pad} \\ -\infty, \text{ if } x_{l+m-1} = \text{pad} \wedge x_{l+m} \neq \text{pad} \ (\text{pad} \rightarrow \text{pad}) \\ -\infty, \text{ if } x_{l+m-1} \neq \text{pad} \wedge x_{l+m-1} \neq \cos \wedge x_{l+m} = \text{pad} \ (\text{nothing else} \rightarrow \text{pad}) \\ -\infty, \text{ if } l+m < L - \Delta L \wedge x_{l+m} = \text{eos} \ (\text{eos cannot appear too early}) \\ 0, \text{ if } l+m = L + \Delta L + 1 \ \text{and} \ x_{l+m} = \text{pad} \\ -\infty, \text{ if } l+m = L + \Delta L + 1 \ \text{and} \ x_{l+m} \neq \text{pad} \ (\text{the last token must be pad}) \\ f_{l}^{(m)}(x_{l:l+m}), \text{ o.t.} \end{cases}$$

.

Note that we only considered a single sentence above, but batching is straightforward to implement and we refer interested readers to our $code^5$ for batch implementations.

Appendix D: Full Results

In the main experiment table we showed latency/speedup results for WMT14 En-De. In Table 9, Table 10, Table 11 and Table 12 we show the latency/speedup results for other datasets. Same as in the main experiment table, we use the validation set to choose the configuration with the best BLEU score under speedup $> \times 1$, $> \times 2$, etc.

Table 9: Results on WMT14 De-En.					
Model	Settings	Latency (Speedup)	BLEU		
Transformer	(beam 5)	294.64ms (×1.00)	31.49		
With Distillation	n				
Cascaded Gener	ration with Speedup				
$> \times 7$	(K=16, iters=2)	43.41ms (×6.79)	30.69		
$> \times 6$	(K=32, iters=2)	52.06ms (×5.66)	30.72		
$> \times 5$	(K=16, iters=3)	62.06ms (×4.75)	30.96		
$> \times 4/3$	(K=32, iters=3)	79.01ms (×3.73)	31.08		
$> \times 2/1$	(K=32, iters=5)	129.67ms (×2.27)	31.15		
Without Distill	ation				
Cascaded Gener	ration with Speedup				
$> \times 6/5$	(K=32, iters=2)	53.83ms (×5.47)	27.56		
$> \times 4$	(K=32, iters=3)	81.10ms (×3.63)	28.64		
$> \times 3$	(K=32, iters=4)	106.97ms (×2.75)	28.73		
$> \times 2$	(K=64, iters=4)	154.15ms (×1.91)	29.43		
>×1	(K=128, iters=4)	269.59ms (×1.09)	29.66		

⁵https://github.com/harvardnlp/cascaded-generation

	Table 10: Results on	WMIIIO En-RO.	
Model	Settings	Latency (Speedup)	BLEU
Transformer	(beam 5)	343.28ms (×1.00)	33.89
With Distillation	1		
Cascaded Genera	tion with Speedup		
$> \times 7$	(K=16, iters=2)	49.38ms (×6.95)	32.70
$> \times 6$	(K=32, iters=2)	54.56ms (×6.29)	32.73
$> \times 5$	(K=16, iters=3)	66.33ms (×5.18)	32.89
$> \times 4$	(K=32, iters=3)	77.39ms (×4.44)	33.16
$> \times 3$	(K=64, iters=3)	108.57ms (×3.16)	33.23
$> \times 2$	(K=64, iters=4)	142.23ms (×2.41)	33.30
$> \times 1$	(K=64, iters=5)	179.07ms (×1.92)	33.23
Without Distilla	tion		
Cascaded Genera	tion with Speedup		
$> \times 7$	(K=16, iters=2)	45.18ms (×7.60)	32.11
$> \times 6$	(K=32, iters=2)	51.38ms (×6.68)	32.62
$\sim \sqrt{5}$	(K-16 iters-3)	$60.34ms(\times 5.60)$	32 67

Table 10: Results on WMT16 En-Ro

$> \times 7$	(K=16, 1ters=2)	$45.18 \text{ms} (\times 7.60)$	32.11
$> \times 6$	(K=32, iters=2)	51.38ms (×6.68)	32.62
$> \times 5$	(K=16, iters=3)	60.34ms (×5.69)	32.67
$> \times 4$	(K=32, iters=3)	73.99ms (×4.64)	33.12
$> \times 3$	(K=64, iters=3)	105.46ms (×3.26)	33.48
$> \times 2$	(K=64, iters=4)	145.18ms (×2.36)	33.64
$> \times 1$	(K=128, iters=5)	325.42ms (×1.05)	33.52

Table 11: Results on WMT16 Ro-En.

