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Abstract

We propose and analyze the problems of community goodness-of-fit and two-
sample testing for stochastic block models (SBM), where changes arise due to
modification in community memberships of nodes. Motivated by practical applica-
tions, we consider the challenging sparse regime, where expected node degrees are
constant, and the inter-community mean degree (b) scales proportionally to intra-
community mean degree (a). Prior work has sharply characterized partial or full
community recovery in terms of a “signal-to-noise ratio” (SNR) based on a and
b. For both problems, we propose computationally-efficient tests that can succeed
far beyond the regime where recovery of community membership is even possible.
Overall, for large changes, s≫ √n, we need only SNR = O(1) whereas a naïve
test based on community recovery with O(s) errors requires SNR = Θ(log n).
Conversely, in the small change regime, s ≪ √n, via an information-theoretic
lower bound, we show that, surprisingly, no algorithm can do better than the naïve
algorithm that first estimates the community up to O(s) errors and then detects
changes. We validate these phenomena numerically on SBMs and on real-world
datasets as well as Markov Random Fields where we only observe node data rather
than the existence of links.

While community detection and recovery for the stochastic block model (SBM) [Abb18] and, more
generally, inference of community structures underlying large-scale network data [GN02; New06;
For10] has received significant interest across the machine learning, statistics and information theory
literatures, there has been limited work on the important problem of testing changes in community
structures. The general problem of testing changes in networks naturally arises in a number of
applications such as discovering statistically significant topological changes in gene regulatory net-
works [Zha+08] or differences in brain networks between healthy and diseased individuals [Bas+08].
Building upon this perspective, we propose testing of differences in the underlying community struc-
ture of a network, which can encompass scenarios such as detecting structural changes over time in
social networks [AG05; For10], determining whether a set of genes belong to different communities
in disease and normal states [JTZ04], and deciding whether there are changes in functional modules,
which represent communities, in protein-protein networks [CY06].

Testing structural changes in networks is statistically challenging due to the fact that we may have rel-
atively few independent samples to evaluate combinatorially-many potential changes. In this paper,
we propose methods for goodness-of-fit (GoF) testing and two-sample testing (TST) for detecting
changes in community memberships under the SBM. The SBM naturally captures the community
structures commonly observed in large-scale networks, and serves as a baseline model for more com-
plex networks. Specifically, there are n nodes partitioned into two equal-sized communities, and the
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network is observed as a random n × n adjacency matrix, representing the instantaneous pairwise
interactions among individuals in the population. Both intra- and inter-community interactions are
allowed. Members within the same community interact with uniform probability a/n, while mem-
bers belonging to different communities with a smaller probability b/n. We restrict attention to the
commonly-considered and practically-relevant setting of a/b = Θ(1).

For our testing problems, we assume that the network samples are aligned on n ≫ 1 vertices,
and that the latent communities are either the same, or they differ in at least some s ≪ n nodes.
We pose the GoF problem as: Decide whether or not the observed random incidence matrix is an
instantiation of a given community structure. For the TST problem, we ask: Given two random
incidence matrices, decide whether or not their latent community structure is identical.

Sparse vs. Dense Graphs. We focus on scenarios where the observed random incidence matrices
are sparse with average node degree bounded by a constant independent of the network size. Within
this context we develop minimax optimal methods for GoF and TST in this context. We are moti-
vated by both practical and theoretical concerns. Practically, as observed in [Chu10], realistic graphs
such as social networks are sparse (friendships do not grow with network size); in temporal settings,
at any given time, only a small subset of interactions are observed; and in other cases ascertaining
the presence or absence of each edge in the network being observed is an expensive process, and it
makes sense to understand the fundamental limits for when testing is even possible.

From a theoretical standpoint, the sparse setting is challenging due to signal-to-noise ratio (SNR)
constraints that do not arise in the dense case. Recovery of the latent community with up to s errors
is possible iff Λ & log(n/s) [CRV15; ZZ16; FC19], where Λ is a SNR parameter that, in the setting
a/b = Θ(1), scales linearly with the mean degree. In particular, for Λ of constant order, recovery
with sublinear distortion fails. The question of whether testing is possible when recovery fails is
mathematically intriguing. Further, this is the only theoretically interesting setting. Indeed, if test-
ing for s changes requires a graph dense enough to allow recovery with ∼ s errors, then one might
as well recover these communities and compare them.

Our Contributions. We show that optimal tests exhibit a surprising two-phase behavior:

1. For s≫ √n, or ‘large changes,’ we propose computationally-efficient schema for GoF and TST
that succeed with Λ = O(1) - far below the SNR threshold for recovery. For GoF, this requirement
is even weaker - we only need Λ & n/s2, which vanishes with n since s≫ √n. Further, we match
these bounds up to constants with information-theoretic lower bounds.

2. In contrast, we show via an information-theoretic lower bound that for s ≪ √
n, or ‘small

changes,’ both testing problems require Λ = Ω(log(n)) for reliable testing. This means that the
naïve strategy of recovering communities and comparing them is tight up to constants in this regime.

We complement the above theoretical study by three experiments: the first implements the above
tests on synthetic SBMs, and the second on the political blogs dataset - a popular real world dataset
for community detection [AG05]. Both of these experiments show excellent agreement with the
theoretical predictions. The third experiment casts a wider net, and instead studies the related prob-
lem of testing the underlying community structure of a Gaussian Markov Random Field that has
precision matrix I+γG for G drawn from an SBM. This experiment explores the more realistic set-
ting where instead of receiving a graph, we obtain observations at each node of a hidden graph, and
wish to reason about the underlying structure. Remarkably, a simple adaptation of our procedure for
SBMs shows excellent performance for this problem. This indicates that our observations are not
restricted to raw SBMs, but may signal a more general phenomenon that merits exploration.

Related Work. For work on recovery communities we refer to the survey [Abb18]. However, we
explicitly point out the papers [CRV15; ZZ16; FC19], which provide various schemes and necessary
conditions that show that the partial recovery problem with distortion s can be solved with vanishing
error probability if and only if Λ & log(n/s). We further point out the lower bounds of [MNS15;
DAM17], which assert that if Λ < 2, then asymptotically, the best possible distortion for partial
recovery (or weak recovery, as it is referred to in this constant SNR regime) is n/2 − o(n). Note
that reporting a uniformly random community achieves distortion of s = n/2−O(

√
n).

Ours is the first work to study GoF and TST where both hypothesized models are SBMs. Neverthe-
less, both GoF and TST in the context of network data as well as SBMs have been studied. Below
we highlight the key differences in modeling assumptions and the ensuing technical implications,
which renders much of the prior work inapplicable to our setting.

With regards to GoF, [AV14; VA15] study the problem of detecting if a graph is an unstructured
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Erdős-Rényi (ER) graph, or if it has a planted dense subgraph, providing detailed characterizations
of the feasiblity regions and statistical phase transitions in this setting. While this work is aligned
with ours in the techniques used, the modeled setting and problem there are different (ER vs. planted
dense subgraph), and TST is not explored. Particularly, the dense subgraph model and the SBM are
qualitatively different, and conclusions from one cannot be transferred to the other directly.

A number of papers, including [Lei16; BS16; Ban+16; GL17] study various techniques and regimes
of determining if a graph is a SBM or an unstructured ER graph, and if the former, the number of
communities in the model. Of these, [GL17] approach the problem by counting small motifs in
the graphs, [Ban+16] propose a simple scan and [Lei16; BS16] propose testing of the number of
communities on the basis of the top singular values of the graph.

[Tan+17] study TST of the model parameters in random dot product graphs, and propose the dis-
tance between aligned spectral embeddings of the two graphs as a statistic to do so. They use this to
test equality against various transformations of the underlying models, and in particular for SBMs,
test if the connectivity probabilities (a/n, b/n) are identical or not for two graphs with latent com-
munities that are randomly drawn. [LL18] adapt these tests by considering the same distance, but
weighted by the corresponding singular values of one of the graphs, and use this to study two-sample
testing of equality of the latent communities in the graphs - as in this paper.

In contrast to the low-rank structure assumptions in the above work, [Gho+17a; Gho+17b; GL18]
study two-sample testing of inhomogeneous ER graphs (i.e., ER graphs where each edge may have
a distinct probability of existing). Within this setting, they provide a number of statistics based both
on estimates of the Frobenius and operator norms of the differences of the expected graph adjacency
matrices, as well as those based on motifs such as triangles, and explore the limits of these tests.

A fundamental drawback of these approaches, in our context, is their reliance on singular values,
spectral norms and Frobenius norms. Singular embeddings are particularly sensitive to noise, and
stable embeddings require significant edge density (particularly when a sublinear number of alter-
ations to the communities are to be tested). Indeed, in this context, we note that, in contrast to our
low SNR, sparse setting, [LL18] require both a degree of n1/2−ǫ and an SNR of log(n) correspond-
ing to a high SNR, high edge-density regime, where full community recovery is possible.

Similarly, Frobenius and Spectral norms based tests of [GL18; Gho+17a] are not stable enough to
test a sublinear number of changes in a low SNR regime. Functionally, this can be seen by the fact
that the square-Frobenius norm of the difference of two graphs is equal to the number of edges that
appear in one graph but not the other, and for sparse graphs, most edges appear in only one of the
two graphs. Similarly, arguments about spectral norms rely on concentration of the same for ER
graphs, but the best known concentration radius [LLV17] is far too large to allow testing of small
differences in sparse graphs. Indeed, for any of the statistics of [GL18] to have power in our setting,
the results of the paper require that the expected degree diverges with n, and that Λ & n/s, which is
exponentially above the SNR required to recover communities up to distortion s/2.

1 Definitions

The Stochastic Block Model. A vector x ∈ {±1}n is said to be a balanced community vector (or
partition) if

∑
xi = 0. The stochastic block model is defined as a random, simple, undirected graph

G on n nodes such that all edges are drawn mutually independently given x, and

P ({i, j} ∈ G|x) = a+ b

2n
+

a− b

2n
xixj .

Note that we treat x as a deterministic but unknown quantity, and thus, P (·|x) is a slight abuse of
notation. The parameters (a, b) may vary with n, and we focus on the setting a, b = O(log n), with
emphasis on O(1)1, and a/b = Θ(1). For technical convenience, we require that a+ b < n/4.

The signal-to-noise ratio (SNR) of an SBM is the quantity Λ :=
(a− b)2

a+ b
, which characterises the

recovery problem, as described in earlier discussions.

1While our main interest is in the constant degree regime, we also show that testing for small changes is
impossible in this setting (e.g Thm 1), and instead logarithmic degrees are needed. Thus, to present our results
completely, we must allow a, b to vary at least in the range [Ω(1), O(log(n))], or, more succinctly O(log n).
Large scales are not of interest since exact recovery is possible at the logarithmic scale.
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Note that the partitions x and −x induce the same distribution. Accordingly, the distortion between
partitions x and y is d(x, y) := min(dH(x, y), dH(x,−y)), where dH is the Hamming distance.

Minimax Testing Problems. We formally define two minimax hypothesis testing problems.

Goodness-of-Fit. We are given a balanced partition x0 and a parameter s. We receive a graph
G ∼ P (G|x), where x is an unknown balanced partition that is either exactly equal to x0 or differs
in at least s places. Our goal is to solve the hypothesis test:

H0 : d(x, x0) = 0 vs. H1 : d(x, x0) ≥ s

We measure the minimax risk of this problem by

RGoF(n, s, a, b) := inf
φ

sup
x0

{
P (FA) + sup

x
P (MD(x))

}
(1)

where φ(G) outputs either 0 or 1, P (FA) := P (φ(G) = 1 | x0), P (MD(x)) := P (φ(G) = 0 | x),
are respectively the false alarm and missed detection probabilities, and the second supremum is over
all x such that d(x, x0) ≥ s.

Two-Sample Testing. We are given a parameter s and two independent graphs G ∼ P (G|x), H ∼
P (H|y), where x and y are unknown balanced communities satisfying d(x, y) ∈ {0} ∪ [s : n/2].
The goal is to solve the following (composite null) testing problem:

H0 : d(x, y) = 0 vs. H1 : d(x, y) ≥ s,

with the measure of risk

RTST(n, s, a, b) := inf
φ

sup
x,y

P
(
φ(G,H) 6= 1{x = y} |x, y

)
, (2)

where φ(G,H) outputs either 0 or 1 and the supremum is over balanced x, y such that d(x, y) ∈
{0} ∪ [s : n/2].

