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Abstract

We are interested in a framework of online learning with kernels for low-
dimensional, but large-scale and potentially adversarial datasets. We study the
computational and theoretical performance of online variations of kernel Ridge
regression. Despite its simplicity, the algorithm we study is the first to achieve the
optimal regret for a wide range of kernels with a per-round complexity of order nα
with α < 2.
The algorithm we consider is based on approximating the kernel with the linear
span of basis functions. Our contributions are twofold: 1) For the Gaussian kernel,
we propose to build the basis beforehand (independently of the data) through
Taylor expansion. For d-dimensional inputs, we provide a (close to) optimal regret
of order O((log n)d+1) with per-round time complexity and space complexity
O((log n)2d). This makes the algorithm a suitable choice as soon as n� ed which
is likely to happen in a scenario with small dimensional and large-scale dataset; 2)
For general kernels with low effective dimension, the basis functions are updated
sequentially, adapting to the data, by sampling Nyström points. In this case, our
algorithm improves the computational trade-off known for online kernel regression.

1 Introduction

Nowadays the volume and the velocity of data flows are deeply increasing. Consequently, many
applications need to switch from batch to online procedures that can treat and adapt to data on
the fly. Furthermore to take advantage of very large datasets, non-parametric methods are gaining
increasing momentum in practice. Yet the latter often suffer from slow rates of convergence and bad
computational complexities. At the same time, data is getting more complicated and simple stochastic
assumptions, such as i.i.d. data, are often not satisfied. In this paper, we try to combine these different
aspects due to large scale and arbitrary data. We build a non-parametric online procedure based on
kernels, which is efficient for large data sets and achieves close to optimal theoretical guarantees.

Online learning is a subfield of machine learning where a learner sequentially interacts with an
environment and tries to learn and adapt on the fly to the observed data as one goes along. We
consider the following sequential setting. At each iteration t ≥ 1, the learner receives some input
xt ∈ X ; makes a prediction ŷt ∈ R and the environment reveals the output yt ∈ R. The inputs xt
and the outputs yt are sequentially chosen by the environment and can be arbitrary. Learner’s goal is
to minimize his cumulative regret

Rn(f) :=

n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
(1)

uniformly over all functions f in a space of functions H. We will consider Reproducing Kernel
Hilbert Space (RKHS)H, [see next section or Aro50, for more details]. It is worth noting here that
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all the properties of a RKHS are controlled by the associated kernel function k : X ×X → R, usually
known in closed form, and that many function spaces of interest are (or are contained in) RKHS,
e.g. when X ⊆ Rd: polynomials of arbitrary degree, band-limited functions, analytic functions with
given decay at infinity, Sobolev spaces and many others [BTA11].

Previous work Kernel regression in a statistical setting has been widely studied by the statistics
community. Our setting of online kernel regression with adversarial data is more recent. Most of the
existing work focuses on the linear setting (i.e., linear kernel). First work on online linear regression
dates back to [Fos91]. [BKM+15] provided the minimax rates (together with an algorithm) and we
refer the reader to references therein for a recent overview of the literature in the linear case. We only
recall relevant work for this paper. [AW01, Vov01] designed the nonlinear Ridge forecaster (denoted
AWV). In linear regression (linear kernel), it achieves the optimal regret of order O(d log n) uniformly
over all `2-bounded vectors. The latter can be extended to kernels (see Definition (3)) which we refer
to as Kernel-AWV. With regularization parameter λ > 0, it obtains a regret upper-bounded for all
f ∈ H as

Rn(f) . λ
∥∥f∥∥2

+B2deff(λ) , where deff(λ) := Tr(Knn

(
Knn + λIn)−1

)
(2)

is the effective dimension, where Knn :=
(
k(xi, xj)

)
1≤i,j≤n ∈ Rn×n denotes the kernel matrix at

time n. The above upper-bound on the regret is essentially optimal (see remark 2.1). Yet the per
round complexity and the space complexity of Kernel-AWV are O(n2). In this paper, we aim at
reducing this complexity while keeping optimal regret guarantees.

Though the literature on online contextual learning is vast, little considers non-parametric function
classes. Related work includes [Vov06] that considers the Exponentially Weighted Average forecaster
or [HM07] which considers bounded Lipschitz function set and Lipschitz loss functions, while here
we focus on the square loss. Minimax rates for general function sets H are provided by [RST13].
RKHS spaces were first considered in [Vov05] though they only obtain O(

√
n) rates which are

suboptimal for our problem. More recently, a regret bound of the form (2) was proved by [ZK10] for
a clipped version of kernel Ridge regression and by [CLV17b] for a clipped version of Kernel Online
Newton Step (KONS) for general exp-concave loss functions.

