
A Our algorithmic template

In this section we present our algorithmic template for the FAIR (k, p)-CLUSTERING problem in Algorithm 2.
This template uses the FAIRASSIGNMENT procedure (Algorithm 1) as a subroutine.

Algorithm 2 Algorithm for the FAIR (k, p)-CLUSTERING problem

1: procedure FAIRCLUSTERING((X = F ∪ C, d), C = ∪`i=1Ci, ~α, ~β ∈ [0, 1]`)
2: solve the VANILLA (k, p)-CLUSTERING problem on (X , d)
3: let (S, φ) be the solution
4: φ̂ = FAIRASSIGNMENT ((X , d), S, C = ∪`i=1Ci, ~α, ~β) (Algorithm 1)
5: return (S, φ̂)

B Missing proofs from Section 3

Figure 4 Figure 5

Figure 6: In this figure, we demonstrate various components of our proof. On the left, in fig. 4, we
give an example of the assignment functions φ, φ′, and φ?. The client v is assigned to the facility f
in the vanilla solution S. In the fair optimal solution, it is assigned to the facility f? and f ′ is the
nearest facility in S to f?. On the right, in Figure 5, we show the crux of the proof of Claim 5.

Proof of Claim 4. For any facility f∗ ∈ S∗, let C(f∗) := {v : φ∗(v) = f∗}. The C(f∗)’s partition C. For
any i ∈ [`], let Ci(f∗) := C(f∗) ∩ Ci. Since (S∗;φ∗) is a feasible solution satisfying the fairness constraints,
we get that for every f∗ ∈ S∗ and for every i ∈ [`], βi ≤ |Ci(f

∗)|
|C(f∗)| ≤ αi.

For any facility f ∈ S, let N(f) := {f∗ ∈ S∗ : nrst(f∗) = f} be all the facilities in S∗ for which f is
the nearest facility. Note that the clients {v ∈ C : φ′(v) = f} are precisely ∪̇f∗∈N(f)C(f∗). Similarly, for
any i ∈ [`], we have {v ∈ Ci : φ′(v) = f} is precisely ∪̇f∗∈N(f)Ci(f

∗). Therefore, |{v∈Ci:φ
′(v)=f}|

|{v∈C:φ′(v)=f}| =∑
f∗∈N(f) |Ci(f

∗)|∑
f∗∈N(f) |C(f∗)| ∈ [βi, αi] since the second summation is between minf∗∈N(f) |Ci(f∗)|/|C(f∗)| and

maxf∗∈N(f) |Ci(f∗)|/|C(f∗)|, and both these are in [βi, αi].

Proof of Theorem 6. Recall x? is an optimum solution to the LP given in eq. (1). To prove the theorem, we
first construct an instance of the MBDMB problem using x?. Then we appeal to Theorem 8 to argue about the
quality of our algorithm.

Let E be the set of (v, f) pairs with x?v,f > 0. For a point v ∈ C, let Ev denote the set of edges in E incident
on v. Define F := {F ⊆ E : |F ∩Ev| ≤ 1 ∀v ∈ C} to be collection of edges which “hit” every client at most
once. The pair M = (E,F) is a well known combinatorial object called a (partition) matroid. For each element
(v, f) of this matroid M , we denotes its cost to be c(v, f) := d(v, f)p.

Next we define a hypergraph H = (E, E). For each f ∈ S and i ∈ [`], let Ef,i ⊆ E consisting of pairs
(v, f) ∈ E for v ∈ Ci. Let Ef := ∪`i=1Ef,i. Each of these Ef,i’s and Ef ’s are added to the collection of
hyperedges E . Next, let Tf :=

∑
v∈C x

?
v,f be the total fractional assignment on f . Similarly, for all i ∈ [`],

define Tf,i :=
∑
v∈Ci

x?v,f . Note that, both Tf and Tf,i can be fractional. For every e ∈ Ef,i, we define
f(e) := bTf,ic and g(e) = dTf,ie. For each e ∈ Ef , we denote f(e) = bTfc and g(e) = dTfe. This
completes the construction of the MBDMB instance.