Settings	Latency (Speedup)	BLEU					
(beam 5)	318.57ms (×1.00)	33.82					
n with Speedup							
(K=16, iters=2)	46.84ms (×6.80)	32.66					
(K=16, iters=3)	62.57ms (×5.09)	33.00					
(K=16, iters=5)	99.25ms (×3.21)	33.04					
(K=64, iters=3)	103.85ms (×3.07)	33.17					
(K=64, iters=5)	181.18ms (×1.76)	33.28					
n							
n with Speedup							
(K=16, iters=2)	47.58ms (×6.70)	32.53					
(K=32, iters=2)	54.05ms (×5.89)	32.44					
(K=16, iters=3)	60.94ms (×5.23)	33.00					
(K=32, iters=4)	100.29ms (×3.18)	33.10					
(K=64, iters=3)	105.21ms (×3.03)	33.22					
(K=128, iters=4)	282.76ms (×1.13)	33.29					
	Settings (beam 5) n with Speedup (K=16, iters=2) (K=16, iters=3) (K=64, iters=3) (K=64, iters=3) (K=64, iters=5) n n with Speedup (K=16, iters=2) (K=32, iters=2) (K=32, iters=4) (K=64, iters=3) (K=128, iters=4)	SettingsLatency (Speedup)(beam 5) $318.57ms (\times 1.00)$ n with Speedup $(K=16, iters=2)$ (K=16, iters=3) $62.57ms (\times 5.09)$ (K=16, iters=3) $99.25ms (\times 3.21)$ (K=64, iters=3) $103.85ms (\times 3.07)$ (K=64, iters=5) $181.18ms (\times 1.76)$ n n n with Speedup $(K=16, iters=2)$ (K=16, iters=2) $47.58ms (\times 6.70)$ (K=32, iters=2) $54.05ms (\times 5.89)$ (K=16, iters=3) $60.94ms (\times 5.23)$ (K=64, iters=3) $105.21ms (\times 3.03)$ (K=128, iters=4) $282.76ms (\times 1.13)$					

Model	Settings	Latency (Speedup)	BLEU				
Transformer	(beam 5)	229.76ms (×1.00)	34.44				
With Distillation							
Cascaded Genera	tion with Speedup						
$> \times 6/5$	(K=16, iters=2)	39.38ms (×5.83)	33.90				
$> \times 4$	(K=32, iters=3)	60.27ms (×3.81)	34.33				
$> \times 3$	(K=32, iters=4)	78.27ms (×2.94)	34.43				
$> \times 2/1$	(K=64, iters=5)	117.90ms (×1.95)	34.49				
Without Distillat	tion						
Cascaded Genera	tion with Speedup						
$> \times 5$	(K=64, iters=2)	48.59ms (×4.73)	33.25				
$> \times 4$	(K=32, iters=3)	60.09ms (×3.82)	33.74				
$> \times 3$	(K=64, iters=3)	75.64ms (×3.04)	33.96				
$> \times 2$	(K=64, iters=5)	121.95ms (×1.88)	34.08				
$> \times 1$	(K=128, iters=5)	189.10ms (×1.22)	34.15				

Table 12: Results on IWSLT14 De-En.

Appendix E: Optimization Settings

Table 13: Optimization settings. We use the same settings for knowledge distillation experiments.

Dataset	dropout	fp16	GPUs	batch	accum	warmup steps	max steps	max lr	weight decay
WMT14 En-De/De-En	0.1	Y	3	4096	3	4k	240k	7e-4	0
WMT16 En-Ro/Ro-En	0.3	Y	3	5461	1	10k	240k	7e-4	1e-2
IWSLT14 De-En	0.3	Ν	1	4096	1	4k	120k	5e-4	1e-4

Our approach is implemented in PyTorch [35], and we use 16GB Nvidia V100 GPUs for training. We used Adam optimizer [20], with betas 0.9 and 0.98. We use inverse square root learning rate decay after warmup steps [34]. We train with label smoothing strength 0.1 [32]. For model selection, we used BLEU score on validation set. For Markov transformers, we use cascaded decoding with K = 16 and $\Delta L = 3$ to compute validation BLEU score. Other hyperparameters can be found at Table 13.