The computational complexity (O(n2) per round) of these algorithms is however prohibitive for large
datasets. [CLV17b] and [CLV17a] provide approximations of KONS to get manageable complexities.
However, these come with deteriorated regret guarantees. [CLV17b] improves the time and space
complexities by a factor γ ∈ (0, 1) enlarging the regret upper-bound by 1/γ. [CLV17a] designs an
efficient approximation of KONS based on Nyström approximation [SSL00, WS01] and restarts with
per-round complexities O

(
m2) where m is the number of Nyström points. Yet their regret bound

suffers an additional multiplicative factor m with respect to (2) because of the restarts. Furthermore,
contrary to our results, the regret bounds of [CLV17b] and [CLV17a] are not with respect to all
functions in H but only with functions f ∈ H such that f(xt) ≤ C for all t ≥ 1 where C is a
parameter of their algorithm. Since C comes has a multiplicative factor of their bounds, their results
are sensitive to outliers that may lead to large C. Other relevant approximation schemes of Online
Kernel Learning have been done by [LHW+16] and [ZL19]. The authors consider online gradient
descent algorithms which they approximate using different approximation schemes (as Nyström and
random features). However since they use general Lipschitz loss functions and consider `1-bounded
dual norm of functions f , their regret bounds of order O(

√
n) are hardly comparable to ours and

seem suboptimal in n in our restrictive setting with square loss and kernels with small effective
dimension (such as Gaussian kernel).

Contributions and outline of the paper The main contribution of the paper is to analyse a variant
of Kernel-AWV that we call PKAWV (see Definition (4)). Despite its simplicity, it is to our knowledge
the first algorithm for kernel online regression that recovers the optimal regret (see bound (2)) with
an improved space and time complexity of order� n2 per round. Table 1 summarizes the regret
rates and complexities obtained by our algorithm and the ones of [CLV17b, CLV17a].

Our procedure consists simply in applying Kernel-AWV while, at time t ≥ 1, approximating the
RKHS H with a linear subspace H̃t of smaller dimension. In Theorem 3, PKAWV suffers an
additional approximation term with respect to the optimal bound of Kernel-AWV which can be
made small enough by properly choosing H̃t. To achieve the optimal regret with low computational
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Kernel Algorithm Regret Per-round complexity

Gaussian
deff(λ) ≤

(
log n

λ

)d PKAWV (log n)d+1 (log n)2d

Sketched-KONS [CLV17b] (c > 0) c(log n)d+1
(
n/c
)2

Pros-N-KONS [CLV17a] (log n)2d+1 (log n)2d

General
deff(λ) ≤

(
n
λ

)γ
γ <
√

2− 1

PKAWV n
γ
γ+1 log n n

4γ

1−γ2

Sketched-KONS [CLV17b] (c > 0) cn
γ
γ+1 log n

(
n/c
)2

Pros-N-KONS [CLV17a] n
4γ

(1+γ)2 log n n
4γ(1−γ)
(1+γ)2

Table 1: Order in n of the best possible regret rates achievable by the algorithms and corresponding
per-round time-complexity. Up to log n, the rates obtained by PKAWV are optimal.

complexity, H̃t needs to approximate H well and to be low dimensional with an easy-to-compute
projection. We provide two relevant constructions for H̃t.
In section 3.1, we focus on the Gaussian kernel that we approximate by a finite set of basis functions.
The functions are deterministic and chosen beforehand by the learner independently of the data. The
number of functions included in the basis is a parameter to be optimized and fixes an approximation-
computational trade-off. Theorem 4 shows that PKAWV satisfies (up to log) the optimal regret
bounds (2) while enjoying a per-round space and time complexity of O

(
log2d

(
n
λ

) )
. For the

Gaussian kernel, this corresponds to O
(
deff(λ)2

)
which is known to be optimal even in the statistical

setting with i.i.d. data.

In section 3.2, we consider data adaptive approximation spaces H̃t based on Nyström approximation.
At time t ≥ 1, we approximate any kernelH by sampling a subset of the input vectors {x1, . . . , xt}.
If the kernel satisfies the capacity condition deff(λ) ≤ (n/λ)γ for γ ∈ (0, 1), the optimal regret is then
of order deff(λ) = O(nγ/(1+γ)) for well-tuned parameter λ. Our method then recovers the optimal
regret with a computational complexity of O

(
deff(λ)4/(1−γ)

)
. The latter is o(n2) (for well-tuned λ)

as soon as γ <
√

2− 1. Furthermore, if the sequence of input vectors xt is given beforehand to the
algorithm, the per-round complexity needed to reach the optimal regret is improved to O(deff(λ)4)
and our algorithm can achieve it for all γ ∈ (0, 1).

Finally, we perform in Section 4 several experiments based on real and simulated data to compare the
performance (in regret and in time) of our methods with competitors.

Notations We recall here basic notations that we will use throughout the paper. Given a vector
v ∈ Rd, we write v = (v(1), . . . , v(d)). We denote by N0 = N ∪ {0} the set of non-negative integers
and for p ∈ Nd0, |p| = p(1) + · · · + p(d). By a sligh abuse of notation, we denote by ‖ · ‖ both
the Euclidean norm and the norm for the Hilbert space H. Write v>w, the dot product between
v, w ∈ RD. The conjugate transpose for linear operator Z onH will be denoted Z∗. The notation .
will refer to approximate inequalities up to logarithmic multiplicative factors. Finally, we will denote
a ∨ b = max(a, b) and a ∧ b = min(a, b), for a, b ∈ R.

