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Abstract

The two dominant approaches to neural text generation are fully autoregressive
models, using serial beam search decoding, and non-autoregressive models, using
parallel decoding with no output dependencies. This work proposes an autore-
gressive model with sub-linear parallel time generation. Noting that conditional
random fields with bounded context can be decoded in parallel, we propose an
efficient cascaded decoding approach for generating high-quality output. To param-
eterize this cascade, we introduce a Markov transformer, a variant of the popular
fully autoregressive model that allows us to simultaneously decode with specific
autoregressive context cutoffs. This approach requires only a small modification
from standard autoregressive training, while showing competitive accuracy/speed
tradeoff compared to existing methods on five machine translation datasets.

1 Introduction

Probabilistic text generation is a ubiquitous tool in natural language processing. Originally primarily
studied with respect to machine translation [1, 27], its progress has led to applications in document
summarization [40, 45], data-to-text [60], image captioning [61], etc. State-of-the-art text generation
approaches rely on fully autoregressive models such as RNNs and transformers [53], in which the
probability of an output word depends on all previous words. At inference time, beam search is
used for decoding, a left-to-right serial procedure. To speed up decoding, researchers have proposed
alternative parallel generation models. One class of non-autoregressive probabilistic models assumes
that each word’s output probability is independent of other words [13, 67, 28]. While it is impressive
that these models perform well, this independence assumption is very strong and often results in
noticeable artifacts such as repetitions [13, 51].

We note that non-autoregressive models, while sufficient, are not necessary for fast probabilistic
parallel generation. On parallel hardware, inference in models with bounded Markov dependencies is
trivial to parallelize and requires sub-linear time w.r.t. sequence length [43, 39]. In practice, given
the right parameterization, we can explore any level of autoregressive dependencies to achieve a
speed/accuracy tradeoff.

In this work, we exploit this property by proposing cascaded decoding with a Markov transformer
architecture. Our approach centers around a graphical model representation of the output space of
text generation. Given this model, we can employ cascaded decoding [7, 8, 58, 41] for parallel text
generation, using an iterative procedure that starts from a non-autoregressive model and introduces
increasingly higher-order dependencies. We combine this approach with a Markov transformer, an
extension to the fully autoregressive transformer architecture. This network uses barriers during
training to ensure it learns fixed high-order dependencies. At test time, a single network can be
used to parameterize a cascade of different graphical models. The Markov transformer only changes
self-attention masks and inputs at training, and is applicable to all transformer variants.
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Experiments on five machine translation datasets compare this approach to other beam search and non-
autoregressive baselines. Our inference approach is comparably fast to non-autoregressive methods
while allowing for local dependencies in a principled, probabilistic way. Results validate the competi-
tive accuracy/speed tradeoff of our approach compared to existing methods. The code for reproducing
all results is available at https://github.com/harvardnlp/cascaded-generation.

2 Related Work

There has been extensive interest in non-autoregressive/parallel generation approaches, aiming at
producing a sequence in parallel sub-linear time w.r.t. sequence length [13, 54, 26, 67, 55, 14, 11,
12, 49, 15, 28, 16, 51, 57, 30, 42, 66, 64, 50]. Existing approaches can be broadly classified as latent
variable based [13, 26, 67, 28, 42], refinement-based [25, 49, 14, 15, 11, 30, 12, 64] or a combination
of both [42].

Latent-variable approaches factor out the dependencies among output words, such that we can
generate each word independently of each other conditioned on those latent variables. The training
of these approaches usually employs variational autoencoders, since the log marginal is intractable
[21, 38, 31]. The introduced latent variables enable generation in a single forward pass, achieving
O(1) time complexity regardless of sequence length, but many of them suffer from generation
artifacts such as repetitions [13]. While not using latent variables, our approach could be extended to
incorporate them. A notable difference is that the parallel time complexity of this work is not O(1)
but O(logL) w.r.t. sequence length. In practice though, the only O(logL) part in our approach takes
a negligible fraction of total time [51], and our approach reaches comparable speedup compared to
existing approaches with O(1) time complexity.