As we vary n and (s, a, b) with n as some functions (sn, an, bn), the above define a sequence
of hypothesis tests. We say that the GoF problem can be solved reliably for such a sequence if
RGoF(n, sn, an, bn) → 0 as n ր ∞, and similarly for TST. Below, we will target O(1/n) bounds.
For conciseness, we will suppress the dependence of risks on (n, s, a, b), writing just RGoF/RTST.

On balance: The strict balance assumption above can be relaxed to only requiring that both com-
munities are of size linear in n, at the cost of weakening some of the constants left implicit in the
theorem statements. While the majority of the analysis in the paper will assume exact balance, we
briefly discuss unbalanced but linearly sized communities whilst detailing the proofs. Note that
since the communities are no longer balanced, the differences between x and y can be ‘one-sided’
i.e., more nodes can move from, say, + to −, than in the other direction. We do not require any
control on these other than the total number of changes is at least s.

On constants: We use C and c, and their modifications, as unspecified constants that may change
from line to line. While these can be explicitly bounded, we do not expect them to be tight.

2 Community Goodness-of-Fit

We begin by stating our main results regarding the community goodness-of-fit problem.

Theorem 1. Community goodness-of-fit testing is possible with risk RGoF ≤ δ if sΛ ≥ C log(2/δ)

and Λ ≥ C
n

s2
log(2/δ) for some constant C > 0.

Conversely, in order to attain RGoF ≤ δ ≤ 0.25, we must have that sΛ ≥ C ′ log(1/δ) and Λ ≥
C ′ log

(
1 +

n

s2

)
for some constant C ′ > 0.

These bounds reveal the following behavior in terms of large and small changes:

• For large changes (s ≥ n1/2+c for some c > 0), since n/s2 ≤ 1 and log(1 + x) ≥ x/2 for
x ≤ 1, the second converse bound behaves as Λ ≥ Cn/s2, matching the sufficient condition up
to a constant.

• For small changes (s ≤ n1/2−c for some c > 0), since n/s2 ∼ n2c, the second converse bound
instead behaves as Λ & log n. In this regime, community recovery up to s/2 errors requires
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Λ ≥ C log 2n/s = C̃ log n. Thus, estimating x from G and comparing it to x0 is optimal up to
constants.

• The above indicate a phase transition in the GoF testing problem at σ := logn(s) = 1/2. Consider
the thermodynamic limit of n ր ∞. For σ < 1/2, the problem is ‘hard’ in that the SNR Λ is
required to diverge to∞, while for σ > 1/2, the SNR can tend to zero.

Proof Sketch for the Achievability. Let us begin with an intuitive development of the test. Since we
start with a partition x0 in hand to test, it is natural to look at the edges across and within the cut
defined by x0. We thus define the number of edges across and within this cut:

Nx0

a (G) := |{(i, j) ∈ G : x0,i 6= x0,j}| =
1

4
xT

0 (D(G)−G)x0

Nx0

w (G) := |{(i, j) ∈ G : x0,i = x0,j}| =
1

4
xT

0 (D(G) +G)x0

(3)

where the latter expressions treat G as an adjacency matrix and D(G) = diag(degree(i))i∈[1:n].
2 In

the null case, these are respectively Bin(n2/4, b/n) and Bin(2
(
n/2
2

)
, a/n) random variables, while

in the alternate case some s/2 · (n− s)/2 of each behave like edges of the opposite polarity (i.e. as
b/n instead of a/n and vice versa), leading to a excess/deficit of edges of this type. Note that while
the ‘average signal strength’, i.e., the amount by which edges are over- or underrepresented is the
same in both cases (∼ s|a− b|), the group with the larger null parameter suffers greater fluctuations.
Thus, we base our test only on edges of smaller bias. This reduces the SNR by at most a factor of 4.

We now define the test. C1 below is the constant implicit in Lemma 3 in Appendix A.1.

• If a > b, we use the test Nx0

a (G)
H1

≷
H0

bn

4
+ C1 max

(√
nb log(1/δ), log(1/δ)

)
.

• If b > a, we use the test Nx0

w (G)
H1

≷
H0

an

4
− a

2
+ C1 max

(√
na log(1/δ), log(1/δ)

)
.

The risks of these tests can be controlled by separating the null and alternate ranges using Bernstein’s
inequality. Indeed, the threshold above is just the the expectation plus the concentration radius of the
statistic under the null distribution. Let us briefly develop the statistic’s behaviour in the alternate -
considering only the case a > b, we find that under the alternate,

(
n−s
2

)
+
(
s
2

)
of the edges in Nx0

a

continue to behave like Bern(b/n) bits, while the remaining s(n− s)/2 edges behave as Bern(a/n)
bits. Thus, the expectation of Nx0

a is increased by an amount greater than s(n−s)a−b
2n ≥ s(a−b)/4.

Next, Bernstein’s inequality controls the fluctuations at scale
√
max(nb, s(a− b)) log(2/δ). The

conclusion is straightforward to draw from here, and the proof is carried out in Appendix A.13.

Proof Sketch for the Converse. The proof is relegated to Appendix A.2, and we discuss the strategy
here. The converse proof follows Le Cam’s method, which lower bounds the minimax risk by the
Bayes risk for conveniently chosen priors - which can be expressed using the TV distance.

To show Λ & log(1 + n/s2), we pick the null x0 to be any balanced community, and choose the
uniform prior on communities that are exactly s-far from x0 (in fact, we only use a subset of these in
order to facilitate easier computations). This is an obvious choice for this setting - we are interested
in balanced communities that are at least s far, and choosing a large number of them allows for a
greater ‘confusion’ in the testing problem due to a richer alternate hypothesis. The bound follows
by invoking inequalities between TV and χ2 divergences and a lengthy calculation due to the com-
binatorial objects involved.

To show sΛ & − log(δ), we again pick the null to be any balanced community, and pick the alternate
to be an s-far singleton. We then proceed to control dTV by the Hellinger divergence.

3 Two-Sample Testing

We again begin with the main results on community two-sample testing problem.

2Note that D(G)−G is the Laplacian of the graph.
3The same also describes the extention of the claims to linearly sized communities

5



Theorem 2. Assume, for some γ > 0, s ≥ n
1
2
+γ . There exist constants C,C ′ such that if C ′ ≤

a, b ≤ (n/2)1/3, then two-sample testing of s changes with RTST ≤ 4/n is possible if the SNR
satisfies Λ ≥ C.

Conversely, for n ≥ 200, there exist constants c, c′ such that if s < ( 12 − c′)n, then two-sample
testing of s changes cannot be carried out with RTST ≤ 1/4 unless Λ ≥ c.

Large Changes. The above theorem makes an achievability claim for the setting of large changes.
Notice that in this regime the stated upper and lower bounds match up to constants. Specifically, if

n
1
2
+γ < s < ( 12 − c′)n, two-sample testing can be solved iff Λ & 1. Further, the condition a, b & 1

is also tight, as it follows from a/b = Θ(1), and the necessary condition Λ & 1, since Λ ≤ a+ b.
This leaves the condition max(a, b) ≤ (n/2)1/3, which we suspect is an artifact of the proof

technique and conjecture that, even for our proposed test, it can be removed. In any case, observe
that this condition is irrelevant in the setting a, b = O(log n) considered in this paper. Further, if
a/b is bounded away from 1, then TST is directly possible when a, b = Ω(log n) by recovering the
communities and comparing them, demonstrating that this condition is not present in general.

Small Changes. We claim that for small changes - s < n
1
2
−γ for some γ > 0 - the naïve scheme of

recovering the communities and comparing them is minimax. To see this, note that that GoF testing
is reducible to TST - given a TST scheme of a known risk, one may construct a GoF tester of that
risk by feeding the TST algorithm the observed graph and a graph drawn from P (·|x0). Thus, the
lower bounds of Theorem 1 apply to TST, and for a/b = Θ(1), we find that it is necessary that
sΛ = ω(1) and that Λ & log(1 + n/s2) to attain vanishing RTST. For small s, the latter lower
bound is Ω(log n), the claim follows since recovery with up to s errors is possible if Λ & log n.

Efficiency. Finally, we point out that the above bounds can be attained with computationally efficient
tests. Further, for large changes, the test can be made agnostic to knowledge of (a, b). Instead, it

only requires one to be able to estimate n(a+b) to within an additive error of Õ(
√

n(a+ b)), which
can be done by simply counting the number of edges in the graphs.

Proof Sketch of the Achievability. We describe the proposed test, and sketch its risk analysis below,
completing the same in Appendix B.1. Recall the definition of Nz

w, N
z
a from (3) in §2, and let

T x̂(G) := N x̂
w(G)−N x̂

a (G). (4)

We show that the routine ‘TwoSampleTester’ below attains a risk smaller than 4/n. In words, the test
computes a partition x̂ for the graph G by using about half the edges in the graph. This is represented
in the ‘PartialRecovery’ step below, for which any such method may be used - concretely, that of
[CRV15]. Next, we compute the statistic T x̂ above for both the remaining part of the first graph, and

Algorithm 1: TwoSampleTester(G,H, δ)

1: G1 ← subsampling of edges of G at
rate 1/2 uniformly at random.

2: G̃← G−G1.
3: x̂← PartialRecovery(G1).

4: Compute T x̂(G̃), T x̂(H).

5: T ← |2T x̂(G̃)− T x̂(H)|.
6: Return T

H1

≷
H0

√
Cn(a+ b) log(6n).

for the second graph. Notice that unlike the GoF
statistic, which was only Na, T

x̂ takes the difference
of Na and Nw. This is necessary because the partition
x̂ derived from partial recovery cannot be very well
correlated with the true partition x. This means the
reduced fluctuations from only considering one part
does not apply, and we instead use the whole cut.

Since the edges within communities, and across com-
munities in the graph are (separately) exchangable,
the errors made in x̂ distribute uniformly over the two
communities4. This allows us to explicitly control the
behaviour of T as defined in the test provided x̂ is non-
trivially correlatd with x - i.e., given that it makes
< (1/2− c)n errors for some c > 0. The condition Λ & 1 in the theorem arises from this.

A complication in this strategy is that the remaining graph G̃ in the scheme is not independent of the
recovered community x̂. This is handled in the analysis by introducing an independent copy of G,

called G′, and arguing that T x̂(G̃) ≈ 1/2T x̂(G′). This step is the origin of the nuisance condition

max(a, b) . n1/3 in the theorem.

4For a proof: since x,−x induce the same law, and since the communities are balanced, for every real-
ization of G such that x̂ makes e+, e− errors in the community +,− respectively, there is a realization of
equal probability where it makes e−, e+ errors. Further, within community exchangability implies that errors
distribute uniformly.
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Lastly, we point out that while the above exploits the exact balance by using the description of the
error distribution it enables, one can derive the same results (but with weakened constants) even
without this assumption, so long as both communities are at of size linear in n. In this case, one can-
not rely on the errors distributing uniformly over the nodes, but the within-community uniformity
of errors, which follows due to within community exchangability, can be exploited in a similar way.
We describe this extension in Appendix B.1.1.

Proof Sketch of the Converse. The necessary condition is shown via Le Cam’s method, but with
the twist that the null model is chosen to be a two-step procedure - one that draws a balanced com-
munity uniformly at random, and then generates a graph according to it, while the alternate models
are drawn uniformly from the balanced communities that are at least s-far from the chosen null.
This allows a comparison to the unstructured Erdős-Rényi graph on n vertices with mean degree
(a + b)/2. Bounds can then be drawn in from the study of the so-called distinguishability problem
[Ban+16], and we invoke results from [WX18] to show that total variation distance between the null
and alternate distributions is small when Λ is a small enough constant, allowing us to conclude using
Neyman-Pearson. See Appendix B.3 for a detailed argument.

4 Experiments

We perform three different sets of numerical experiments. We first run our tests on SBMs with
1000 nodes. Next, we demonstrate that our tests perform similarly for a real dataset, specifically
the Political Blogs dataset [AG05]. Finally, we examine SBM-supported Gaussian Markov Random
Fields (GMRFs) as an example of a “node observation” model, where the SBM-generated edges
form the precision matrix for the Gaussian vector consisting of the random variables assigned to
each node. In particular, we need to determine if the underlying community of the graph has changed
without explicitly observing (or recovering) the edges of the graph. For the sake of brevity, precise
details of the experiments are moved to Appendix C.