2 Background

Kernels. Let k : X × X → R be a positive definite kernel [Aro50] that we assume to be bounded
(i.e., supx∈X k(x, x) ≤ κ2 for some κ > 0). The function k is characterized by the existence of a
feature map φ : X → RD, with D ∈ N ∪ {∞}1 such that k(x, x′) = φ(x)>φ(x′). Moreover the
reproducing kernel Hilbert space (RKHS) associated to k is characterized by H = {f | f(x) =
w>φ(x), w ∈ RD, x ∈ X}, with inner product 〈f, g〉H := v>w, for f, g ∈ H defined by f(x) =
v>φ(x), g(x) = w>φ(x) and v, w ∈ RD. For more details and different characterizations of k,H,
see [Aro50, BTA11]. It’s worth noting that the knowledge of φ is not necessary when working
with functions of the form f =

∑p
i=1 αiφ(xi), with αi ∈ R, xi ∈ X and finite p ∈ N, indeed

f(x) =
∑p
i=1 αiφ(xi)

>φ(x) =
∑p
i=1 αik(xi, x), and moreover ‖f‖2H = α>Kppα, with Kpp the

kernel matrix associated to the set of points x1, . . . , xp.

1when D = ∞ we consider RD as the space of squared summable sequences.
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Kernel-AWV. The Azoury-Warmuth-Vovk forecaster (denoted AWV) on the space of linear func-
tions on X = Rd has been introduced and analyzed in [AW01, Vov01]. We consider here a
straightforward generalization to kernels (denoted Kernel-AWV) of the nonlinear Ridge forecaster
(AWV) introduced by [AW01, Vov01] on the space of linear functions on X = Rd. At iteration t ≥ 1,
Kernel-AWV predicts ŷt = f̂t(xt), where

f̂t ∈ argmin
f∈H

{
t−1∑
s=1

(
ys − f(xs)

)2
+ λ

∥∥f∥∥2
+ f(xt)

2

}
. (3)

A variant of this algorithm, more used in the context of data independently sampled from distribution,
is known as kernel Ridge regression. It corresponds to solving the problem above, without the last
penalization term f(xt)

2.

Optimal regret for Kernel-AWV. In the next proposition, we state a preliminary result which proves
that Kernel-AWV achieves a regret depending on the eigenvalues of the kernel matrix.

Proposition 1. Let λ,B > 0. For any RKHSH, for all n ≥ 1, for all inputs x1, . . . , xn ∈ X and all
y1, . . . , yn ∈ [−B,B], the regret of Kernel-AWV is upper-bounded for all f ∈ H as

Rn(f) ≤ λ
∥∥f∥∥2

+B2
n∑
k=1

log

(
1 +

λk(Knn)

λ

)
,

where λk(Knn) denotes the k-th largest eigenvalue of Knn.

The proof is a direct consequence of the known regret bound of AWV in the finite dimensional linear
regression setting—see Theorem 11.8 of [CBL06] or Theorem 2 of [GGHS18]. For completeness,
we reproduce the analysis for infinite dimensional space (RKHS) in Appendix C.1. In online linear
regression in dimension d, the above result implies the optimal rate of convergence dB2 log(n)+O(1)
(see [GGHS18] and [Vov01]). As shown by the following proposition, Proposition 1 yields optimal
regret (up to log) of the form (2) for online kernel regression.

Proposition 2. For all n ≥ 1, λ > 0 and all input sequences x1, . . . , xn ∈ X ,
n∑
k=1

log

(
1 +

λk(Kn)

λ

)
≤ log

(
e+

enκ2

λ

)
deff
(
λ
)
.

Combined with Proposition 1, this entails that Kernel-AWV satisfies (up to the logarithmic factor)
the optimal regret bound (2). As discussed in the introduction, such an upper-bound on the regret is
not new and was already proved by [ZK10] or by [CLV17b] for other algorithms. An advantage of
Kernel-AWV is that it does not require any clipping and thus the beforehand knowledge of B > 0 to
obtained Proposition 1. Furthermore, we slightly improve the constants in the above proposition.

Remark 2.1 (Optimal regret under the capacity condition). Assuming the capacity condition (deff(λ) ≤
(n/λ)

γ for 0 ≤ γ ≤ 1), the rate of the regret bound (2) can be made explicit. As we show now,
this matches existing minimax lower rates in the stochastic setting. Under the capacity condition,
optimizing λ ' nγ/(1+γ) to minimize the r.h.s. of (2), the regret bound is then of order Rn(f) ≤
O(nγ/(1+γ)) (up to logs). If the data (x1, y1), . . . , (xn, yn) is i.i.d. according to some distribution
ρ over X × R, we can apply a standard online to batch conversion (see [CBCG04]). The estimator
f̄n = 1

n

∑n
t=1 ft satisfies for any f ∈ H the upper-bound on its excess risk

E(f̄n)− E(f) ≤ E
[
Rn(f)

n

]
≤ O(n−

1
1+γ ) ,

where E(f) := E(X,Y )∼ρ
[
(f(X)− Y )2

]
. This corresponds to the known minimax lower rate in this

stochastic setting as shown by Theorem 2 (applied with c = 1 and b = 1/γ) of [CDV07].