Another line of research uses refinement-based methods, where the model learns to iteratively refine
a partially/fully completed hypothesis. Training usually takes the form of masked language modeling
[11, 12] or imitating hand-crafted refinement policies [25, 49, 15]. Refinement-based approaches can
sometimes reach better performance after multiple forward passes compared to latent variable based
approaches which mostly use a single forward pass [15, 11, 42]. While our method superficially
resembles refinement, our approach is probabilistic, model-based, and conceptually simpler. Training
is by maximum likelihood, requires no hand-designed rules, and allows for activations to be preserved
between iterations. A final benefit of our approach is that multiple lengths can be considered at no
extra cost, as opposed to generating candidates under different lengths and reranking [11, 51, 28].

Our approach is motivated by structured prediction cascades (SPC) [58]. SPC is a technique in
graphical models for graphical model type tasks, where we can specify the length of the sequence
beforehand [58]. To the best of our knowledge, we are the first to adapt it to neural text generation.
We also go beyond SPC, which uses multiple models, and show how to adapt a single Markov
transformer model to learn the entire cascade. While [51] shares our motivation and combines a 0th
order model with a 1st order graphical model, they do not consider higher-order models or cascades,
or show how to achieve parallel sublinear time. In addition, we use a single Markov transformer to
parameterize all log potentials, instead of using additional side-parameters for pairwise potentials.

3 Cascaded Decoding for Conditional Random Fields

Neural text decoding can be viewed as a conditional random field (CRF) [24] over a sequence of
words x1:L, where xi ∈ V with |V| = V , and X = VL is the set of all sequences. This model defines
a conditional probability distribution P (x1:L|c), where c is an arbitrary conditioning term, e.g., a
source sentence. Define an m-th (Markov) order CRF model as,

P (m)(x1:L | c; θ) ∝ exp

L−m∑
l=1

f
(m)
l (xl:l+m, c; θ

(m)),

where f (m)
l (·)’s are any parameterized log potentials looking at m + 1 words, for example local

log-probabilities. For simplicity, we omit c and θ(m) through the rest of this paper. We can define two
important special cases of this CRF model. With m = L−1, we can recover fully autoregressive neu-
ral text generation models such as RNNs and transformers. Using m = 0 gives us non-autoregressive
models.
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(a) m = 0 (b) m = 1

“this is actually”

(c) m = 2

Figure 1: Illustration of cascaded decoding (K = 10, iters = 4) for X1, X2, X3. The axes correspond
to x1, x2 and x3. (a) 0th-order (non-autoregressive) model prunes unigrams to produce X1; (b)
1st-order model prunes bigrams to K per size-2 span (seen in 2D projection); (c) 2nd-order model
prunes trigrams to K total in size-3 span. Colors represent max-marginals MM(m)

Xm
(x1:3), with pink

being higher and blue being lower. Fixed limit K allows for efficient parallel (GPU) implementation.

Decoding aims to find the sequence with the highest model score, maxx′∈X P
(m)(x′). Computing

this exactly can be done with the Viterbi algorithm in O(V m+1L); however, even for m = 1 this
is intractable since V is typically on the order of 104. Beam search is commonly used instead
to approximate this value, but it cannot be parallelized, and alternatives to beam search remain
under-explored in the literature.

We propose an alternative cascaded decoding approach based on max-marginals [58], which are used
as a metric to prune “unlikely” n-grams at each position based on the score of the “best” sequence
with a given n-gram. To be precise, define the notation X (xi:j) to be the set of sequences that contain
a span xi:j , i.e. {x′ ∈ X : x′i:j = xi:j}. The max-marginal of xi:j is the maximum score in this set:

MM(m)
X (xi:j) =

{
max

x′∈X (xi:j)
P (m)(x′1:L) X (xi:j) 6= ∅

0 o.w.
.

Cascaded decoding, illustrated in Figure 1, proceeds by iteratively computing max-marginals for
progressively higher-order models while filtering out unlikely spans. Starting with a complete initial
set X0 = X , for all single word spans xl:l, we compute M (0)

X0
and collect the top K max-marginal

values at each step to prune the search space,

X1 = {x1:L ∈ X0 : xl:l ∈ K arg max
x′
l:l∈V1

MM(0)
X0

(x′l:l) for all l}.

We then apply a 1st order model (m = 1) and collect the top K xl:l+1 values with the highest max
marginals M (1)

X1
(xl:l+1) to further prune the search space,

X2 = {x1:L ∈ X1 : xl:l+1 ∈ K arg max
x′
l:l+1∈V2

MM(1)
X1

(x′l:l+1) for all l}.

We repeat the above process M times with increasing m, and prune the search space to XM . It can
be shown that based on properties of max marginals this set is always non-empty [58]. We decode by
finding the sequence x1:L with the highest score P (M)(x1:L) in XM .