4.1 SBM Experiments

We perform experiments implementing our GoF and TST strategies as well as the naïve scheme of
reconstructing communities and comparing. Recovery is performed by regularised spectral cluster-
ing, for which a detailed description is given in Appendix C.1. The graphs are drawn on n = 1000
nodes for a range of (s,Λ) pairs and the high and low risk regimes are plotted in Figure 1. First,

note that for ‘large changes,’ s ≥
√

n log(10) ≈ 50, our GoF and TST tests can succeed for lower

SNR values. In contrast, for ‘small changes,’ s <
√
n ≈ 30, the naïve test is more powerful in the

high SNR regime. Additionally, both tests fail for TST unless the SNR is larger than a constant, as
predicted by our lower bound in Theorem 2.
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Figure 1: Risks of the proposed tests from Sections 2 and 3 for GoF and TST respectively, and the
performance of the naïve scheme, on synthetic SBMs with n = 1000, a/b = 3. Both schemes attain
high risk (> 1− δ) in the grey region, intermediate risk in the white, and the colours indicate which
of the schema attain low risk (< δ), where δ = 0.01 for GoF and δ = 0.1 for TST.
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4.2 Political Blogs Dataset [AG05]

The political blogs dataset [AG05] is canonical in the study of community detection, and consists of
n = 1222 nodes. Here, we vary the effective SNR by randomly subsampling the edges of the graphs
at rate ρ. See Appendix C.2 for further details. In this dataset, the ground truth partition xTrue is
available, which in turn yields accurate estimates of the connectivity probabilities (a, b). For this
graph a/b ≈ 10. Further, spectral clustering alone incurs ≈ 50 errors in this graph, which is larger

than
√
1222 ≈ 35. As a consequence, the behaviour in the ‘small changes’ regime where the test

relies on recovery - is not well illustrated in the following.
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Figure 2: Risks of the tests applied to the Political Blogs graphs - colour scheme is retained from
Fig. 1. The X-axis plots the sparsification factor, which serves as a proxy for SNR. Features similar
to Fig. 1 can be seen. The GoF plot improves since a/b is bigger, while the TST plot suffers since
the political blogs graph is not completely described as a 2-community SBM [Lei16].

Goodness-of-Fit. We determine the size of the test by running the GoF procedures against xTrue.
To determine power, we construct a partition y by relabelling a random set of nodes of size s, and
running the GoF procedures against y with the same graph.
Two-Sample Testing. We compare the political blogs graph G against two other graphs drawn from
SBMs. Size is detemined by drawing G′ according to an SBM of community xTrue and running
the TST procedure, and power is determined by drawing a y as above, generating H according
to an SBM of community y, and running the TST procedure. Note that this experiment is thus
semi-synthetic.

4.3 Gaussian Markov Random Fields (GMRFs)

Frequently instead of simply receiving a graph, one receives i.i.d. samples from a graph-structured
distribution, and it is of interest to be able to cluster nodes with respect to the latent graph. For
example, in large-scale calcium imaging, it is possible to simultaneously record the activity pattern
of thousands of neurons, but not their underlying synaptic connectivity [Pne+16]. Here, we explore
the behavior of our tests for GMRFs where the underlying graph structure is randomly drawn from
an SBM and and we only observe the nodes.

A heuristic reason for why our methods might succeed in such a situation arises from the local tree-
like property of sparse random graphs (see, e.g. [DM10]). For graphs with mean degree d ≪ n,
typical nodes do not lie in cycles shorter than ∼ logn

2 log d . In MRFs, this tree-like property induces

correlation decay: the correlation between two nodes decays geometrically up to graph-distance

∼ logn
2 log d . Thus, the covariance matrix closely approximates σ1G+

∑k
i=2(σ1G)i+σ011

T for some

σ0 ≪ σ1, small k, and G, the adjacency matrix of the graph. Since the local structure of the graph is
so expressed, both clustering and testing applied directly to the covariance matrix should be viable.

We report experimentation on the GMRF (see, e.g. [WJ08, Ch. 3]), which comprises random vectors
ζ ∼ N (0,Θ−1), where the non-zero entries of the precision matrix Θ encode the conditional depen-
dence structure of ζ. Following standard parametrisations [WWR10], we set Θ = I + γG, where
G ∼ P (G|x) is an adjacency matrix from an SBM with latent parameter x, and γ is a scalar. Below,
we fix the SBM parameters a, b and the level γ, and explore risks against s and sample size t.

8



Following the above heuristic, we naïvely adapt community recovery and testing to this setting, by
replacing all instances of the graph adjacency matrix in previous settings with the sample covariance
matrix. Figure 3 presents our simulations of the risk of this test when n = 1000, and (a, b) ≈
(12.3 log n, 1.23 log n), at Λ ≈ 9 log(n) (for details see Appx. C.3). This large SNR is chosen
so that community recovery would be easy if the graph was recovered;5 this emphasizes the role
of the sample size, t. Importantly, in this implementation, the threshold for rejecting the null has
been fit using data (unlike in the previous sections). This is since we lack a rigorous theoretical
understanding of this problem, and have not analytically derived expressions for the thresholds. As
a result, these plots should be treated as speculative research intended to underscore the presence of
interesting testing effects in this scenario, and to encourage future work along these lines.
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Figure 3: Risks for adaptation of our tests to GMRFs - colour scheme is retained from Fig. 1. The
plots show structural similarity to Fig. 1, but with two differences - In GoF, we don’t find a high
risk region at the sample sizes considered, and the proposed scheme always outperforms the Naïve
scheme based on spectral clustering.

5 Directions for Future Work

The development of the recovery problem for SBMs suggests a number of directions for further work
on the testing problems considered above. For instance, one may investigate the exact constants in
the testing threshold that the above work suggests, or one may study the testing problem for SBMs
with k > 2 communities, which is a practically relevant setting since many real-world networks are
significantly better described as k-SBMs than as 2-SBMs. In the latter vein, testing problems such
as the above may be studied in richer random graph models, such as degree corrected SBMs, or
geometric block models. Additionally, testing of strongly imbalanced communities, where one of
the communities has size sublinear in n is conceptually unexplored and of interest.

One open problem that draws from the above exposition is if there exists an algorithm for TST in
the 2 community setting that does not pass through a partial recovery step and yet works for sparse
graphs. We expect that such a method would be necessary for determining exact testing thresh-
olds (for large changes), since the recovery step neccessarily requires some subsampling, which
reduces the effective SNR available for testing. In addition, this would be conceptually pleasant,
and would eliminate the dissonance in the above work where showing testing guarantees requires
passing through recovery guarantees. Such a scheme would also more generally allow study of the
testing problem for situations where partial recovery is ill understood.

Finally, we mention that more work is needed on the practical investigation of the effectiveness of the
above methods - while the experiments we have run validate the theory, the real-world applicability
of the methods above require deeper experimentation. A significant lacuna for this line is the lack
of a good real-world dataset for the testing of commumity changes.

5Note, however, we expect graph recovery to be impossible at these sample sizes. Lower bounds from
[WWR10] indicate this would require > 3300 samples theoretically.
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Appendix

A Proofs omitted in Section 2

A.1 Proof of Achievability in Theorem 1

We will restrict attention to the case a > b below. The b > a case follows identically. Recall the test
in this setting:

Nx0

a (G)
H1

≷
H0

bn

4
+ C1 max(

√
nb log(2/δ), log(2/δ)),

where C1 is the constant implicit in Lemma 3 below.

Under the null distribution, Nx0
a (G) is distributed as Bin(n2/4, b/n), while under the alternate,

it is distributed as Bin((n − s)2/4 + s2/4, b/n) ∗ Bin(s(n − s)/2, a/n). These distributions can
be separated by Bernstein concentration bounds [CL06, Ch. 2], as summarised by the following
Lemma, which is proved in subsequent sections.

Lemma 3. There exist constants C0, C1 > 1 such that, if nb + s(a − b) > C0 log(1/δ), then with
probability at least 1− δ/2

(α) Under H0: Nx0

a (G) ≤ bn

4
+ C1 max

(√
nb log(2/δ), log(2/δ)

)
.

(β) Under H1: Nx0

a (G) ≥ bn

4
+

s(a− b)

4
− C1

√
(nb+ s(a− b)) log(2/δ).

As the proof of the above lemma discusses, results of the above type hold in the more generic situ-
ation where both the communities and the changes can be unbalanced, so long as each community
is of at least linear in n size. This allows one to extend the entirety of this theorem to the setting
n+n− = Ω(n2) on replacing bn/4 above with ENull[N

x0
a (G)], where n+ and n− are the sizes of

the two communities, i.e., the number of i such that xi = +1 and xi = −1 respectively.

Since s|a−b| ≥ sΛ ≥ C log(2/δ), the lemma above holds in our setting on picking C large enough.
(α) in Lemma 3 indicates that the false alarm error of test is ≤ δ/2. Further, since (nb + s(a −
b)) log(2/δ) > log2(2/δ), part (β) shows that missed detection error is ≤ δ/2 if

1

4
s(a− b) > 2C1

√
(nb+ s(a− b)) log(2/δ) ⇐⇒ (a− b)2

nb+ s(a− b)
> C

log(2/δ)

s2
.

The argument is concluded by some casework:

(i) If nb ≤ s(a − b), then the left hand side of the condition above can be bounded from below by
s(a−b)/2, and thus s(a−b) ≥ 2C1 log(2/δ) is sufficient. But s(a−b) ≥ s(a−b)2/(a+b) = sΛ
is larger than C log(1/δ), and choosing C large enough is sufficient.

(ii) On the other hand, if nb > s(a − b), the left hand side is instead lower bounded by s2(a −
b)2/2nb ≥ s2Λ/2n, and thus s2Λ & n log(2/δ) is sufficient to satisfy the same.

A.1.1 Proof of Lemma 3

The proof proceeds by establishing the centres of the statistic Nx0
a under the null and alternate

distributions, and then invoking Bernstein-type bounds [CL06, Ch 2] to show the claimed statements
separately.

(α) For the null, Nx0
a (G) is distributed as Bin(n2/4, b/n). Thus, clearly ENull[N ] = bn/4. Further,

by Bernstein’s inequality for the upper tail,

PNull(N
x0

a (G) > ENull[N
x0

a (G)] + nt) ≤ exp

(
− n2/4× t2/2

n2/4× (b/n) + nt/3

)

≤ exp

(
−3

2

nt2

b+ 4t

)
≤ exp

(
−3

8

nt2

t+ b

)
.
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Thus, if
nt2

b+ t
≥ 8

3
log(2/δ),

then this tail has mass at most δ/2. We may now consider the two cases

(i) If nb ≤ 16/3 log(2/δ), then plugging in t = 16/3 log(2/δ)
n above yields that the the condi-

tion is satisfied, since then

nt2

b+ t
≥ nt2

2t
=

nt

2
=

8

3
log(2/δ).

(ii) If nb ≥ 16/3 log(2/δ), then setting t =
√
(16/3) b

n log 2/δ we can bound

nt2

b+ t
=

16/3 log(2/δ)

1 +
√
(16/3) log(2/δ)/nb

≥ 16/3 log(2/δ)

2
.

As a consequence, picking nt = max(
√

(16/3)nb log(2/δ), 16/3 log(2/δ)) implies that the
probability in question is at most δ/2.

We note that this calculation can be made more robust, in that if the communities are unbalanced
but linearly sized with n, then the number of edges crossing is n+(n − n+) = Ω(n2) in the
above, and essentially the same goes through with n2/4 replaced by n2/C for some constant
C.

(β) This proof proceeds in much the same way as the above. With the modification that the distribu-
tion of Nx0

a (G) is now Bin(n2/4−s(n−s)/2, b/n)∗Bin(s(n−s)/2, a/n), since 2×s(n−s)/4
of the edges are now between nodes of the same communities. The centre of this is easily seen

to be nb
4 + s(n−s)

2
a−b
n . Further invoking the Bernstein lower tail, we find that

PAlt(N
x0

a (G) ≤ EAlt[N
x0

a (G)]− nt) ≤ exp

(
−1

2

n2t2

s(n−s)
2 · an + n2−2s(n−s)

4 · b
n

)

≤ exp

(
− n2t2

nb+ s(a− b)

)

The required claim now follows directly by setting t =
√

(nb+s(a−b)) log(2/δ)
n .

Again, the above can also be rendered more robust to imbalance. Suppose that the communities
and the changes are both imbalanced, and let n+, n− be the sizes of the communities in x0,
and s+, s− be the number of nodes that are moved from + to − and vice-versa according to
the alternate x. Then the number of edges which behave according to a/n in the alternate is
τ = s+(n−−s−)+s−(n+−s+). But τ ≤ s(n++n−−s+−s−) = sn, so the concentration
results go through with a weakening of a factor of 2. Further, assume wlog that s+ ≥ s−. since
s+ + s− = s, and n+ + n− = n, we have that

τ = s+(n− s) + (s− 2s+)(n+ − s+).