It is worth pointing out that in the worst case deff(λ) ≤ κ2n/λ for any bounded kernel. In particular,
optimizing the bound yields λ = O(

√
n log n) and a regret bound of order O(

√
n log n). In the

special case of the Gaussian kernel (which we consider in Section 3.1), the latter can be improved
to deff(λ) .

(
log(n/λ)

)d
(see [ABRW18]) which entails Rn(f) ≤ O

(
(log n)d+1

)
for well tuned

value of λ.
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3 Online Kernel Regression with projections

In the previous section we have seen that Kernel-AWV achieves optimal regret. Yet, it has computa-
tional requirements that are O(n3) in time and O(n2) in space, for n steps of the algorithm, making it
unfeasible in the context of large scale datasets, i.e. n� 105. In this paper, we consider and analyze
a simple variation of Kernel-AWV denoted PKAWV. At time t ≥ 1, for a regularization parameter
λ > 0 and a linear subspace H̃t ofH the algorithm predicts ŷt = f̂t(xt), where

f̂t = argmin
f∈H̃t

{
t−1∑
s=1

(
ys − f(xs)

)2
+ λ
∥∥f∥∥2

+ f(xt)
2

}
. (4)

In the next subsections, we explicit relevant approximations H̃t (typically the span of a small number
of basis functions) ofH that trade-off good approximation with a low computational cost. Appendix H
details how (4) can be efficiently implemented in these cases.

The result below bounds the regret of the PKAWV for any function f ∈ H and holds for any bounded
kernel and any explicit subspace H̃ associated with projection P . The cost of the approximation of
H by H̃ is measured by the important quantity µ :=

∥∥(I − P )C
1/2
n

∥∥2
, where Cn is the covariance

operator.

Theorem 3. Let H̃ be a linear subspace ofH and P the Euclidean projection onto H̃. When PKAWV
is run with λ > 0 and fixed subspaces H̃t = H̃, then for all f ∈ H

Rn(f) ≤ λ
∥∥f∥∥2

+B2
n∑
j=1

log

(
1 +

λj(Knn)

λ

)
+ (µ+ λ)

nµB2

λ2
, (5)

for any sequence (x1, y1), . . . , (xn, yn) ∈ X × [−B,B] where µ :=
∥∥(I − P )C

1/2
n

∥∥2
and Cn :=∑n

t=1 φ(xt)⊗ φ(xt).

The proof of Thm. 3 is deferred to Appendix D.1 and is the consequence of a more general Thm. 9.

3.1 Learning with Taylor expansions and Gaussian kernel for very large data set

In this section we focus on non-parametric regression with the widely used Gaussian kernel defined
by k(x, x′) = exp(−‖x− x′‖2/(2σ2)) for x, x′ ∈ X and σ > 0 and the associated RKHSH.

Using the results of the previous section with a fixed linear subspace H̃ which is the span of a
basis of O(polylog(n/λ)) functions, we prove that PKAWV achieves optimal regret. This leads to a
computational complexity that is only O(n polylog(n/λ)) for optimal regret. We need a basis that
(1) approximates very well the Gaussian kernel and at the same time (2) whose projection is easy to
compute. We consider the following basis of functions, for k ∈ Nd0,

gk(x) =
d∏
i=1

ψki(x
(i)), where ψt(x) =

xt

σt
√
t!
e−

x2

2σ2 . (6)

For one dimensional data, this corresponds to Taylor expansion of the Gaussian kernel. Our theorem
below states that PKAWV (see (4)) using for all iterations t ≥ 1

H̃t = Span(GM ) with GM = {gk | |k| ≤M,k ∈ Nd0}
where |k| := k1 + · · · + kd, for k ∈ Nd0, gets optimal regret while enjoying low complexity. The
size of the basis M controls the trade-off between approximating well the Gaussian kernel (to incur
low regret) and large computational cost. Theorem 4 optimizes M so that the approximation term of
Theorem 3 (due to kernel approximation) is of the same order than the optimal regret.
Theorem 4. Let λ > 0, n ∈ N and let R,B > 0. Assume that ‖xt‖ ≤ R and |yt| ≤ B. When
M =

⌈
8R2

σ2 ∨ 2 log n
λ∧1

⌉
, then running PKAWV using GM as set of functions achieves a regret

bounded by
∀f ∈ H, Rn(f) ≤ λ

∥∥f∥∥2
+

3B2

2

n∑
j=1

log

(
1 +

λj(Knn)

λ

)
.