Now we can apply Theorem 8 to obtain a basis B of matroid M with the properties mentioned. Note that for
our hypergraph ∆H ≤ ∆ + 1 where ∆ is the maximum number of groups a client can be in. This is because
every pair (v, f) belongs to Ef and Ef,i’s for all Ci’s containing v. Also note that any basis corresponds to an

13

assignment φ : C → S of all clients. Furthermore, the cost of the basis is precisely Lp(S;φ)p. Since this cost is
≤ LP ≤ OPTfair(J)p, we get that Lp(S;φ) ≤ OPTfair(J). We now need to argue about the violation.

Fix a server f and a client group Ci. Let T f and T f,i denote the number of clients assigned to f and the
number of clients from Ci that are assigned to f respectively (by the integral assignment). Then, by Theorem 8,
bTfc−2∆−1 ≤ T f ≤ dTfe+2∆+1 and bTf,ic−2∆−1 ≤ T f,i ≤ dTf,ie+2∆+1 (using ∆H ≤ ∆+1).
Now consider eq. (RD). Since, Tf,i ≤ αiTf (as the LP solution is feasible),

T f,i ≤ dαiTfe+ 2∆ + 1 ≤ αibTfc+ 2∆ + 2 ≤ αi(T f + 2∆ + 1) + 2∆ + 2 ≤ αiT f + (4∆ + 3) ,

where the second and last inequality follows as αi ≤ 1. We can similarly argue about eq. (MP). This completes
the proof of Theorem 6.

C More experimental results

In this section, we present additional experimental evaluations of our algorithm.

C.1 Details of the Datasets

We present the details about the features and sensitive attributes of the datasets used in our algorithms in Table 3.

Table 3: For each dataset, the coordinates are the numeric attributes used to determined the position
of each record in the Euclidean space. The sensitive attributes determines protected groups.

Dataset Coordinates
Sensitive
attributes Protected groups

bank age, balance, duration marital married, single, divorced

default yes, no
census age, education-num, sex female, male

final-weight, capital-gain, race Amer-ind, asian-pac-isl,
hours-per-week black, other, white

diabetes gender, age, race, gender female, male

time-in-hospital race 6 groups
creditcard age, bill-amt 1 — 6, marriage married, single, other, null

limit-bal, pay-amt 1 — 6 education 7 groups
census1990 dAncstry1, dAncstry2, iAvail, dAge 8 groups

iCitizen, iClass, dDepart, iFertil, iSex female, male
iDisabl1, iDisabl2, iEnglish,
iFeb55, dHispanic, dHour89

C.2 Maximum additive violations of our algorithm

For a wide range of values of δ and k, we never violate the fairness constraints by more that an additive amount
of 3.02. In comparison, the vanilla k-means violates fairness by quite a large margin. Note that that setting of
δ = 0.2 corresponds to the common interpretation of 80% rule of the DI doctrine. We give a detailed report
in Table 4.

C.3 Additional cost analysis

We first, evaluate the cost of our algorithm for k-means objective with respect to the vanilla clustering cost and
the almost fair LP cost. The almost fair LP (eq. (3)) is an LP relaxation of FAIR (k, p)-CLUSTERING, with
variables for choosing the centers, except that we allow for a λ additive violation in fairness. The cost of this LP
is a lower-bound on the cost of any fair clustering that violates fairness by at most an additive factor of λ.

14

Table 4: The maximum additive violation across a range of δ of our algorithm compared to vanilla
k-means. For each δ, we take maximum over k, for k ∈ [2, 10] on all datasets.