Minimising the above subject to s+ ∈ [s/2 : s], we find that the minima can be uniformly
lower bounded by min(smin(n+, n−), s(n − s)/2). So long as each community is of linear
size, this is Ω(sn), and thus the centre of the statistic moves by Ω(s(a− b)) with respect to the
null statistic.

Putting the two effects above together, we can write that under the alternate distribution, with
probability ≥ 1− δ/2,

Nx0

a (G) ≥ ENull[N
x0

a (G)] +
1

C1
s(a− b)− C2

√
(nb+ s(a− b)) log(2/δ).

In conjunction with the discussion for unbalanced but linearly sized communities in case (α),
the above allows the claims of the achievability part of Theorem 1 to hold for the case where
both communities are of linear size and changes are not constrained to be balanced without any
change other than a weakening of the constants implicit in the same. The only modification
required for this is to update the tests to threshold at ENull[N

x0
a (G)]+(fluctuation term) instead

of at bn/4 as presented in the main text.
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A.2 Proofs of converse bounds from Theorem 1

This section begins with an exposition of Le Cam’s method, which is the general proof strategy we
employ to show both these converse bounds. This is followed by separate subsections devoted to
each converse bound claimed in Theorem 1.

A.2.1 Le Cam’s method.

The generic lower bound strategy is constructed by noting that the minimax risk of the goodness-of-
fit problem is lower bounded by the risk of the same with any given prior on the alternate communi-
ties, i.e. the risk of the problem

H0 : x = x0 vs H1 : x ∼ π

for a π supported on {x : d(x, x0) ≥ s} (or some restriction of the same, as in the following
sections), and the Bayes risk

Rπ := inf
ϕ:G→{H0,H1}

P (ϕ = H1|x0) +
∑

x:d(x,x0)≥s

π(x)P (ϕ = H0|x).

By classical Neyman-Pearson theory [see, e.g., LR06], the likelihood ratio test is optimal under the
above risk, and

Rπ = 1− dTV (P (G|x0), 〈P (G|x)〉π) ,
where 〈P (G|x)〉π :=

∑
x π(x)P (G|x), and dTV is the total variation distance

dTV(P,Q) :=
1

2
‖P −Q‖1.

We proceed by bounding dTV by an f -divergence more conducive to tensorisation in order to exploit
the (conditional) independence of the edges in an SBM, and then by choosing an appropriate π. The
f -divergence inequalities we use are

1. χ2 bound: Recall that

Dχ2(Q‖P ) =
∑

x

P (x)

(
Q(x)− P (x)

P (x)

)2

= EP [L
2(X)]− 1,

where L(x) := Q(x)/P (x) is the likelihood ratio. It holds that

dTV(P,Q) ≤
√

1

2
log(1 +Dχ2(Q‖P )),

which follows from Pinsker’s inequality and the fact that

DKL(Q‖P ) ≤ log(1 +Dχ2(Q‖P )),

which is a consequence of Jensen’s inequality applied to the log (or, equivalently, the mono-
tonicity of Rényi divergences).

Invoking the above inequality and Le Cam’s method, we find that for any choice of π, and

for L(G) :=
〈P (G|x)〉

π

P (G|x0)
, the following is necessary for the minimax risk of the GoF problem

to be bounded above by δ :

Ex0
[L2(G)] ≥ exp

(
2(1− δ)2

)
.

For δ ≤ 1/4, this yields a necessary lower bound of Ex0
[L2] > 3.08.

2. Hellinger bound: The Bhattacharya coefficient of P,Q is defined as

BC(P,Q) :=
∑

x

√
P (x)Q(x),

and the Hellinger divergence as

DH(P,Q) :=
√

1− BC(P,Q) =
1√
2
‖
√
P −

√
Q‖2.
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We exploit the relation

dTV(P,Q) ≤
√
D2

H(P,Q)(2−D2
H(P,Q)) =

√
1− BC2(P,Q),

which is a consequence of the Cauchy-Schwarz inequality.

Again plugging this in with Q = 〈P (G|x)〉π , we find that in order for the risk to be smaller
than δ, we must have that

δ ≥ 1−
√
1− BC2 ≥ BC2

2
=⇒ BC ≤

√
2δ,

where BC = BC(〈P (G|x)〉π , P (G|x0)).

We now proceed to show the claimed bounds. Recall that we are required to show that if RGoF <
δ ≤ 1/4, them

Λ & log(1 + n/s2) (5)

sΛ & log(1/δ). (6)

A.2.2 Proof of the converse bound (5)

For convenience, we let

ν := (a− b)2
(

1

a(1− a/n)
+

1

b(1− b/n)

)
. (7)

Since a, b ≤ n/2, and since a/b = Θ(1), we have Λ ≍ ν, and it suffices to show the same bound on
the latter.

We invoke Le Cam’s method with a χ2-bound. Let m := n/2, t := s/2 and let x0 be the partition
([1 : m], [m+ 1 : 2m]).

The alternate prior is chosen to be the uniform prior on the set of alternate partitions constructed as
follows. For each T ⊂ [1 : m], we define the partition

yT (+) = [1 : m] ∪ (m+ T ) ∼ T

yT (−) = [m+ 1 : 2m] ∪ T ∼ (m+ T ),

where (m + T ) = {i +m : i ∈ T}. Let Yt := {yT : T ⊂ [1 : m], |T | = t}. For conciseness, we
define the measures on G :

PyT
(·) := PT (·) := P (· | yT ),

and set P0 = P (· | x0). Further, for convenience, we set p = a/n and q = b/n.

For a graph G, we find that L(G) := 1
|Yt|

∑
x∈Yt

Px(G)
P0(G) . To invoke Le Cam’s method (§A.2.1), we

need to upper bound EP0
[L2(G)].

To this end, we will define for an edge e = (u, v), and a graph G (which is implicit in the notation)

fe(q, p) := (q/p)e((1− q)/(1− p))1−e. (8)

Above, fe(q, p) arises as a ratio of the probabilities of a Bern(q) and a Bern(p) random variable.
Thus, it is the likelihood ratio of an edge being between nodes in the different and in the same
community.

First observe that

PT

P0
=




∏

i∈[1:m]∼T,
j∈m+T

fij(p, q)







∏

i∈[m+1:2m]∼m+T,
j∈T

fij(p, q)







∏

i∈[1:m]∼T,
j∈T

fij(q, p)







∏

i∈[m+1:2m]∼m+T,
j∈m+T

fij(q, p)


 (9)

An important feature of the setup above is that every term in the above product is independently
distributed, and wherever fij(p, q) appears, the corresponding eij is Bern(q), and similarly with
fij(q, p) and Bern(p).
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Note that

EP0
[L2(G)] =

∑

T1,T2⊆[1:m] of size t

EP0

[
PT1

(G)PT2
(G)

P 2
0 (G)

]
,

and so we must control expectations of this form in order to apply Le Cam’s method. Let us fix T1

and T2 for now, and partition the nodes into groups as described by the Figure 46.

1F2F
+

1F2S
+

1S2S
+

1S2F
+

1F2F
−

1F2S
−

1S2S
−

1S2F
−

Figure 4: A schematic of the nodes, partitioned according to their labellings in x0, yT1
, yT2

. The two
ovals denote the partition induced by x0 into groups marked + and −. The section 1F2F+ denotes
the nodes in the + group whose labels remain fixed to + in both yT1

, yT2
. The section marked

1S2F+ denotes the nodes in the + group whose labels are switched to − in yT1
but remain fixed to

+ in yT2
. Other labels are analogously defined.

Note that in the figure, 1F2F+ = [1 : m] ∼ (T1 ∪ T2), 1S2S
− = (m+ T1) ∩ (m+ t2) and so on.

Also, importantly, the size of groups with the same number of Ss and F s in the above representation
is identical (i.e., |1F2S+| = |1F2S−| = |1S2F+| = |1S2F−| and so on.)

We consider how the terms relating to the edge (u, v) for any u, v ∈ [1 : 2m] appear in the product
PT1

PT2

P 2
0

. Below,

• Clearly, if u and v are both in the same group in both settings, the behaviour of the edge
(u, v) under the alternate distributions and the null distribution is identical, and these terms
will not appear in the product.

• If both (u, v) ∈ 1F2F+ × 1F2F− ∪ 1S2S+ × 1S2S−, then again, the edge (u, v) has
identical distribution under both alternates and the null, and these terms do not appear in
the product.

• If (u, v) ∈ 1F2F+× 1F2S+, then the (u, v) term does not appear in PT1
/P0, but appears

once in PT2
/P0. Since likelihoods must average to 1, and since the distributions of the

edges are independent, any term which appears just once is averaged out when we take
expectations with respect to P0. Thus, even though these terms appear in the product, we
may ignore them due to our eventual use of the expectation operator. A quick check will
show that the same effect happens for (u, v) ∈ Γ1 × Γ2, where Γ1 can be obtained by
inverting one instance of an F to a S or vice versa, and possibly changing the sign (e.g.
1F2S− × 1S2S+.) Thus, all such pairs can be safely ignored.

6The argument, while simple, gets a little notationally hairy at this point. We recommend that the reader
consults Figure 4 frequently, preferably a printed copy that allows one to sketch the various types of connections
on it.

17



• This leaves us with edges of the form {1F2F±×1S2S±}∪{1F2S±×1S2F±}. In these
cases, if the signs of the two choices match - i.e.

(u, v) ∈ Γ+ × Γ̃+ for (Γ, Γ̃) ∈ {(1F2F, 1S2S), (1S2F, 1F2S)},
then we will obtain a contribution of fuv(q, p)

2 to the product. On the other hand, if they
differ, then we will obtain a contribution of fuv(p, q)

2

Accounting for the above, and taking expectation, we have that

E

[
PT1

PT2

P 2
0

]
= (Ψ)

|1F2F+|·|1S2S+|+|1F2F−|·|1S2S−|+|1S2F+|·|1F1S−|+|1F2S+|·|1S2F−|
, (10)

where
Ψ := Ee ∼ Bern(p)[fe(q, p)

2]Ee ∼ Bern(q)[fe(p, q)
2] (11)

Further, since in our choice of the alternate communities the groups with the same number of Ss and
F s have identical size, and thus we may rewrite (10) above as

E

[
PT1

PT2

P 2
0

]
= Ψ2(|1F2F+||1S2S+|+|1S2F+|2).

For convenience, let |1S2S+| = |T1∩T2| = k. We then have that |1S2F+| = t−k and |1F2F+| =
m+ k − 2t.

We thus have that

EP0

PT1
PT2

P 2
0

= exp
(
(logΨ)(2k(m+ k − 2t) + 2(t− k)2)

)
(12)

= exp
(
(logΨ)(2mk + 2k2 − 4kt+ 2k2 + 2t2 − 4kt)

)
(13)

= exp
(
(logΨ)(2mk + 4k2 − 8kt+ 2t2)

)
(14)

≤ exp
(
(logΨ)((2m− 4t)k + 2t2)

)
, (15)

where we have used that k ≤ t.

Now, for (p, q) = (a/n, b/n),

Ψ =

(
q2

p
+

(1− q)2

(1− p)

)(
p2

q
+

(1− p)2

(1− q)

)
(16)

=

(
1 +

(p− q)2

p(1− p)

)(
1 +

(p− q)2

q(1− q)

)
(17)

=

(
1 +

(a− b)2

na(1− a/n)

)(
1 +

(a− b)2

nb(1− b/n)

)
(18)

= 1 +
ν

n
+O(n−2) ≤ 1 + 2

ν

n
. (19)

As a consequence, using 2m = n, and the development above,

EP0

PT1
PT2

P 2
0

≤ exp

(
4t2

n
ν

)
exp (2kν(1− 4t/n)) . (20)

The above is insular to the precise identities of T1, T2. Further, for a given T1, the number of par-
titions T2 such that |T1 ∩ T2| = t is

(
t
k

)(
m−t
t−k

)
. Feeding this into the expression for E[L2(G)] and

some simple manipulations yield that

EP0
[L2(G)] ≤ e

4t2

n
ν

(
m
t

)
t∑

k=0

(
t

k

)(
m− t

t− k

)
exp (2kν(1− 4t/n)) , (21)
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where we remind the reader that t = s/2,m = n/2.

Recall from §A.2.1 that if EP0
[L2] < 3, then the risk exceeds 0.25. Thus, we will aim to upper

bound (21) by 3.