Moreover, its per iteration computational cost is O
((

3 + 1
d log n

λ∧1

)2d)
in space and time.
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Therefore PKAWV achieves a regret-bound only deteriorated by a multiplicative factor of 3/2 with
respect to the bound obtained by Kernel-AWV (see Prop. 1). From Prop. 2 this also yields (up to log)
the optimal bound (2).

In particular, it is known [ABRW18] for the Gaussian kernel that

deff(λ) ≤ 3
(

6 +
41

d

R2

2σ2
+

3

d
log

n

λ

)d
= O

((
log

n

λ

)d)
.

The upper-bound is matching even in the i.i.d. setting for nontrivial distributions. In this case, we
have |GM | . deff(λ). The per-round space and time complexities are thus O

(
deff(λ)2

)
. Though our

method is quite simple (since it uses fixed explicit embedding) it is able to recover results -in terms
of computational time and bounds in the adversarial setting- that are similar to results obtained in the
more restrictive i.i.d. setting obtained via much more sophisticated methods, like learning with (1)
Nyström with importance sampling via leverage scores [RCR15], (2) reweighted random features
[Bac17, RR17], (3) volume sampling [DWH18]. By choosing λ = (B/‖f‖)2, to minimize the r.h.s.
of the regret bound of the theorem, we get

Rn(f) .
(

log
n‖f‖2H
B2

)d+1

B2 +B2. (7)

Note that the optimal λ does not depend on n and can be optimized in practice through standard
online calibration methods. For instance, one can run in parallel subroutines of the algorithm, each
using a different value of λ in the finite grid Λ := {n2k, k = −n

1
d+1 , . . . , 0}. The subroutines can

then be sequentially combined with an expert advice algorithm such as the Exponentially Weighted
Average forecaster [CBL06] at an additional negligible cost of order O(B2 log |Λ|) in the regret
(using the fact that the squared loss is exp-concave on [0, B]). Similarly, though we use a fixed
number of features M in the experiments, the latter could be increased slowly over time thanks to
online calibration techniques.

3.2 Nyström projection

The previous two subsections considered a deterministic function basis (independent of the data) to
approximate specific RKHS. Here, we analyse Nyström projections [RCR15] that are data dependent
and work for any RKHS. It consists in sequentially updating a dictionary It ⊂ {x1, . . . , xt} and
using

H̃t = Span
{
φ(x), x ∈ It

}
. (8)

If the points included into It are well-chosen, the latter may approximate well the solution of (3)
which belongs to the linear span of {φ(x1), . . . , φ(xt)}. The inputs xt might be included in the
dictionary independently and uniformly at random. Here, we build the dictionary by following the
KORS algorithm of [CLV17a] which is based on approximate leverage scores. At time t ≥ 1, it
evaluates the importance of including xt to obtain an accurate projection Pt by computing its leverage
score. Then, it decides to add it or not, by drawing a Bernoulli random variable. The points are
never dropped from the dictionary so that I1 ⊂ I2 ⊂ · · · In. With their notations, choosing ε = 1/2
and remarking that ‖ΦTt (I − Pt)Φt‖ = ‖(I − Pt)C1/2

t ‖2, their Proposition 1 can be rewritten as
follows.
Proposition 5. [CLV17a, Prop. 1] Let δ > 0, n ≥ 1, µ > 0. Then, the sequence of dictionaries
I1 ⊂ I2 ⊂ · · · ⊂ In learned by KORS with parameters µ and β = 12 log(n/δ) satisfies w.p. 1− δ,

∀t ≥ 1,
∥∥(I − Pt)C1/2

t

∥∥2 ≤ µ and |It| ≤ 9deff(µ) log
(
2n/δ

)2
.

Furthermore, the algorithm runs in O
(
deff(µ)2 log4(n)

)
space and O

(
deff(µ)2

)
time per iteration.

Using this approximation result together with Thm. 9 (which is a more general version of Thm. 3),
we can bound the regret of PKAWV with KORS. The proof is postponed to Appendix E.1.
Theorem 6. Let n ≥ 1, δ > 0 and λ ≥ µ > 0. Assume that the dictionaries (It)t≥1 are built
according to Proposition 5. Then, probability at least 1− δ, PKAWV with the subspaces H̃t defined
in (8) satisfies the regret upper-bound

Rn ≤ λ‖f‖2 +B2deff(λ) log
(
e+ enκ2/λ

)
+ 2B2(|In|+ 1)

nµ

λ
,

and the algorithm runs in O(deff(µ)2) space O(deff(µ)2) time per iteration.
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Figure 1: Comparison of the theoretical regret rate logRn/ log n according to the size of the
dictionary logm/ log n considered by PKAWV, Sketched-KONS and Pros-N-KONS for optimized
parameters when deff(λ) ≤ (n/λ)γ with γ = 0.2,

√
2−1, 0.6 (from left to right). The value γ/(1+γ)

corresponds to the optimal rate.