Implementation The only non-parallel component of cascaded decoding is calculation of max-
marginals for m ≥ 1. With m = 1, max-marginals xl:l+1 can be exactly computed using a variant of
the forward-backward algorithm. This algorithm requires O(K2L) time when performed serially.

We can reduce this complexity on parallel hardware by leveraging the commutative property of max
[43, 39], and computing an inside-outside prefix sum. First we pad the sequence to a power of 2 and
construct a balanced binary tree with words as leaves. We then perform max operations bottom-up
and top down. The height of the tree dictates the parallel time of this approach, O(K2 logL). More
details can be found in the TREEMM function in Algorithm 1, where Cij,k1,k2 is the max possible
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Algorithm 1 Parallel Cascaded Decoding

Given: max length L, limit K, log potentials f (m) for m in {0, . . . ,M}, parameters θ
function CASCADE( )

for m = 0→M − 1 do
Compute potentials f (m)

l (xl:l+m; θ) for all Xm(xl:l+m) 6= ∅ (K) . O(K2)

Compute first-order state relabeling Φ
(m)
l for all positions l = 1 . . . L−m . O(K)

Compute max-marginals MM(m)
Xm

using TREEMM . O(K2 logL)

Set Xm+1 =

{
x1:L ∈ Xm : xl:l+1 ∈ K arg max

x′
l:l+m∈Vm+1

MM(m)
Xm

(x′l:l+m) for all l

}
. O(K2)

return arg maxx′∈XM
P (M)(x′). . O(K2 logL)

function TREEMM(First-order scores C0
··· of size L×K ×K)

All Ci, Si, P i size 2logL−i ×K ×K, all j ∈ {1 . . . 2logL−i}; P logL, SlogL ← 0
for i = 0→ logL− 1 do . Chart max-scores computed bottom-up

Ci+1
j·· ← maxk C

i
2j·k + Ci(2j+1)k·

for i = logL→ 1 do . Prefix and suffix MM scores computed top-down
P i−12j·· ← P ij·· ; P

i−1
2j+1·· ← maxk P

i
j·k + Ci−12jk·

Si−12j+1·· ← Sij·· ; S
i−1
2j·· ← maxk C

i−1
(2j+1)·k + Sijk·

return exp[(maxk P
0
jk·) + C0

j·· + (maxk S
0
j·k)] . O(K2 logL)

score of spans xj∗2i+1:(j+1)∗2i+1, with the constraint of the left end being word k1 and the right end
being word k2. We compute Ci bottom-up, starting from i = 0 (C0 is the log potentials) and merging
adjacent spans in Ci to get Ci+1. The prefix score P ij,k1,k2 stores the max possible score of x1:j∗2i+1

(also with end constraints), which we compute iteratively top-down using P i+1 and Ci. Similarly,
the suffix score Sij,k1,k2 is the max score of x(j+1)∗2i+1: computed top-down. Finally, we combine
the prefix scores P 0, suffix scores S0, and log potentials C0 to calculate max marginals of any edge.

For higher-order models with m > 1, we can compute max-marginals for xl:l+m using a reduction
to an m = 1 CRF. By construction, Xm has exactly K spans xl:l+m such that X (xl:l+m) 6= ∅
for all positions l. We relabel these spans xl:l+m as 1 . . .K for each position, using a mapping
Φ

(m)
l (· · · ). This mapping implies that there are at max K2 transitions between Φ

(m)
l (xl:l+m) to

Φ
(m)
l+1(xl+1:l+m+1), resembling an m = 1 model over Φ. Therefore, the total parallel computation

cost of this process is O(K2 logL).

The full procedure is given in Algorithm 1. As opposed to O(VM+1 logL) of exact search, the
cascaded approximation can be computed in parallel in O(MK2 logL). We note that this yields a
sub-linear time yet (partially) autoregressive decoding algorithm.

Handling Length A common issue in parallel generation is the need to specify the length of the
generation beforehand [13, 28]. It is hard to predict the exact length and constraining search with
strict length limits the maximum achievable score. We can relax the length constraint by considering
multiple lengths simultaneously. We introduce a special padding symbol pad to V at inference time,
and add log-potentials to force pad and end-of-sentence tokens eos to transition to pad. Candidate
sequences of different lengths are padded to the same length, but trailing pad’s do not affect scores.
The CRF parameterization allows us to consider all these lengths simultaneously, where extending
the length only introduces log additional time. More details can be found at supplementary materials.