We begin by rewriting

EP0
[L2(G)] ≤ e

4t2

n
ν

(
m
t

)
t∑

k=0

(
t

k

)(
m− t

t− k

)
exp (2kν(1− 4t/n)) , (22)

= e
4t2

n
ν
E[ξZ ], (23)

where ξ := exp (2ν(1− 4t/n)) > 1 and Z =
∑t

i=1 Zi, where Zi are sampled without replacement
from the collection of t (+1)s and m− t (0)s. Note that z 7→ ξz is continuous and convex for ξ ≥ 1.
By Theorem 4 of [Hoe63],

E[ξZ ] ≤ E[ξZ̃ ],

for Z̃ =
∑t

i=1 Z̃i, where Z̃i are drawn by sampling with replacement from the same collection. But

Z̃ is just a Binomial random variable with parameters (t, t/m). Thus, we have that

EP0
[L2(G)] ≤ e

2t2

m
ν

(
1 +

t

m
(exp (2ν(1− 2t/m))− 1)

)t

(24)

≤ exp

(
2
t2

m
ν +

t2

m
(exp (2ν(1− 2t/m))− 1)

)
(25)

≤ exp

(
t2

m

(
2ν + e2ν − 1

))
(26)

≤ exp

(
2
t2

m

(
e2ν − 1

))
, (27)

where the final inequality uses u < eu − 1. Using the above, and noting that m/2t2 = n/s2, we
find that

ν ≤ 1

2
log

(
1 +

log(3)n

s2

)
=⇒ EP0

[L2(G)] ≤ 3,

finishing the argument. �

A.2.3 Proof of the converse bound (6)

Recall that this part of the theorem claims that if RGof ≤ δ ≤ 1/4, then sΛ ≥ C log(1/δ).

We will again use Le Cam’s method (§A.2.1), this time controlling the total variation distance by a
Hellinger bound.

Let x0 = ([1 : n/2], [n/2+1 : n]) be the null partition, and Y := {y}, with y := ([1 : n/2− s/2]∪
[n/2 + 1 : n/2 + s/2], [n/2− s/2 + 1 : n/2] ∪ [n/2 + s/2 + 1 : n]). We let Px0

(G) := P (G|x0),
and similarly Py. Recall from the section on Le Cam’s method that the following is a necessary
condition for the risk to be smaller than δ

BC(Px0
, Py) ≤

√
2δ.

The Bhattacharya Coefficient can be estimated directly in this setting. (We omit the derivation
below)

BC(Py, Px0
) =

(√
ab

n2
+

√(
1− a

n

)(
1− b

n

))s(n−s)

(28)

For u, v < 3/4, √
(1− u)(1− v) ≥ 1− (u+ v)/2− 2(u− v)2.
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Thus

BC(Py, Px0
) ≥

(
1− a+ b

2n
+

ab

n
− 2

(a− b)2

n2

)s(n−s)

(29)

=

(
1− (

√
a−
√
b)2

2n
− 2

(a− b)2

n2

)s(n−s)

(30)

≥
(
1− (

√
a−
√
b)2

n

)s(n−s)

(31)

≥ exp
(
−2s(√a−

√
b)2
)
, (32)

where the third inequality uses (a + b) < n/4, and the final uses used 1 − u ≥ e−2u for 0 < u ≤
0.75—which applies since 0 < (

√
a−
√
b)2 < max(a, b) < n/4—and n− s ≤ n.

Now note that

(
√
a−
√
b)2 =

(a− b)2

(
√
a+
√
b)2
≤ (a− b)2

a+ b
= Λ,

and thus,
BC(Py, Px0

) ≥ exp (−2sΛ) .

Invoking the condition for RGoF ≤ δ above, we have

exp (−2sΛ) ≤
√
2δ

⇐⇒ sΛ ≥ 1

4
log

1

2δ
.

For δ ≤ 1/4, we may further lower bound the above by (log(1/δ))/8. �

A.3 A comment on the role of Λ when a/b 6= Θ(1)

The main text concentrates on the setting where a/b is a constant. Here, we briefly comment on the

setting where the ratio ρ := max(a,b)
min(a,b) is diverging with n. In the setting of balanced communities

and divergent ρ, the behaviour of the goodness-of-fit problem is no longer described by the quantity

Λ = (a−b)2

a+b , but instead depends on

µ :=
(a− b)2

min(a, b)
.

Specifically, our proofs can, with minimal changes, be adapted to say that for balanced GoF, RGoF

can be solved with vanishing risk if the following hold:

sΛ = ω(1)

µ = ω(n/s2),

and further, to attain the same, it is necessary to have

sΛ = ω(1)

µ & log(1 + n/s2).

Indeed, for the lower bounds, µ ≤ ν ≤ 4µ uniformly, where ν is the SNR quantity in the previous
section, and the upper bounds naturally feature µ.

Together, the above offer a tight characterisation of the GoF problem in the setting of balanced
communities and large s. Note that µ/Λ = 1 + ρ diverges with ρ, and thus the above indicate that
GoF testing becomes much easier as this ratio blows up - something to be expected.

Despite the above developments, we concentrated on the setting ρ = Θ(1) in the main text. This
is largely because the majority of the literature on the SBM focuses on this regime, as this is the
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hardest setting for inference about the planted structure. Thus, in order to compare to existing work,
we examined the a ≍ b setting.

As an aside, we note that unlike the above GoF results, the TST results do not alter in the setting
of divergent ρ. Theorem 2, and in particular the converse bound Λ & 1, continues to hold for this
setting.

On the whole, this line of work is still under investigation, particularly whether the behaviour of
GoF for large ρ continues to be driven by µ in the setting of small changes. We plan to explore this
question in later work.

B Proofs omitted from section 3

B.1 Proof of Achievability in Theorem 2

We carry out the analysis for the case a > b. The reverse can be handled similarly. Note that this
assumption will implicitly be made in all the lemmata that follow.

Recall that the scheme in Algorithm 1 utilises a partial recovery routine. For the purposes of the
following argument, we invoke the method of [CRV15], which provides a procedure that, under the
conditions of the theorem, that attains with probability at least 1− 1/n recovery with at most εmaxn
errors, where εmax = min(1/2, 2e−CΛ) for an explicit constant C. We choose Λ large enough so
that εmax is bounded strictly below 1/2 - for convenience, say by 1/3.

Let G′ ∼ P (·|x) be an independent copy of G, useful in the analysis, and recall the definition of

G̃,G1 from Algorithm 1. We define the following events that we will condition on in the sequel:

E(G1) = {Number of edges in G1 ≤ an/2} E(x̂) = {d(x̂, x) ≤ εmaxn}
For succinctness, we let E := E(G1) ∩ E(x̂). The analysis proceeds in four steps:

(L1) Lemma 4. P (E) ≥ 1− 4/3n.

(L2) Lemma 5.

∣∣∣E[2T x̂(G̃)− T x̂(G′) | E ]
∣∣∣ ≤ a2.

(L3) Lemma 6. If d(x, y) ≥ s, then for κ := (1− 2εmax)
2 − 1/(n− 1),

E[T x̂(G′)− T x̂(H) | E ] ≥ κ
(a− b)

n
(n− s)s.

(L4) Lemma 7. Let ξ := a2 + 5
√

2na log(6n). Then

PNull (T ≥ ξ|E) ≤ 2/3n

PAlt. (T ≤ κ(a− b)s/2− ξ|E) ≤ 4/3n

We briefly describe the functional roles of the above, and relegate their proofs to the following
sections.

(L1) allows us to make use of the typicality of G1 and the recovery guarantees of x̂. The former is
primarily useful for (L2), while the latter induces (L3).

(L2) lets us avoid the technical issues arising from the fact G̃ and G1, x̂ are correlated, and allows
us to work with the simpler G′. It also shows that under the null, the mean of T is small. This

lemma is likely loose, and introduces the nuisance condition a ≤ n1/3.

(L3) shows that under the alternate, the centre of T linearly grows with s despite the weak recovery
procedure’s errors.

(L4) serves to control the fluctuations in T. The
√
n-level term arises from the randomness in

G̃,H,G′, and the a2 term from our use of G′ and (L2).

Putting the above together, we find that the risk is bounded by 4/3n+ 2/3n+ 4/3n ≤ 4/n if

κ(a− b)s ≥ 4(a2 + 5
√

2na log(6n)).
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Since a2 = a3/2
√
a ≤ √na, and for Λ a large enough constant, εmax ≤ 1/3 =⇒ κ ≥ (1/3 −

1/(n− 1))2 ≥ 1/36 for n ≥ 7, the above condition is equivalent to

(a− b)s ≥ C ′
√

na log(6n)

for a large enough C ′. Rearranging and squaring, this is equivalent to

(a− b)2

a
&

n log(6n)

s2
.

For s ≥ n1/2+c as in the statement, the quantity on the right hand side is decaying with n. Further,
Λ is smaller than the left hand side, so it being bigger than a constant forces the above to hold.

Note that the threshold in Algorithm 1 alters the fluctuation range above from
√
na to

√
n(a+ b).

The reason for this is that this relaxation allows Algorithm 1 to be agnostic to the knowledge of (a, b)
- generic spectral clustering schemes do not require this knowledge, and the threshold of our scheme
depends only on n(a+ b), which can be robustly estimated in our setting since the number of edges
in the graph is proportional to this. In addition, invoking the bounds of [CRV15] allows explicit
control on κ above, and thus provides an explicit value of the constant C in Algorithm 1.

B.1.1 Relaxing Exact Balance for TST

We briefly discuss the modifications required to the above analysis in order to extend the same to
unbalanced but linearly sized communities. Of the four lemmata used in the proof described above,
the proof of Lemma 5 is completely agnostic to the sizes of the communities. In addition, while
the proof presented in [CRV15] concentrates on the case of exactly balanced communities, as noted
in their Section 1, it can be extended to unbalanced but linearly sized communities with minimal
changes, although with a corresponding weakening of the constants in the rate with which error
decays with increasing Λ. This extends Lemma 4 to linearly sized communities.

In contrast, Lemma 6 does rely on the assumption of balance. To sidestep this, we show the following
version for use in this setting:

Lemma 8. Let the communities be of sizes n+, n−. If d(x, y) ≥ s, then

E[T x̂(G′)− T x̂(H) | E ] ≥ (a− b)s

2

(
1− 2ε

(
n

min(n+, n−)
+ 2

))
.

When min(n+, n−) = cn, for some c > 0, then by enforcing that ε is smaller than, say,

(3(2 + 1/c))
−1

, which may be done by choosing a large enough, but O(1), value of Λ, the above
can be expressed as Ω(s(a− b)).

Lastly, the alternate case in Lemma 7 must be adjusted. However, this concentration result is actually
proved by arguing that the event {T ≤ EAlt[T

x̂(G′)− T x̂(H)|E ]− ξ} has low probability given E ,
and the above lemma implies that this expectation is at least Ω(s(a− b))), so the corresponding tail
bound goes through to the required form trivially.

At this point, the concluding remarks of the above proof apply to finish the argument.

B.2 Proofs of Lemmata used in B.1

B.2.1 Proof of Lemma 4

We first note that by the work of [CRV15], or [FC19], under the conditions of the theorem, E(x̂)
holds with probability at least 1−1/n. By a union bound, it suffices to show that P (E(G1)) ≥ 1− 1

3n .
Recall that

P ((e, v) ∈ G1|x) =
{

a
2n xu = xv
b
2n xu 6= xv,

(33)

and that edges are independent. Thus the number of edges in G1 is a sum of Bernoulli random
variables of parameter ≤ a/2n. The factor of 2 arises since G1 is sub-sampled at rate 1/2. Let #G1

be the number of edges in G1. We have

E[#G1] ≤
(
n

2

)
a

2n
≤ na

4
(34)

P (#G1 ≥ E[#G1] +
√
na log(3n)) ≤ 1/3n, (35)
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where the first bound follows from inspection, and the second follows from the Bernstein upper tail
bound of [CL06, Ch. 2] and the condition a ≥ 16 log(6n)/n. Further invoking this condition we

find that
√

na log(3n) ≤ na/4, and thus

P (E(G1)) = P (#G1 ≤ na/2) ≥ 1− 1

3n
.

B.2.2 Proof of Lemma 5

Let

cuv :=
(a+ b) + (a− b)xuxv

2
≤ a.

Recall that cuv/n is the probability under x of the edge (u, v) existing.

Also note that for a graph Γ and a partition z,

T z(Γ) =
∑

1≤u<v≤n

zuzvΓuv,

where Γuv := 1{(u, v) ∈ Γ}.
We’re interested in controlling

T = 2T x̂(G̃)− T x̂(G′) =
∑

x̂ux̂v(2G̃uv −G′
uv).

Since x̂ is a deterministic function of G1, G̃ is independent of x̂ given G1. Further, G′ is independent

of (G1, G̃). Lastly observe that

P ((u, v) ∈ G̃ | G1) =
cuv/2n

1− cuv/2n
(1− (G1)uv).