The last term of the regret upper-bound above corresponds to the approximation cost of using the
approximation (8) in PKAWV. This cost is controlled by the parameter µ > 0 which trades-off
between having a small approximation error (small µ) and a small dictionary of size |In| ≈ deff(µ)
(large µ) and thus a small computational complexity. For the Gaussian Kernel, using that deff(λ) ≤
O
(

log(n/λ)d
)
, the above theorem yields for the choice λ = 1 and µ = n−2 a regret bound of

order Rn ≤ O
(
(log n)d+1

)
with a per-round time and space complexity of order O(|In|2) =

O
(
(log n)2d+4

)
. We recover a similar result to the one obtained in Section 3.1.

Explicit rates under the capacity condition Assuming the capacity condition deff(λ
′) ≤

(
n/λ′

)γ
for 0 ≤ γ ≤ 1 and λ′ > 0, which is a classical assumption made on kernels [RCR15], the following
corollary provides explicit rates for the regret according to the size of the dictionary m ≈ |In|.
Corollary 7. Let n ≥ 1 and m ≥ 1. Assume that deff(λ

′) ≤ (n/λ′)γ for all λ′ > 0. Then, under
the assumptions of Theorem 6, PKAWV with µ = nm−1/γ has a dictionary of size |In| . m and a
regret upper-bounded with high-probability as

Rn .

{
n

γ
1+γ if m ≥ n

2γ

1−γ2 for λ = n
γ

1+γ

nm
1
2−

1
2γ otherwise for λ = nm

1
2−

1
2γ

.

The per-round space and time complexity of the algorithm is O(m2) per iteration.

The rate of order n
γ

1+γ is optimal in this case (it corresponds to optimizing (2) in λ). If the dictionary
is large enough m ≥ n2γ/(1−γ2), the approximation term is negligible and the algorithm recovers
the optimal rate. This is possible for a small dictionary m = o(n) whenever 2γ/(1− γ2) < 1,
which corresponds to γ <

√
2− 1. The rates obtained in Corollary 7 can be compared to the one

obtained by Sketched-KONS of [CLV17b] and Pros-N-KONS of [CLV17a] which also provide a
similar trade-off between the dictionary size m and a regret bound. The forms of the regret bounds in
m, µ, λ of the algorithms can be summarized as follows

Rn .

 λ+ deff(λ) + nmµ
λ for PKAWV with KORS

λ+ n
mdeff(λ) for Sketched-KONS

m(λ+ deff(λ)) + nµ
λ for Pros-N-KONS

. (9)

When deff(λ) ≤ (n/λ)γ , optimizing these bounds in λ, PKAWV performs better than Sketched-
KONS as soon as γ ≤ 1/2 and the latter cannot obtain the optimal rate λ+ deff(λ) = n

γ
1+γ if

m = o(n). Furthermore, because of the multiplicative factor m, Pros-N-KONS can’t either reached
the optimal rate even for m = n. Figure 1 plots the rate in n of the regret of these algorithms when
enlarging the size m of the dictionary. We can see that for γ = 1/4, PKAWV is the only algorithm
that achieves the optimal rate nγ/(1+γ) with m = o(n) features. The rate of Pros-N-KONS cannot
beat 4γ/(1 + γ)2 and stops improving even when the size of the dictionary increases. This is because
Pros-N-KONS is restarted whenever a point is added in the dictionary which is too costly for large
dictionaries. It is worth pointing out that these rates are for a well-tuned value of λ. However, such
an optimization can be performed at a small cost using expert advice algorithm on a finite grid of λ.
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Figure 2: Average classification error and time on: (top) code-rna (n = 2.7× 105, d = 8); (bottom)
SUSY (n = 6× 106, d = 22).

Beforehand known features We may assume that the sequence of feature vectors xt is given
in advance to the learner while only the outputs yt are sequentially revealed (see [GGHS18] or
[BKM+15] for details). In this case, the complete dictionary In ⊂ {x1, . . . , xn} may be computed
beforehand and PKAWV can be used with the fix subspace H̃ = Span(φ(x), x ∈ In). In this case,
the regret upper-bound can be improved to Rn . λ+ deff(λ) + nµ

λ by removing a factor m in the
last term (see (9)).
Corollary 8. Under the notation and assumptions of Corollary 7, PKAWV used with dictionary In
and parameter µ = nm−1/γ achieves with high probability

Rn .

{
n

γ
1+γ if m ≥ n

2γ
1+γ for λ = n

γ
1+γ

nm−
1
2γ otherwise for λ = nm−

1
2γ

.

Furthermore, w.h.p. the dictionary is of size |In| . m leading to a per-round space and time
complexity O(m2).

The suboptimal rate due to a small dictionary is improved by a factor
√
m compared to the “sequen-

tially revealed features” setting. Furthermore, since 2γ/(1 + γ) < 1 for all γ ∈ (0, 1), the algorithm
is able to recover the optimal rate nγ/(1+γ) for all γ ∈ (0, 1) with a dictionary of sub-linear size
m � n. We leave for future work the question whether there is really a gap between these two
settings or if this gap from a suboptimality of our analysis.