4 Model Parameterization: Markov Transformer

The cascaded decoding approach can be applied to any cascades of CRF models that obey the
properties defined above, i.e., m-th order log-potentials. Given a training set (cj , xj)1:J we would
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x1 x2 x4 x5 x7 x8✏ ✏ ✏

f
(2)
7 (·)f
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(0)
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(0)
4 (·)f

(1)
4 (·) f

(2)
4 (·)f

(0)
1 (·) f

(1)
1 (·) f

(2)
1 (·)

(a)

xl xl+1
X1

X2

X3

✏

f
(0)
l (·) f

(1)
l (·) f

(2)
l (·)

(b)

Figure 2: Markov transformer with M = 2 and L = 9. (a) At training, model state is reset with a
barrier every M + 1 words. (b) At decoding, potential f (0)l is computed at each position to get X1,
and the dependency order is increased by introducing more columns to compute X2 and X3.

like M + 1 different parameters that satisfy the following MLE objectives:

θ(m) = arg max
θ(m)

∑
j

logP (m)(xj1:L | cj ; θ(m)) for all m ∈ {0, . . .M}

Naive approaches for cascading would require training M + 1 different models that are calibrated or
trained together to produce similar outputs [58]. These also cannot be standard translation models
such as RNNs or transformers [18, 52, 53], since they have m = L− 1.

We propose a training and modeling strategy to fix both of these issues. First, to reduce from M + 1
models to 1, we rewrite the above objective in the form:

(θ(0), . . . , θ(M)) = arg max
θ(0)...θ(M)

1

M + 1

M∑
m=0

∑
j

logP (m)(xj1:L | cj ; θ(m))

We then make simplifying assumptions that we only want one set of model parameters θ and that the
Markov order m is sampled through training:

θ = arg max
θ

Em
∑
j

logP (m)(xj1:L | cj ; θ)

In order to approximate this sampling, we train θ by starting with an autoregressive model and
resetting the model’s state everyM +1 words with a hard barrier. The first barrier is placed uniformly
at random from words 1 to M + 1.

Next, we need a model that can be trained under this hard constraint in order to parameterize f (m)
l (·).

We propose a variant of the transformer, which we call the Markov transformer (Figure 2), that
can satisfy the necessary properties. The model is trained with (M + 1)-spaced reset barriers with
the constraint that self-attention does not cross those barriers. Transformer is particularly suited to
learning with this constraint, given that it has positional encodings that encode l even with explicit
barriers. In order to ensure that the model can parameterize P (0), i.e., the prediction immediately
after the barrier, we replace the first input word by a special token ε.

To perform cascaded decoding, we simply start the computation of f (0)l at each position l. A benefit of
using a single model is that we can reuse the transformer state (neural activations) between iterations,
i.e., for f (m)

l (xl:l+m) we can reuse the cached states from f
(m−1)
l (xl:l+m−1). We use the output of

the transformer as the log-potentials. This means each log-potential requires computing one column
of the transformer, with length m self-attention, requiring O(mK) parallel time per iteration.
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5 Experiments

Datasets We evaluate our approach on five commonly used machine translation benchmark datasets:
IWSLT14 De-En [6] (∼160k parallel sentences), WMT14 En-De/De-En1 [29] (∼4M parallel sen-
tences) and WMT16 En-Ro/Ro-En2 [3] (∼610k parallel sentences). To process the data, we use Byte
Pair Encoding (BPE) [46, 23] learned on the training set with a shared vocabulary between source and
target. For IWSLT14 the vocabulary size is 10k; for WMT14 the vocabulary size 40k. For WMT16
we use the processed data provided by [25]. We sample all validation datasets to be at most 3k.

Model Settings Markov transformer uses the same hyperparameters as standard transformers. The
base settings are from FAIRSEQ3 [34]: For IWSLT14 De-En, we use 6 layers, 4 attention heads,
model dimension 512, hidden dimension 1024; for WMT14 En-De/De-En and WMT16 En-Ro/Ro-En
we use 6 layers, 8 attention heads, model dimension 512, hidden dimension 2048. We tie the decoder
output projection matrix on all datasets [36], and we share source and target embeddings on WMT14
En-De/De-En and WMT16 En-Ro/Ro-En. It differs only in the application of attention barriers,
where we set M = 4. The optimization settings can be found at supplementary materials.