As a consequence,

E[T | G1] =
∑

x̂ux̂v

(
2 · cuv/2n

1− cuv/2n
(1− (G1)uv)−

cuv
n

)
(36)

=
∑

x̂ux̂v
c2uv/2n

2

1− cuv/2n
−
∑

x̂ux̂v
cuv/n

1− cuv/2n
(G1)uv (37)

=⇒ |E[T | G1]| ≤
∑

u<v

c2uv/2n
2

1− cuv/2n
+
∑

u<v

cuv/n

1− cuv/2n
(G1)uv (38)

≤ a2/2n2

1− a/2n

(
n

2

)
+

a/n

1− a/2n
#G1. (39)

where recall that #G1 is the number of edges in G1. Note that we may condition on E , the occur-
rence of which is a deterministic function of G1. Since under E we have #G1 ≤ an/2, we find
that

|E[T | G1, E ]| ≤
1

1− a/2n

(
a2

2n2

n2

2
+

a

n

an

2

)
≤ a2, (40)

where the final inequality uses that 1/(1 − a/2n) ≤ 4/3, which follows from a ≤ (n/2)1/3, and
n ≥ 2.

Finally observe that the right hand side of the equation above does not depend on G1. Thus, we may
integrate over P (G1 | E) to find that |E[T | E ]| ≤ a2.

Remark This lemma is likely rather weak. In particular, the upper bound on |E[T |G1]| completely
ignores the relationship between x̂ & G1, and that between G1 & cuv . Indeed, (36) may also be
rewritten as

E[T | G1] =
∑ cuv/n

1− cuv/2n
x̂ux̂v

(cuv
2n
− (G1)uv

)
.
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Since (G1)uv ∼ Bern(cuv/2n), and x̂ is a clustering derived from G1, it may be possible to control
the above to something much smaller than a2. This may require nontrivial use of the E(x̂) condition-
ing here, which is unused in the above argument. Unfortunately it seems that such control would
closely depend on the scheme used to obtain x̂, which tend to be complex - most schemes involve
non-trivial regularisation of G1, as well as some amount of quantisation of the solution to an opti-
misation problem to produce x̂, due to which the covariance of G1 and x̂ is difficult to understand.
For completeness’ sake we point out that an upper bound on the same of O(a2/n) would remove

the nuisance condition of a ≤ n1/3 present in Theorem 2.

B.2.3 Setting up the Proof of Lemma 6

We proceed by first developing some intuition behind the proof of Lemma 6 instead of launching
straight into the same. Further, we assume throughout that d(x, y) ≥ s.

Let

Incorrect := {u ∈ [1 : n] : x(u) 6= x̂(u)}
Unchanged := {u ∈ [1 : n] : x(u) = y(u)}.

and the sets ‘Correct’ and ‘Changed’ be their respective complements. We show in Appendix B.2.4
the following lemma

Lemma 9.

E[T x̂(G′)− T x̂(H) | x̂] = (a− b)

n

(
n(Unchanged)− 2n(Incorrect, Unchanged)

)

×
(
n(Changed)− 2n(Incorrect, Changed)

)
, (41)

where

n(Unchanged) = |Unchanged|
n(Incorrect, Unchanged) = |Incorrect ∩ Unchanged|,

and the other terms are defined analogously.

We note that the above lemma holds irrespective of the balance assumptions in the theorem.

Suppose n(Incorrect) = k. Due to the exchangability of the nodes when |{u : x(u) = +}| = |{u :
x(u) = −}|, the incorrectly labelled nodes in x̂ correspond to a choice of k ∈ [0 : n/2] nodes
picked without replacement from [1 : n] uniformly at random. Further, since the changes made in
y are chosen independently of the graphs, they are independent of x̂. Thus, the number of correct
and incorrect nodes changed forms hypergeometric distribution. The expected number of Incorrect
nodes changed is precisely s

n ·k, where s is the number of changes made, and similarly for Incorrect
nodes unchanged.

Further invoking the results of [FC19], if Λ ≥ C log(1/εmax), then k ≤ εmaxn with probability
at least 1 − 1/n. As a consequence, the bound in Lemma 9 remains large in magnitude even on
integrating over the randomness in x̂. This was the subject of Lemma 6 from the text, reproduced
below for convenience.

Lemma 6

E[T x̂(G′)− T x̂(H) | E ] ≥
(
(1− 2εmax)

2 − 1

n− 1

)
(a− b)

n
(n− s)s,

the proof of which is the subject of Appendix B.2.5.

B.2.4 Proof of Lemma 9

We will require explicit counting of a number of groups of nodes. Let us first define them:
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Let

S++ := {u ∈ [1 : n] : x̂(u) = +1, x(u) = +1}, n++ := |S++|,
S+− := {u ∈ [1 : n] : x̂(u) = +1, x(u) = −1}, n+− := |S+−|,
S−− := {u ∈ [1 : n] : x̂(u) = −1, x(u) = −1}, n−− := |S−−|,
S−+ := {u ∈ [1 : n] : x̂(u) = −1, x(u) = +1}, n−+ := |S−+|.

The sets above encode the partitions induced by x̂ and x, with the first symbol in the superscript
denoting the label given by x̂. Observe that S+−, S−+ are the sets of nodes mislabelled in x̂.

Lastly, for (i, j) ∈ {+,−}2, let

Ci,j := Si,j ∩ {u ∈ [1 : n] : x(u) 6= y(u)}
ni,j
C := |Ci,j|

These are the nodes that change their labels in y. Note that the values of each of the above objects
is a function of x̂. For now we will fix x̂, and compute expectations over the randomness in G′, H
alone.

We first study Nw: N x̂
w(G) = N x̂

w(G[+]) +N x̂
w(G[−]), where G[+] is the induced subgraph on the

nodes {u ∈ [1 : n] : x̂(u) = +} and similarly G[−].
By simple counting arguments,

E[N x̂
w(G

′[+]) | x̂] =
(
n++ + n+−

2

)
a

n
− (a− b)

n
n++n+−. (42)

Under H, the nodes in C++ behave as if they were in S+− and those in C+− as if they were in
S++. Computations analogous to before lead to

E[N x̂
w(G

′[+])−N x̂
w(H[+]) | x̂] = a− b

n

(
(n++ − n++

C )− (n+− − n+−
C )

)
(n++

C − n+−
C ) (43)

By symmetry, we can obtain the above for G[−]s by toggling the group labels above. Thus, condi-
tioned on a fixed x̂, we have

E[N x̂
w(G

′)−N x̂
w(H) | x̂] =(a− b)

n

( (
(n++ − n++

C )− (n+− − n+−
C )

)
(n++

C − n+−
C )

+
(
(n−− − n−−

C )− (n−+ − n−+
C )

)
(n−−

C − n−+
C )

)
. (44)

Similar calculations can be performed for Na. Since in edges across the true partitions, the edges in
the same group appear with probability a/n and in different groups with b/n, the roles of a and b
will be exchanged in this case, leading to a factor of +(a− b) instead of −(a− b). We will suppress
the tedious computations, and simply state that

E[N x̂
a (G

′)−N x̂
a (H) | x̂] =(a− b)

n

( (
(n++ − n++

C )− (n+− − n+−
C )

)
(n−−

C − n−+
C )

+
(
(n−− − n−−

C )− (n−+ − n−+
C )

)
(n++

C − n+−
C )

)
. (45)

For convenience, we define

n(Correct, Unchanged) := (n++ + n−−)− (n++
C + n−−

C )

n(Correct, Changed) := (n++
C + n−−

C )

n(Incorrect, Unchanged) := (n+− + n−+)− (n+−
C + n−+

C )

n(Incorrect, Changed) := (n+−
C + n−+

C )
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where ‘correctness’ corresponds to the nodes u such that x̂(u) = x(u), while ‘unchangedness’ to u
such that x(u) = y(u).

Subtracting (45) from (44) then yields that for fixed x̂

E[T x̂(G′)− T x̂(H) | x̂] = (a− b)

n

(
n(Correct, Unchanged)− n(Incorrect, Unchanged)

)

×
(
n(Correct, Changed)− n(Incorrect, Changed)

)
.

(46)

The lemma now follows on observing that

n(Unchanged) = n(Correct, Unchanged) + n(Incorrect, Unchanged),

and similarly n(Changed).

B.2.5 Proof of Lemma 6

Below we will simply assume that d(x, y) = s. The proof is easily extended to > s.

Effectively, we are considering the following process: we have a bag of n balls - corresponding to
the nodes - of two colours (types), Changed and Unchanged, and we are picking k ≤ n/2 of them
uniformly at random without replacement. Let

η1 := n(Unchanged, Incorrect) (47)

η2 := n(Changed, Incorrect) (48)

and

ζ :=(n(Unchanged)− 2n(Incorrect, Unchanged))(n(Changed)− 2n(Incorrect, Changed))

=(n− s− 2η1)(s− 2η2). (49)

We now condition on the number of errors being k, which imposes the condition that η1 + η2 = k.
Recall the sampling without replacement distribution, which implies that

P (η1 = k − j, η2 = j | d(x̂, x) = k) =

(
n−s
k−j

)(
s
j

)
(
n
k

) . (50)

Thus,

E[η1|d(x, x̂) = k] =
k

n
(n− s)

E[η2|d(x, x̂) = k] =
k

n
(s)

E[η1η2|d(x, x̂) = k] = (n− s)(s)
k(k − 1)

n(n− 1)
= s(n− s)

(
k2

n2
− k(n− k)

n2(n− 1)

)
.

As a consequence, we obtain that

E[ζ|d(x, x̂) = k] = s(n− s)

(
1− 4

k

n
+ 4

k2

n2
− 4

k(n− k)

n2(n− 1)

)

= s(n− s)

((
1− 2

k

n

)2

− 4
k(n− k)

n2(n− 1)

)
(51)

Note that the above is decreasing as k increases for k ≤ n/2.

Note further that the Markov chain ζ–d(x̂, x)–G1 holds. Thus the above also holds for E[ζ |
E(G1), d(x, x̂) = k].
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We now condition on E(x̂) to find that

E[ζ | E(x̂), E(G1)]

s(n− s)
≥
(
(1− 2εmax)

2 − 4
εmax(1− εmax)

n− 1

)
(52)

≥ (1− 2εmax)
2 − 1

n− 1
(53)

where we have used εmax ≤ 1/2, and the (unstated but obvious) condition that n ≥ 2.

Applying the above to the result of Lemma 9, we find that

E[T x̂(G′)− T x̂(H) | E ] ≥
(
(1− 2εmax)

2 − 1

n− 1

)
(a− b)

n
(n− s)s.

B.2.6 Proof of Lemma 8

For continuity of exposition, we prove Lemma 8 before Lemma 7.

Below we will simply assume that d(x, y) = s. The proof is easily extended to the same being > s.

We begin with recalling Lemma 9, and noting that it’s proof does not utilise the exact balance
assumption. We begin as in the proof of Lemma 6, by defining

η1 := n(Unchanged, Incorrect)

η2 := n(Changed, Incorrect)

and noting from Lemma 9 that E[T x̂(G′)−T x̂(H) | x̂] ≥ (a−b)
n (n− s− 2η1)(s− 2η2) =: (a−b)

n ζ.
Once again, let’s fix the errors number of errors made by x̂ as some k, and let s+, s− be the number
of changes made in communities + and − respectively. Note that s+ + s− = s.

Using the above definitions,

ζ = (n− s)(s− 2η2)− 2sη1 + 4η1η2 ≥
n

2
(s− 2η2)− 2ks,

by noting that η1η2 ≥ 0, η1 ≤ k and that s ≤ n/2. Thus,

E[ζ|d(x̂, x) ≤ k] ≥ ns

2

(
1− 4k

n
− 2

E[η2|d(x̂, x) ≤ k]

s

)
.

Suppose that the recovery procedure makes (k+, k−)-errors in communities + and − respectively,
with k++k− ≤ k. Within-community exchangability of nodes implies that the errors made within a
community must be uniformly distributed over the community. Since the changes are made indepen-
dently of these errors, we must have that the number of changed nodes in community ∗ ∈ {+1,−1}
that are incorrectly inferred must be Hyp(n∗, s∗, k

∗) distributed. In particular, this yields that

E[η2|(k+, k−)] =
s+
n+

k+ +
s−
n−

k− ≤ s+k
+ + s−k

−

min(n+, n−)
≤ k+ + k−

min(n+, n−)
s.

The above immediately yields that

E[ζ|d(x̂, x) ≤ k] ≥ ns

2

(
1− 4k

n
− 2

k

min(n+, n−)

)
.

On E , k ≤ εn, leading to the claimed bound.