4 Experiments

We empirically test PKAWV against several state-of-the-art algorithms for online kernel regression.
In particular, we test our algorithms in (1) an adversarial setting [see Appendix G], (2) on large scale
datasets. The following algorithms have been tested:

• Kernel-AWV for adversarial setting or Kernel Ridge Regression for i.i.d. real data settings;
• Pros-N-Kons [CLV17b];
• Fourier Online Gradient Descent (FOGD, [LHW+16]);
• PKAWV(or PKRR for real data settings) with Taylor expansions (M ∈ {2, 3, 4})
• PKAWV(or PKRR for real data settings) with Nyström

The algorithms above have been implemented in python with numpy (the code for our algorithm
is in Appendix H.2). The code necessary to reproduce the following experiments is available on
GitHub at https://github.com/Remjez/kernel-online-learning. For most algorithms, we
used hyperparameters from the respective papers. For all algorithms and all experiments, we set
σ = 1 [except for SUSY where σ = 4, to match accuracy results from RCR17] and λ = 1. When
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using KORS, we set µ = 1, β = 1 and ε = 0.5 as in [CLV17b]. The number of random-features in
FOGD is fixed to 1000 and the learning rate η is 1/

√
n. All experiments have been done on a single

desktop computer (Intel Core i7-6700) with a timeout of 5-min per algorithm. The results of the
algorithms are only recorded up to this time.

Large scale datasets. The algorithms are evaluated on four datasets from UCI machine learning
repository. In particular, casp (regression) and ijcnn1, cod-rna, SUSY (classification) [see Ap-
pendix G for casp and ijcnn1] ranging from 4 × 104 to 6 × 106 datapoints. For all datasets, we
scaled x in [−1, 1]d and y in [−1, 1]. In Figs. 2 and 4 we show the average loss (square loss for
regression and classification error for classification) and the computational costs of the considered
algorithm.

In all the experiments PKAWV with M = 2 approximates reasonably well the performance of
kernel forecaster and is usually very fast. We remark that using PKAWV M = 2 on the first million
examples of SUSY, we achieve in 10 minutes on a single desktop, the same average classification
error obtained with specific large scale methods for i.i.d. data [RCR17], although Kernel-AWV is
using a number of features reduced by a factor 100 with respect to the one used in for FALKON in
the same paper. Indeed they used r = 104 Nyström centers, while with M = 2 we used r = 190
features, validating empirically the effectiveness of the chosen features for the Gaussian kernel. This
shows the effectiveness of the proposed approach for large scale machine learning problems with a
moderate dimension d.
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Supplementary material

The supplementary material is organized as follows:

• Appendix A starts with notations and useful identities that are used in the rest of the proofs

• Appendix B, C, D, E, and F contain the proofs mostly in order of appearance:

– Appendix B: statement and proof of our main theorem on which are based most of our
results.

– Appendix C: proofs of Section 2 (Propositions 1 and 2)
– Appendix D: proofs of section 3.1 (Theorem 3 and 4)
– Appendix E: proofs of section 3.2 (Theorem 7 and Corollaries 7 and 8)
– Appendix F: proofs of additional lemmas.

• Appendix G provides additional experimental results (adversarial simulated data and large-
scale real datasets).

• Appendix H describes efficient implementations of our algorithms together with the Python
code used for the experiments.

A Notations and relevant equations

In this section, we give notations and useful identities which will be used in following proofs. We
recall that at time t ≥ 1, the forecaster is given an input xt ∈ X ⊂ Rd, chooses a prediction
function f̂t ∈ H̃t ⊂ H, forecasts ŷt = f̂t(xt) and observes ŷt ∈ [−B,B]. Moreover,H is the RKHS
associated to the kernel k : (x, x′) ∈ X ×X = φ(x)>φ(x′) for some feature map φ : X → RD. We
also define the following notations for all t ≥ 1:

– Yt = (y1, . . . , yt)
> ∈ Rt and Ŷt = (ŷ1, . . . , ŷt)

> ∈ Rt
– Pt : H → H̃t is the Euclidean projection on H̃t
– Ct :=

∑t
i=1 φ(xi)⊗ φ(xi) is the covariance operator at time t ≥ 1;

– At := Ct + λI is the regularized covariance operator;
– St : H → Rt is the operator such that [Stf ]i = f(xi) = 〈f, φ(xi)〉 for any f ∈ H;
– Lt := f ∈ H 7→

∥∥Yt − Stf∥∥2
+ λ‖f‖2 is the regularized cumulative loss.

The prediction function of PKAWV at time t ≥ 1 is defined (see Definition 4) as

f̂t = arg min
f∈H̃t

{
t−1∑
s=1

(
ys − f(xs)

)2
+ λ‖f‖2 + f(xt)

2

}
.