At generation time, we predict the length L using linear regression based on source length. We
consider hypotheses of length L−∆L to L+ ∆L where we vary ∆L from 0 to 5. Since the Markov
transformer was trained with M = 4, we consider applying cascaded decoding for 2 to 5 iterations
(2 iterations corresponds to M = 1 in Algorithm 1), where more iterations consider higher local
dependency orders at the cost of more computations. The limit K is chosen from 16, 32, 64, 128.

Baselines For the fully autoregressive baseline, we use the same model setting and use beam size
5. We also compare to other parallel generation methods. These include a latent variable approach:
FlowSeq [28]; refinement-based approaches: CMLM [11], Levenshtein transformer [15] and SMART
[12]; a mixed approach: Imputer [42]; reinforcement learning: Imitate-NAT [57]; and another
sequence-based approach: NART-DCRF [51] which combines a non-autoregressive model with a
1st-order CRF. Several of these methods use fully autoregressive reranking [13], which generally
gives further improvements but requires a separate test-time model.

Evaluation We evaluate the BLEU score of different approaches. Following prior works [28, 51, 66],
we use tokenized cased BLEU for WMT14 En-De/De-En and tokenized uncased BLEU for IWSLT14
De-En and WMT16 En-Ro/Ro-En, after removing BPE. We measure the average decoding time of a
single sentence [13, 25, 16, 15, 55, 51] on a 12GB Nvidia Titan X GPU.

Extension Knowledge distillation [17, 19, 65] is a commonly used technique to improve the perfor-
mance of parallel generation [13, 25, 28]. In knowledge distillation, we translate the training set using
a fully autoregressive transformer and use the translated sentences as the new target for training.

5.1 Results

Results are presented in Table 1. We show the tradeoff between speedup and BLEU score by
finding the configuration that gives the best BLEU score with more than 1×, 2×, . . ., 7× validation
speedup. We presented our results in terms of the number of iterations, which is equal to M + 1, for
comparability to refinement-based approaches.

Using knowledge distillation, our results get close to the fully autoregressive baseline: on WMT14
En-De, the gap between our approach and transformer is 0.5 BLEU, while being 2.4× faster (K = 32,
iters=5). Our results are also competitive to previous works, even those using a reranker. For example,
on WMT14 En-De, we can get 26.52 BLEU score at a 4.68× speedup, compared to NART-DCRF
that reaches 26.80 BLEU at a 4.39× speedup using 19 candidate sentences to rerank. On IWSLT14,
our BLEU scores are much better than previous works: we can reach within 0.54 BLEU score
compared to transformer at a 5.88× speedup (K = 16, iters=2), 6 BLEU points better than FlowSeq.

Our approach is also competitive against previous works without distillation: at a speedup of 2.06×,
we achieved a better BLEU score than FlowSeq-large using 30 candidates to rerank, which also has
many more parameters (66M vs. 258M excluding the reranker). The one model that outperforms our
approach is the Levenshtein Transformer. We note though that this model requires hand-crafted rules

1http://www.statmt.org/wmt14/translation-task.html
2http://www.statmt.org/wmt16/translation-task.html
3https://github.com/pytorch/fairseq/tree/master/examples/translation
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Table 1: Main results. †: latency numbers not directly comparable due to platform differences.
Approach Latency (Speedup)

WMT14 En-De
WMT14 WMT16 IWSLT14

Model Settings En-De De-En En-Ro Ro-En De-En

Transformer (beam 5) 318.85ms (×1.00) 27.41 31.49 33.89 33.82 34.44

With Distillation
Cascaded Generation with Speedup
> ×7 (K=16, iters=2) 50.28ms (×6.34) 26.34 30.69 32.70 32.66 33.90
> ×6/5 (K=32, iters=2) 52.93ms (×6.02) 26.43 30.72 32.73 32.70 34.01
> ×4 (K=64, iters=2) 68.09ms (×4.68) 26.52 30.73 32.77 32.76 34.02
> ×3 (K=32, iters=4) 107.14ms (×2.98) 26.80 31.22 33.14 33.22 34.43
> ×2 (K=32, iters=5) 132.64ms (×2.40) 26.90 31.15 33.08 33.13 34.43
> ×1 (K=64, iters=5) 189.96ms (×1.68) 26.92 31.23 33.23 33.28 34.49