δ 0.01 0.05 0.1 0.2 0.3 0.4 0.5 Vanilla (δ = 0.2)

bank 1.45 1.17 1.39 1.54 1.19 1.15 1.03 21.99
census 1.44 1.53 1.89 1.08 1.18 0.97 1.03 773.19
creditcard 3.02 2.32 2.11 2.29 2.03 1.63 1.03 192.01

LP3 := min
∑

v∈C,f∈S

d(v, f)pxv,f xv,f ∈ [0, 1], ∀v ∈ C, f ∈ S (3a)

∑
f∈S

xv,f = 1 ∀v ∈ C (3b)

xv,f ≤ yf ∀v ∈ C, f ∈ S (3c)∑
f∈S

yf ≤ k (3d)

∑
v∈Ci

xv,f ≤ αi
∑
v∈C

xv,f + λ ∀f ∈ S,∀i ∈ [`] (3e)

∑
v∈Ci

xv,f ≥ βi
∑
v∈C

xv,f − λ ∀f ∈ S,∀i ∈ [`] (3f)

In fig. 7 we compare the cost of our algorithm with a lower-bound on the absolute best cost of any clustering that
has the same amount of violation as ours. To be more precise, for any dataset we set λ according to the maximum
violation of our algorithm reported in table 4 for δ = 0.2 (e.g. λ is 1.54 for bank , 1.08 for census , and 2.29
for creditcard). Then, we solve the almost fair LP for that λ and compare its cost with our algorithm’s cost
over that dataset.

Since solving the almost fair LP on the whole data is infeasible (in terms of running time), we sub-sample bank ,
census , and creditcard to 1000, 600, and 600 points respectively, and report the average costs over 10 trials.
Also, we only consider one sensitive attribute, namely marital for bank , sex for census , and education for
creditcard to further simplify the LP and decrease the running time. fig. 3 shows that the cost of our algorithm
is very close to the almost fair LP cost (at most 15% more). Note that, since the cost of almost fair LP is a lower
bound on the cost of FAIR (k, p)-CLUSTERING problem, we conclude that our cost is at most 15% more than
the optimum in practice, which is much better than the proved (ρ+ 2) factor in theorem 1.

Figure 7: Average costs of vanilla clustering (VC), our algorithm (ALG), and almost fair LP (AFLP),
for k-means objective, as a function of k.

C.4 The case of ∆ > 1

In this section, we demonstrate the importance of considering ∆ > 1 by showing that enforcing fairness with
respect to one attribute (say gender) may lead to significant unfairness with respect to another attribute (say
race). In Figure 8, we have two plots for each dataset. In each plot, we compare three clustering: (1) Our
algorithm with ∆ = 2 (labelled “both”); (2) and (3) Our algorithm with ∆ = 1 with protected groups defined
by the attribute on x-axis label. We set δ = 0.2 and k = 4. The clustering objective is k-means. Along y-axis,
we measure the balance metric for the three largest clusters for each of these clustering. In each plot we only
measure the balance for the attribute written in bold in the top right corner.

15

In datasets, such as bank , we see that fairness with respect to only the marital attribute leads to a large amount
of unfairness in the default attribute. The fairest solution along both attributes is when they are both considered
by our algorithm (∆ = 2). Interestingly, there are datasets where fairness by one attribute is all that is needed.
On the census dataset, fairness by race leads to a fair solution on sex, but fairness by sex leads to large amount
of unfairness in race.

Finally, our results strongly suggest that finding a fair solution for two attributes is often only slightly more
expensive (in terms of the clustering objective) than finding a fair solution for only one attribute.

Figure 8: Importance of considering ∆ > 1. Below these x labels is the cost of fairness ratio. We
report the balance for the three largest clusters and include the dotted line at 0.8 because we use
δ = 0.2.

C.5 Tuning the fairness parameters

In Figure 9, we demonstrate the ability to tune the strictness of the fairness criteria by manipulating the parameter
δ. As δ approaches 1, the ratio between the fair objective and original vanilla objective decreases to 1. This
suggests that the fair solution has recapitulated the vanilla clustering because our bounds are lax enough to do so.

Figure 9: We show the effects of varying δ (x-axis) on our algorithm’s fair objective cost over the
vanilla cost (y-axis).

16

	Our algorithmic template
	Missing proofs from sec:algo
	More experimental results
	Details of the Datasets
	Maximum additive violations of our algorithm
	Additional cost analysis
	The case of > 1
	Tuning the fairness parameters