B.2.7 Proof of Lemma 7

Recall the notation from Appendix B.2.2. Under the null H
law
= G′. Below, we will use G′ as a proxy

for H in the null distribution, and use H only in the alternate.

To begin with, observe that both G′, H are independent of G1, G̃, x̂, and that G̃ is independent of
x̂ given G1. Now, T x̂ is a signed sum of independent Bernoulli random variables with parameters
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smaller than a/n given G1.. Thus, invoking results from Ch. 2 of [CL06] (and using that for a ≥ C
for some large enough C implies that a ≥ 16 log(6n)/n ⇐⇒ 1/6n ≤ exp (−na/16))), we find

that for Γ ∈ {G̃,G′, H},

P
(∣∣T x̂(Γ)− E[T x̂(Γ) | G1, E ]

∣∣ ≥
√

2na log(6n) | G1, E
)
≤ 1

3n
,

where we have used that E is determined given G1 (i.e. E lies in the sigma-algebra generated by
G1.)

We now control the null and alternate fluctuations given E .

Null: By the union bound, we find that

P
(
2T x̂(G̃)− T x̂(G′) ≥ E[2T x̂(G̃)− T x̂(G′) | G1, E ] + 3

√
2na log(6n) | G1, E

)
≤ 2

3n

Recall from equation (40) from the proof of Lemma 5 that E[2T x̂(G̃)−T x̂(G′) | G1, E ] ≤
a2. Feeding this in, we find that

P
(
2T x̂(G̃)− T x̂(G′) ≥ a2 + 3

√
2na log(6n) | G1, E

)
≤ 2

3n
.

The right hand side above does not depend on G1, and neither does the fluctuation radius
wihtin the probability. Thus integrating over P (G1 | E), we find that

P
(
T ≥ a2 + 3

√
2na log(6n) | E

)
≤ 2

3n
,

where we have used that T = 2T x̂(G̃)− T x̂(H)
law
= 2T x̂(G̃)− T x̂(G′) under the null.

Alt: Following the above development again, this time with lower tails, we find that given G1

with probability at least 1− 2/3n,

2T x̂(G̃)− T x̂(G′) ≥ −(E[2T x̂(G̃)− T x̂(G′) | G1, E ])− 3
√
2na log(6n)

T x̂(G′)− T x̂(H) ≥ +(E[T x̂(G′)− T x̂(H) | G1, E ])− 2
√

2na log(6n)

Further, given (G1, E), by Lemmas 5, 6 we have

2T x̂(G̃)− T x̂(G′) ≥ −a2 − 3
√

2na log(6n)

T x̂(G′)− T x̂(H) ≥ +κ(a− b)s(1− s/n)− 2
√

2na log(6n),

where κ = (1− 2εmax)
2 − 1/(n− 1). Adding the above, we find by the union bound that

P

(
2T x̂(G̃)−T x̂(H) ≥ κ(a− b)s(1− s/n)− a2− 5

√
2na log(6n) | G1, E

)
≥ 1− 4

3n
.

The claim follows on noting that the right hand side and the fluctuation radius do not depend
on G1, and integrating the inequality over G1.

B.3 Proof of the converse bound from Theorem 2.

We restate the lower bound below as a proposition:

Proposition There exists a universal constant C, and another c < 1 that depends on C, such that if
Λ ≤ C and s ≤ n

2 (1− c), then reliable two-sample testing of balanced communities for s changes
is impossible for large enough n.

In particular, for a+ b < n/4, the statement holds with C = 1/8, c = 1/6 for n ≥ 136, and in this
case, RTST ≥ 0.25.
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Proof. The proof proceeds by using a variation of Le Cam’s method, and importing impossibility
results for the so-called distinguishability problem [Ban+16]. In particular, suppose that in the null
distribution, the communities are drawn according to the uniform prior on balanced communities,
denoted by π. Further, assume that if a s-change is made, then the resulting community is chosen uni-
formly from all communities that are at least s far from the null community. We have the hypothesis
test:

H0 : (G,H) ∼
∑

x∈B

πxP (G|x)P (H|x) vs H1 : (G,H) ∼
∑

x,y∈B

πxπy|xP (G|x)P (H|y),

where we use B to denote the set of balanced communities, and πy|x is the uniform distribution on

B ∩ {y : d(x, y) ≥ s}. For succinctness, let us denote the null and alternate distributions above as
pnull and palt respectively.

Once again, by Neyman-Pearson theory,

RTST ≥ Rπ ≥ 1− dTV(pnull, palt) ≥ 1− dTV(pnull, Q)− dTV(Q, palt),

where Q is any distribution, and the last inequality is since dTV is metric.

We choose Q to be the unstructured distribution induced by an Erdős-Rényi graph of parameter
(a+b)/2n. The primary reason for this is that explicit control on the total variation distance between
pnull and Q is then available - for instance, by [WX18, §3.1.2], we have

Dχ2(pnull‖Q) + 1 ≤ E

[
exp

(
τ

(
4H − n√

n

)2
)]

,

where H is a Hypergeometric(n, n/2, n/2) random variable, and

τ =
(a− b)2

2(a+ b)
+

(a− b)2

2(2− a/n− b/n)
.

Notice the extra factor of 2 compared to the expressions in [WX18], which arises since we sum over
two independent graphs G,H and not one. We observe that

τ = Λ
n

2n− a− b
,

and explicitly, if a+ b ≤ n/4, then τ ≤ 4
7Λ.

We now consider the alternate term. As a preliminary, let

γ :=

∑s−1
k=0

(
n/2
k/2

)2
(

n
n/2

) .

Note that γ is the probability that two balanced communities chosen independently and uniformly,
lie within distortion s. Indeed, since communities are formed by identifying antipodal points in the
boolean cube, the probability of picking a community at distortion < s coincides with that of picking
a balanced vector at Hamming distance < s from a given balanced vector in the cube {0, 1}n. The
denominator in γ is clearly the number of balanced vectors in the cube, while the numerator is the
number of balanced vectors at a distance of < s from any given balanced vector - we choose k < s,
and choose k/2 points marked 1 and k/2 marked 0, and flip them all.

As a consequence, we find that for any x, y ∈ B,
πy|x ≤

πy

1− γ
.

Thus, in the χ2 expressions for palt, we have

E(G,H)∼Q⊗2 [(palt/Q)2] =
∑

x,y,x′,y′

E

[
P (G|x)P (G|x′)

Q2(G)

P (H|y)P (H|y′)
Q2(H)

]
πxπx′πy|xπy′|x′

≤ 1

(1− γ)2

∑

x,y,x′,y′

E

[
P (G|x)P (G|x′)

Q2(G)

P (H|y)P (H|y′)
Q2(H)

]
πxπx′πyπy′

=
1

(1− γ)2

(
1 + χ2(

∑

x∈B

πxP (G|x)‖Q(G))

)2
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Since the final quantity is explicitly controlled in the cited section, we also have

1+Dχ2(palt‖Q) ≤ 1

(1− γ)2
E

[
exp

(
τ

2

(
4H − n√

n

)2
)]2

≤ 1

(1− γ)2
E

[
exp

(
τ

(
4H − n√

n

)2
)]

,

the final relation arising from Jensen’s inequality.

Since the quantity appears often, we let

β := E

[
exp

(
τ

(
4H − n√

n

)2
)]

.

Invoking the inequality dTV ≤
√

log(1 +Dχ2)/2, we find that

RTST ≥ 1−
√

log(β)/2−
√

log(β(1− γ)−2)/2 = 1−
√
log(β/(1− γ)).

Note that the only s-dependent term in the above bounds is γ. We first offer control on the γ, and
claim that for s/n < 1/2, γ → 0. Indeed, since s ≤ n/2, and by standard refinements of Stirling’s
approximation (for instance, we use [Gal68, Exercise 5.8] below),

γ ≤ s

(
n/2
s/2

)2
(

n
n/2

) ≤ s
1

2π

n/2

s/2(n− s)/2
2nh2(s/n)

(√
n

8(n/2)2
2n
)−1

≤
√

2n

π2
2−n(1−h2(s/n)),

where h2 is binary entropy in bits.

At this point the argument in the limit as n→∞ is complete - since 4(H − n)/
√
2n

Law→ N (0, 1),
β is bounded as n→∞ by

√
1− 2τ if τ < 1/2, and since in this limit τ → Λ/2 (for a, b = o(n)),

we obtain that if lim sup s/n < 1/2, and Λ < 1, then lim inf RTST > 0.

Non-asymptotic bounds can be recovered by giving up space on the constants, leading to the state-
ment we have claimed.

Concretely, to attain RTST > 1/4, it suffice to show that β(1 − γ)−1 < e9/16. Now, for s < n/3,
we have

(1− γ)e9/16 ≥
(
1−

√
2n/π22−0.08n

)
e9/16 > 1.75

for n ≥ 136.7 Thus, it suffices to control β to below 1.75 in this regime. To this end, note that
u 7→ exp

(
τ((4u− n)/

√
n)2
)

is a continuous, convex map, and thus, by [Hoe63, Thm. 4],

β ≤ E

[
exp

(
τ

(
4B − n√

n

)2
)]

,

where B ∼ Bin(n/2, 1/2).

By Chernoff’s bound, P (|B − n/4| ≥ √nu) ≤ 2e−4u2

, and thus, we have

β ≤
∫ ∞

0

P

(
exp

(
τ

(
4B − n√

n

)2
)
≥ u

)
du

≤
∫ ∞

0

min(1, 2u−1/4τ ) dτ

=
24τ

1− 4τ
,

7This is calculated using a computer algebra system. Analytically it is still easy to argue something similar

- for n > 10,
√
n2−0.08n is decreasing. Thus, for n > 100,

√

2n/π22−0.08n < 10
√

2/256π < 1/50, and thus

the expression is at least e9/16 · 49/50 > 1.6 · 49/50 > 1.5 By following the next footnote with this number, this
leads to an analytic proof of the conclusion holding for Λ < 7/80 ≈ 0.087.
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the final equality holding so long as 1/4τ > 1 ⇐⇒ τ < 1/4. The original claim follows if

24τ

1− 4τ
≤ 7

4
,

which is true for τ < 0.074. Since τ ≤ 4/7Λ,Λ < 1/8 implies that τ < 4/56 < 0.072.8

A couple of quick comments are useful here:

1. Note that the above cannot be applied usefully to GoF. This is because in GoF, the null is ex-
plicitly available, and we do not have the benefit of averaging with π in the TV expressions.
This causes the equivalent term χ2(P (G|x0)‖Q(G)) to grow exponentially with nΛ.

2. The above characterises the tightness of our claimed bounds for TST of large changes - the
method works if Λ = Ω(1) and s ≫ √n log n, and by the above argument, no test can
work if Λ≪ 1, as long as the change is not extreme (lim sup s/n < 1/2 ).

3. While the above approach is wasteful in how it utilises s, this is actually a non-issue, since
the bounds require a separate control on dTV(pnull‖Q), which can only be controlled if
Λ = O(1). In particular, we cannot pull out better bounds for the small s situation from the
above.

C Experimental Details

C.1 Experiments on SBMs

The experiemnts simulate an ensemble of GoF and TST test and evaluate the performance of the two
schemes using the sum of false alarm and missed detection probabilities (FA+MD).

While the GoF scheme is implemented precisely as in the main text, the experiments use a slightly
modified version of Algorithm 1 for the TST:

(i) G1 subsamples G at a rate η, and the test statistic T is appropriately modified: T :=
1

1−ηT
x̂1(G̃)−T x̂1(H). Intrinsically, the spectral clustering step is the more singal-sensitive

part of the scheme 1. While splitting the graphs equally is fine for theoretical results, it is
better in practice to devote more SNR to the clustering step, and less to compute the test
statistic, which can be done by increasing η. In the following, we set η = 0.85. Other
values of η are explored in Appendix C.1.2.

(ii) The constant factor in the threshold developed in the test is conservative, and we vary it to
adjust for different values of η and to mitigate its suboptimality. In the experiments, we

used the threshold 3
4

√
n(a+ b) log(6n).

As noted in the main text, the experiments are performed for various (s,Λ) for a fixed value of
a/b = 3. Λ is varied between Λ0 and 10Λ0 for Λ0 = 3/4log(n/100) ≈ 1.7. This is significantly
below the theoretical threshold of 2 necessary for non-trivial recovery. Further, 8Λ0 = 2 log(n), at
which point recovery with constant order distortion becomes viable.

C.1.1 Implementation details

The experiment is setup as follows:

1. We fix a value of Λ0 = 3/4 log(n/100) as above. Then, for some choice of b/a = r, we
choose (a, b) satisfying Λ = αΛ0 and α ∈ [1, 10]. r is set to be 1/3.