Literature
FlowSeq-base [28] - 21.45 26.16 29.34 30.44 27.55
FlowSeq-large [28] - 23.72 28.39 29.73 30.72 -
Base CMLM[11] (iters=10) - 27.03 30.53 33.08 33.31 -
Levenshtein [15] 92ms (×4.01)† 27.27 - - 33.26 -
SMART [12] (iters=10) - 27.65 31.27 - - -
Imputer [42] (iters=1) - 25.8 28.4 - - -
imitate-NAT [57] - (×18.6)† 22.44 25.67 28.61 28.90 -
NART-DCRF [51] 37ms (×10.4)† 23.44 27.22 27.44 - -

Literature+Reranking
FlowSeq-large [28] (rescoring=30) - 25.31 30.68 - - -
Base CMLM [11] (iters=4, rescoring 2) - (×3.0-3.1)† 25.6-25.7 - - - -
imitate-NAT [57] (rescoring=7) - (×9.70)† 24.15 27.28 31.45 31.81 -
NART-DCRF [51] (rescoring=9) 63ms (×6.14)† 26.07 29.68 29.99 - -
NART-DCRF [51] (rescoring=19) 88ms (×4.39)† 26.80 30.04 30.36 - -

Without Distillation
Cascaded Generation with Speedup
> ×7 (K=16, iters=2) 47.05ms (×6.78) 21.34 26.91 32.11 32.53 32.95
> ×6/5 (K=32, iters=2) 54.36ms (×5.87) 22.55 27.56 32.62 32.44 33.14
> ×4 (K=64, iters=2) 69.19ms (×4.61) 23.09 27.79 32.78 32.43 33.25
> ×3 (K=32, iters=3) 78.29ms (×4.07) 23.35 28.64 33.12 33.11 33.74
> ×2/1 (K=64, iters=4) 154.45ms (×2.06) 24.40 29.43 33.64 33.19 34.08

Literature
FlowSeq-base [28] - 18.55 23.36 29.34 30.44 24.75
FlowSeq-large [28] - 20.85 25.40 29.73 30.72 -
Levenshtein [15] 126ms (×2.93)† 25.20 - - 33.02 -

Literature+Reranking
FlowSeq-large [28] (rescoring=30) - 23.64 28.29 32.20 32.84 -

for training, and uses global communication, while our approach is probabilistic and only requires
communicating log potentials between adjacent positions.

5.2 Analysis

Candidates Searched Unlike beam search, which is limited to a fixed number (KL) of candidates,
cascaded search can explore an exponential number of sequences [63]. Figure 3 (a) shows the number
of candidate sequences scored by cascaded decoding (f (2), f (3), f (4)) and beam search (f (L−1)AR ). We
additionally note that max-marginal computations are in practice extremely fast relative to transformer
computation and take less than 1% of the total time, so the bottleneck is computing potentials.

Variable Length Generation Cascaded decoding allows for relaxing the length constraint. Figure 3
(b) shows the effect of varying ∆L from {0, 3, 5}, where ∆L = 0 corresponds to a hard length
constraint, and ∆L = 3 sequences of 7 possible length values from L−3 to L+3. By using ∆L = 3,
we get more than 1 BLEU improvement at any given speedup. Therefore, we use ∆L = 3 for Table 1.

Ratio of Repetitions The independence assumption of non-autoregressive models often leads to
visible artifacts in generation such as n-gram repetitions. By introducing higher-order dependencies,
we can reduce the ratio of repetitions, as shown in Figure 3 (c), where we measure the extent of
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(a) (b) (c)

Figure 3: Analysis on WMT14 En-De val. (a) Box plot of the number of candidate sequences at
different dependency orders with K = 16. Results include cascaded decoding with 3 iterations
(scored with f (2)), 4 iterations (f (3)) and 5 iterations (f (4)), and beam baseline (f (L−1)AR ). (b)
BLEU/speedup tradeoff as we vary ∆L. The plot is drawn by varying K from {16, 32, 64, 128} and
varying iterations from {2, 3, 4, 5}. (c) The ratio of n-gram repetitions evaluated using the ratio of
unique n-grams as a proxy (K = 16, ∆L = 0).

Table 2: Markov transformer with different search strategies on IWSLT14 De-En val w/o distillation.
Column ∆L shows the length constraint (L−∆L to L+ ∆L), where None denotes no constraint.

Model Search Parallel Time ∆L Model Score BLEU

Transformer [53] Beam (K= 5) N O(KL2) None -11.82 35.63

Markov Trans.

Beam (K=5) N O(KML) None -12.05 35.07
Beam (K=64) N - 0 -17.79 33.14
Beam (K=1024) N - 0 -16.77 33.33

Cascade (K=64, iters=5) Y - 0 -17.44 33.45
Cascade (K=64, iters=5) Y - 3 -13.87 35.03

repetitions using the ratio of unique n-grams [59]. Cascaded decoding with more than 1 iterations
significantly reduces the number of repetitions.

Markov Transformer Analysis Table 2 shows different search algorithms for the Markov trans-
former. We can observe that 1) a 4th-order Markov transformer is very expressive by itself: using
beam search withK = 5, the BLEU score (35.07) is close to the BLEU score of a transformer (35.63);
2) Cascaded decoding is less effective without distillation than serial beam search; 3) With length
constraint, cascaded decoding is more effective than beam search; 4) Variable length generation can
improve upon enforcing strict length constraints. Finally, we want to note that Markov transformer’s
complexity is lower than normal transformer, since it attends to at most M past words.

Multi-GPU Scaling on multiple GPUs is becoming more important, given the recent trend in bigger
models [47, 5]. For multi-GPU parallelization4, each GPU takes a chunk of the sequence and forwards
decoder for that chunk, while each GPU maintains full encoder states. The only communications
between GPUs are the log potentials of size L ×K ×K at each iteration. By using 4 GPUs, our
approach can reach speedup of 2.79× compared to 1.68× using only 1 GPU when K = 64 and
iters = 5 on WMT14 En-De test set with distillation. Note that we use batch size 1, while for most
other approaches due to the global communication required between different parts of the target
sentence, it is hard to reach this level of parallelism.

Max-Marginals To prune “unlikely” n-grams at each position, we used max-marginals instead of
n-gram scores. The problem with using n-gram scores is that they do not consider compatibility
with other positions. Max-marginal fixes this issue with negligible extra time. On WMT14 En-De
validation set, using n-gram scores would get a BLEU score of 28.42 at 123.48ms, while using
max-marginals reaches 29.24 at 128.58ms (iters = 5, K = 32, ∆L = 3).

4We use https://pytorch.org/docs/stable/multiprocessing.html.
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6 Conclusion

We demonstrate that probabilistic autoregressive models can achieve sub-linear decoding time while
retaining high fidelity translations by replacing beam search with a cascaded inference approach. Our
approach, based on [58], iteratively prunes the search space using increasingly higher-order models.
To support this inference procedure, we utilize Markov transformers, a variant of transformer that can
parameterize cascades of CRFs. Experiments on five commonly used machine translation benchmark
datasets validate that our approach is competitive in terms of accuracy/speed tradeoff with other
state-of-the-art parallel decoding methods, and practically useful with distillation.

Our work opens up a number of exciting future directions, such as applying this approach to longer-
form text generation using latent variables, extending the Markov transformer to mimic any specified
graphical model, or using more powerful globally normalized energy models instead of locally
normalized ones.

Broader Impact

Our work proposes an alternative approach to beam search that enables more efficient text generation.
This work primarily uses machine translation as an application, but in the long run, it might be applied
to longer-form text generation such as summarizing or translating entire documents, or be deployed
to edge devices due to its faster inference and lower computational costs.

On the positive side, more efficient text generation can make these technologies more accessible
to the general public. For example, machine translation can help overcome language barriers [37];
document summarization makes data more interpretable [33]. However, there are potential risks.
Faster text generation has provoked concerns about generating fake news and targeted propaganda
[56, 9] and might pose safety concerns if it was used to generate hate speech or to harass people [48].
Another potential problem is that it might generate language that appears fluent but fabricates facts
[22].

To mitigate those issues, there have been works trying to detect machine-generated text [10, 62, 2].
While these works address some concerns over the abuse of text generation, we should be cautious
that fake news detection is still a mostly unsolved technical problem and requires active future
research [44, 4] as well as non-technical mitigation efforts.
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[29] Matouš Macháček and Ondřej Bojar. Results of the wmt14 metrics shared task. In Proceedings of the
Ninth Workshop on Statistical Machine Translation, pages 293–301, 2014.

[30] Elman Mansimov, Alex Wang, and Kyunghyun Cho. A generalized framework of sequence generation
with application to undirected sequence models. arXiv preprint arXiv:1905.12790, 2019.