2. For a fixed number of nodes, n, and for s ∈ [1 : n/2], we consider the balanced partition
x = [xi]

n
i=1 with

xi =

{
0, 0 ≤ i ≤ n/2

1, n/2 < i ≤ n

8The number 0.074 is calculated using a computer algebra system. Purely analytic calculations are straight-
forward as well - for example by using 24τ ≤ 1 + 4τ for τ < 1/4, which can be proved by noting that
1 + 4τ − 24τ is initially increasing, and then strictly decreasing after a point, and that 1/4 is a root of this
function. This implies that the conclusion holds so long as τ < 3/44, which holds if Λ < 21/176 ≈ 0.119.
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for the null distribution, and the shifted balanced partition y = [yi]
n
i=1 with

yi =

{
0, s/2 < i ≤ n/2 + s/2

1, i ∈ (n/2, n] ∪ [0, s/2]

for the alternate distribution. This ensures that d(x, y) = s. We take ⌊·⌋ whenever s or n
are odd.

3. We sample G,G′ ∼ P (· |x) and H ∼ P (· | y), where P represents drawing from an SBM
with parameters n, a and b, as described in §1

GoF procedure. Recall that we are given a proposed partition x0. Here we set x0 = x. The
results of running the tests on the graph G then serve to characterise size, and those on H serve to
characterise power.

1. For the naïve scheme, we produce partitions x̂ and ŷ from G and H respectively via spectral
clustering (see below for details), and declare for null in either case if d(x0, z) < s/2,
where z is respectively x̂ and ŷ.

2. For the alternate scheme, we instead compute the statistic from §2, and reject on the basis
of the threshold developed there.

TST procedure. Similarly to the above, runs on the pair (G,G′) serve to characterise size, and on
(G,H) serve to characterise power of the test. Precisely:

1. For the naïve two-sample test based on recovery and comparison, we estimate x̂, x̂′ and ŷ
from G, G′ and H respectively. The structure is estimated using spectral clustering (see
below for implementation details). We declare that a change has occurred if d(x̂, x̂′) ≥ s/2,
and no change if d(x̂, ŷ) < s/2. We get a false alarm every time we declare a change
on the pair (G,G′), and we miss a detection whenever we declare no change on the pair
(G,H). The false alarm and missed detection probabilities are estimated as an average over
M = 100 samples.

2. For the two-sample test based on Algorithm 1, we follow the algorithm as stated, making
only the modifications previously described. To be precise, we estimate x̂1 from G1, a
subsampling of (the edges of) G at rate η. Then, we compute the test statistics in the null
and alternate distributions:

TNull =
1

1− η
T x̂1(G̃)− T x̂1(G′)

and

TAlt. =
1

1− η
T x̂1(G̃)− T x̂1(H),

where G̃ = G−G1.

In both the above cases, the simulations are performed over a range of Λ = αΛ0 and s, where
α ∈ [1, 10] and s ∈ (0, 250). Performance is indicated using the sum of false alarm and missed
detection rates.

Details associated with the implementation of the aforementioned schemes are given below:

1. All experiments were implemented in the Python programming language (v3.5+), using the
Numpy (v1.12+) and Scipy (v0.18+) scientific computing packages [Oli06; JOP01].

2. Structure learning was performed using the Spectral Clustering [Lux07] algorithm, as im-
plemented by the Scikit-learn package (v0.19.1+) [Ped+11].

3. Spectral Clustering was regularized in the manner suggested by [JY16]. Effectively, if G
was the adjacency matrix to be submitted to the Scikit-learn spectral clustering function,
we performed pre-addition, and instead passed G+ τ11T. We set τ = 1

10n , which proved
sufficient to run the spectral clustering function with no errors or warnings.

4. All plots were generated using Matplotlib (v2.1+) [Hun07].
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(a) Naïve two-sample test based on structure learning
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(b) Two-sample test based on Algorithm 1 for η =
0.7
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(c) Two-sample test based on Algorithm 1 for η =
0.8
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(d) Two-sample test based on Algorithm 1 for η =
0.9

Figure 5: A comparison between the naïve two-sample test based on structure learning, and the
two-sample test we propose in Algorithm 1, for η ∈ {0.7, 0.8, 0.9}. Error rates lower than δ = 0.1
have been shaded blue to represent “success”, while those higher than 1−δ = 0.9 have been shaded
orange to represent “failure”.

C.1.2 Modifications to η

For completeness, we demonstrate how the performance of the modified two-sample test based on
Algorithm 1 varies as η is changed. Figure 5 compares the naïve two-sample test against the scheme
based on Algorithm 1, for three different values of η: 0.7, 0.8 and 0.9.

We use the following parameters: n = 500, SNR0 = 3
8 log(n/100) =

3
8 log 5 ≈ 0.5, b

a = r = 1/3.

For η = 0.7 and η = 0.8, the threshold used is
√

n(a+ b) log(6n), while for η = 0.9, we used a

higher threshold of 3
2

√
n(a+ b) log(6n).

While differences are rather subtle, a careful examination may reveal that as η increases, the failure
region recedes, while the success region advances in the high-s, low-SNR regime. However, the
cost of this is an increased threshold to maintain success at δ = 0.1, and a wider transition region,
indicating that different η might be optimal at different n.

C.2 Experiments on the Political Blogs dataset

While the original graph has 1490 nodes, we followed standard practice in selecting the largest
(weakly) connected component of the graph, which contains 1222 nodes. We denote this graph as
G.The true partition of the blogs according to political leaning is available, denoted xTrue here. This
also allows accurate estimates of the graph parameters (a, b) to be made, and we use these estimates
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for a, b for GoF, and for the semi-synthetic procedure for TST. We found that â ≈ 49.5, while

b̂ ≈ 5.2, giving a ratio a/b ≈ 10. The communities, according to xTrue are of sizes 636 and 586.

The regime of low Λ is explored via sparsification. Fixing a ρ ∈ (0, 1], sparsification is performed
by independently flipping coins for each edge in G, and keeping the edge with probability ρ. We
refer to ρ as the rate of sparsification.

We lastly note that at no sparsification (ρ = 1), spectral clustering produces a partition x̂1 such that
d(xTrue, x̂1) = 56.

GoF Procedure.

1. The graph is sparsified at rate ρ. Let the sparsened graph be Gρ.

2. For the naïve recovery based scheme, spectral clustering is performed on Gρ as in the
previous section to generate x̂ρ.

3. For the proposed test from §2, the statistic is computed on Gρ.

4. The size of the test is estimated by running the GoF tests with x0 = xTrue. For the naïve
scheme, we reject if d(x̂ρ, x0) ≥ s/2; for the proposed scheme, we use the test from §2.

5. To compute the power at distortion s, we first generate y by randomly inverting the com-
munity labels of s nodes in xTrue. We then run the same procedure as in the previous line,
but with x0 = y. Note that the graphs are not edited in any way.

6. The precise implementation details are exactly as in Appendix C.1.1, with the minor differ-
ence that we use a regularizer of τ = 1 for spectral clustering.

TST Proceudre.

1. Recall that TST requires two graphs as input. The experiment compares the political blogs
graph against SBMs.

2. To compute the size, we require a graph with the same underlying communities as G. Thus
we generate G′, which is drawn as an SBM with the underlying partition xTrue, and param-
eters a, b as estimated from the political blogs graph G.

3. To determine the power of the tests we need a graph with an s-far underlying community.
For this, we first generate a y such that d(xTrue, y) = s, as we did in the GoF Procedure.
Next, we sample H as an SBM with underlying partition y.

4. The graphs G, G′ and H are now all sparsified at rate ρ to get Gρ, G′
ρ and Hρ.

5. The size of each test is estimated using the TST procedures, as described in Appendix C.1.1
on the pair (Gρ, G

′
ρ). Power is similarly estimated using the TST procedures on the pair

(Gρ, Hρ).

C.3 Experiments on the GMRFs

Following the heuristic detailed in §4.3, we naïvely generalise community recovery and testing to
this setting, by replacing all instances of the graph adjacency matrix in previous settings with the
sample covariance matrix.

The Gaussian Markov Random Field is described by its precision matrix Θ (i.e., the inverse covari-
ance matrix of the Gaussian random vector on its nodes). We perform a preliminary examination of
the possibility of testing changes in communities for an SBM-structured GMRF even when learning
the structure is hard or impossible. As described in Section 4.3, we set

Θ = I + γG,

where G is the adjacency matrix of an SBM with known parameters. We generate samples from the
GMRF as follows:

1. For a fixed number of nodes n, we fix an SNR for the SBM, Λ, and compute (a, b) satisfying
this Λ so that b/a = r.
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2. Here, we consider n = 1000 nodes and take Λ = 30Λ0, where Λ0 = 10
11 log(n/100) ≈ 2.1,

as before, and r = 1/10. We find that (a, b) ≈ (12.34 log n, 1.234 log n). Note that since
Λ ≈ 63 ≈ 10 log(n), recovery of the communities for a raw SBM at this SNR is trivial.

3. We fix a GMRF parameter γ. Here, we take γ = 3/(a+ b) ≈ 0.032.

4. We can now construct the precision matrix Θ after sampling G from the SBM. We re-
sample to ensure that Θ is positive-definite, but in practice, for the value of γ quoted above,
we did not encounter the need to re-sample.

5. To generate i.i.d. samples ζ ∼ N (0,Θ−1) in a stable manner, we use the following algo-
rithm:

(a) Compute the lower-triangular Cholesky factor R of Θ, so that Θ = RRT.

(b) Sample ξ ∼ N (0, I) from a standard n-dimensional multivariate normal distribution.

(c) Solve for ζ in RTζ = ξ.

This suffices, since, ζ = (RT)−1ξ would then have the covariance matrix (RT)−1R−1 =
(RRT)−1 = Θ−1.

6. In this manner, we generate samples from the null and alternate distributions: let ζ, ζ ′

and υ respectively denote samples drawn from a GMRF structured using G, G′ and H
respectively. Here, G, G′ and H exactly are as described in Section C.1.1.

Next, we describe how each of the two schemes is evaluated:

1. Assuming we have t i.i.d. samples of ζ, generated as described above, we estimate the

covariance matrix Σ̂ of ζ using the standard estimator:

Σ̂ =
1

t− 1

t∑

i=1

(ζi − ζ̄)(ζi − ζ̄)T,

where ζ̄ = 1
t

∑t
i=1 ζi. We then compute the correlation matrix,

Ĉ : Ĉij =
Σ̂ij√
Σ̂iiΣ̂jj

,

which will be used in place of the adjacency matrix for both two-sample testing schemes.

2. Similarly, we compute Ĉ, Ĉ ′ and D̂ from ζ, ζ ′ and υ respectively.

3. The naïve two-sample test based on recovery and comparison is evaluated exactly as de-

scribed in Section C.1.1, except that Ĉ, Ĉ ′ and D̂ are used in place of G, G′ and H re-
spectively. False alarm and missed detection rates are also computed in exactly the same
way.

4. The two-sample test based on Algorithm 1 has several important variations:

(a) We use the test statistics

TNull = T x̂(Ĉ)− T x̂(Ĉ ′)

TAlt. = T x̂(Ĉ)− T x̂(D̂),

for the null and alternate distributions respectively. Here, x̂ has been estimated from

Ĉ.

(b) The threshold for the test is estimated from data. That is, we simulate M = 100
samples of TNull and TAlt. each, and fit a classifier to differentiate between the two
distributions. The classifier used is a simplistic 1-dimensional Linear Discriminant
Analysis.

(c) We estimate false alarm and missed detection rates by applying the classifier to a
hold-out dataset. To use the data as efficiently as possible, we use 10-fold repeated,
stratified cross-validation, with 10 repetitions.

35



Remark on subsampling.

1. Note that in the two-sample test for GMRFs based on Algorithm 1, we do not subsample

Ĉ as we did before in the case of SBMs.

2. While previously, we had subsampled G to create two subgraphs G1 and G̃ that shared
independence properties for ease of theoretical analysis, it should be noted that subsam-
pling results in an effective loss of SNR. This is also the reason why we had to adjust the
implementation using a different rate η.

3. However, it emerges empirically that skipping the subsampling entirely, with a completely
dependent x̂ and G, makes for better separation between the null and alternate distributions,
providing a more powerful statistic.

4. Since we could not analytically derive a threshold for this statistic, we presented the sub-
sampled test statistic for the first experiment.

5. Since in the case of GMRFs, we are estimating the threshold from data, we use the more
powerful test statistic to show the full extent of possible gains when using a dedicated algo-
rithm for change detection, instead of naïvely looking for changes by learning community
structures first.
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