[31] Andriy Mnih and Karol Gregor. Neural Variational Inference and Learning in Belief Networks. In
Proceedings of ICML, 2014.

[32] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In Advances
in Neural Information Processing Systems, pages 4696–4705, 2019.

[33] Ephraim Nissan. Digital technologies and artificial intelligence’s present and foreseeable impact on
lawyering, judging, policing and law enforcement. Ai & Society, 32(3):441–464, 2017.

[34] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038,
2019.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[36] Ofir Press and Lior Wolf. Using the output embedding to improve language models. arXiv preprint
arXiv:1608.05859, 2016.

[37] Georg Rehm. Cracking the language barrier for a multilingual europe.

[38] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models. In Proceedings of ICML, 2014.

[39] Alexander M Rush. Torch-struct: Deep structured prediction library. arXiv preprint arXiv:2002.00876,
2020.

[40] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence
summarization. arXiv preprint arXiv:1509.00685, 2015.

[41] Alexander M Rush and Slav Petrov. Vine pruning for efficient multi-pass dependency parsing. In
Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 498–507. Association for Computational Linguistics,
2012.

[42] Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive machine
translation with latent alignments. arXiv preprint arXiv:2004.07437, 2020.

[43] Simo Särkkä and Ángel F García-Fernández. Temporal parallelization of bayesian filters and smoothers.
arXiv preprint arXiv:1905.13002, 2019.

[44] Tal Schuster, Roei Schuster, Darsh J Shah, and Regina Barzilay. Are we safe yet? the limitations of
distributional features for fake news detection. arXiv preprint arXiv:1908.09805, 2019.

[45] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. arXiv preprint arXiv:1704.04368, 2017.

[46] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

11



[48] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
and Jasmine Wang. Release strategies and the social impacts of language models. arXiv preprint
arXiv:1908.09203, 2019.

[49] Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible sequence
generation via insertion operations. arXiv preprint arXiv:1902.03249, 2019.

[50] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. In Advances in Neural Information Processing Systems, pages 10086–10095, 2018.

[51] Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast structured decoding for
sequence models. In Advances in Neural Information Processing Systems, pages 3011–3020, 2019.

[52] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling. In
Thirteenth annual conference of the international speech communication association, 2012.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[54] Chunqi Wang, Ji Zhang, and Haiqing Chen. Semi-autoregressive neural machine translation. arXiv preprint
arXiv:1808.08583, 2018.

[55] Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive machine
translation with auxiliary regularization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 5377–5384, 2019.

[56] Claire Wardle and Hossein Derakhshan. Information disorder: Toward an interdisciplinary framework for
research and policy making. Council of Europe report, 27, 2017.

[57] Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. Imitation learning for non-
autoregressive neural machine translation. arXiv preprint arXiv:1906.02041, 2019.

[58] David Weiss and Benjamin Taskar. Structured prediction cascades. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages 916–923, 2010.

[59] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural text
generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

[60] Sam Wiseman, Stuart M Shieber, and Alexander M Rush. Challenges in data-to-document generation.
arXiv preprint arXiv:1707.08052, 2017.

[61] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048–2057, 2015.

[62] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin
Choi. Defending against neural fake news. In Advances in Neural Information Processing Systems, pages
9051–9062, 2019.

[63] Wen Zhang, Liang Huang, Yang Feng, Lei Shen, and Qun Liu. Speeding up neural machine translation
decoding by cube pruning. arXiv preprint arXiv:1809.02992, 2018.

[64] Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan, Chris Brockett, and Bill Dolan. Pointer: Constrained
text generation via insertion-based generative pre-training. arXiv preprint arXiv:2005.00558, 2020.

[65] Chunting Zhou, Graham Neubig, and Jiatao Gu. Understanding knowledge distillation in non-
autoregressive machine translation. arXiv preprint arXiv:1911.02727, 2019.

[66] Jiawei Zhou and Phillip Keung. Improving non-autoregressive neural machine translation with monolingual
data. arXiv preprint arXiv:2005.00932, 2020.

[67] Zachary M Ziegler and Alexander M Rush. Latent normalizing flows for discrete sequences. arXiv preprint
arXiv:1901.10548, 2019.

12


	Introduction
	Related Work
	 Cascaded Decoding for Conditional Random Fields
	Model Parameterization: Markov Transformer
	Experiments
	Results
	Analysis

	Conclusion