Standard calculation shows the equality

f̂t = PtÃ
−1
t PtS

∗
t−1Yt−1 . (10)

We define also the best functions in the subspace H̃t and H̃t+1 at time t ≥ 1,

ĝt+1 = arg min
f∈H̃t

{Lt(f)} = PtÃ
−1
t PtS

∗
t Yt , (11)

g̃t+1 = arg min
f∈H̃t+1

{Lt(f)} = Pt+1(Pt+1CtPt+1 + λI)−1Pt+1S
∗
t Yt , (12)

and the best function in the whole spaceH

ĥt+1 = arg min
f∈H
{Lt(f)} = A−1

t S∗t Yt . (13)
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B Main theorem (statement and proof)

In this appendix, we provide a general upper-bound on the regret of PKAWV that is valid for any
sequence of projections P1, ..., Pn associated with the sequence H̃1, . . . , H̃n. Many of our results
will be corollaries of the following theorem for specific sequences of projections.

Theorem 9. Let H̃1, . . . , H̃n be a sequence of linear subspaces of H associated with projections
P1, . . . , Pn ∈ H → H. PKAWV with regularization parameter λ > 0 satisfies the following
upper-bound on the regret: for all f ∈ H

Rn(f) ≤
n∑
t=1

y2
t

〈
Ã−1
t Ptφ(xt), Ptφ(xt)

〉
+ (µt + λ)

µttB
2

λ
,

for any sequence (x1, y1), . . . , (xn, yn) ∈ X × [−B,B] and where µt :=
∥∥(Pt+1 − Pt)C1/2

t

∥∥2
and

Pn+1 := I .

Proof. Let f ∈ H. By definition of ĥn+1 (see (13)), we have Ln(ĥn+1) ≤ Ln(f) which implies by
definition of Ln that∥∥Yn − Snĥn+1

∥∥2 −
∥∥Yn − Snf∥∥2 ≤ λ‖f‖2 − λ‖ĥn+1‖2 . (14)

Now, the regret can be upper-bounded as

Rn(f)
(1)
:=

n∑
t=1

(yt − ŷt)2 −
n∑
t=1

(
yt − f(xt)

)2
(15)

=
∥∥Yn − Ŷn∥∥2 −

∥∥Yn − Snf∥∥2

(14)
≤
∥∥Yn − Ŷn∥∥2 −

∥∥Yn − Snĥn+1

∥∥2
+ λ‖f‖2 − λ‖ĥn+1‖2

≤ λ‖f‖2 +
∥∥Yn − Ŷn∥∥2 −

∥∥Yn − Snĝn+1

∥∥2 − λ‖ĝn+1‖2︸ ︷︷ ︸
Z1

(16)

+
∥∥Yn − Snĝn+1

∥∥2
+ λ‖ĝn+1‖2 −

∥∥Yn − Snĥn+1

∥∥2 − λ‖ĥn+1‖2︸ ︷︷ ︸
Ω(n+1)

The first term Z1 mainly corresponds to the estimation error of the algorithm: the regret incurred with
respect to the best function in the approximation space H̃n. It also includes an approximation error
due to the fact that the algorithm does not use H̃n but the sequence of approximation H̃1, . . . , H̃n.
The second term Ω(n+ 1) corresponds to the approximation error of H by H̃n. Our analysis will
focus on upper-bounding both of these terms separately.

Part 1. Upper-bound of the estimation error Z1. Using a telescoping argument together with
the convention L0(ĝ1) = 0, we have

∥∥Yn − Snĝn+1

∥∥2
+ λ‖ĝn+1‖2 = Ln(ĝn+1) =

n∑
t=1

Lt(ĝt+1)− Lt−1(ĝt) .

Substituted into the definition of Z1 (see (16)), the latter can be rewritten as

Z1 =

n∑
t=1

[
(yt − ŷt)2 + Lt−1(ĝt)− Lt(ĝt+1)

]
=

n∑
t=1

[
(yt − ŷt)2 + Lt−1(g̃t)− Lt(ĝt+1)︸ ︷︷ ︸

Z(t)

+Lt−1(ĝt)− Lt−1(g̃t)︸ ︷︷ ︸
Ω(t)

]
. (17)

where g̃t = Pt(PtCt−1Pt + λI)−1PtS
∗
t−1Yt−1 is obtained by substituting Pt with Pt−1 in the

definition of ĝt. Note that with the convention Pn+1 = I the second term Ω(t) matches the definition
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of Ω(n + 1) of (16) since g̃n+1 = A−1
n S∗nYn = ĥn+1. In the rest of the first part we focus on

upper-bounding the terms Z(t). The approximation terms Ω(t) will be bounded in the next part.

Now, we remark that by expanding the square norm

Lt(f) = ‖Yt‖2 − 2Y >t Stf +
∥∥Stf∥∥2

+ λ‖f‖2 = ‖Yt‖2 − 2Y >t Stf + 〈f, Ctf〉+ λ‖f‖2

= ‖Yt‖2 − 2Y >t Stf + 〈f,Atf〉 , (18)

where for the second equality, we used∥∥Stf∥∥2
=

n∑
t=1

f(xt)
2 =

n∑
t=1

〈f, φ(xt)〉2 =

n∑
t=1

〈f, φ(xt)⊗ φ(xt)f〉 = 〈f, Ctf〉 .

Substituting ĝt+1 into (18) we get

Lt(ĝt+1) = ‖Yt‖2 − 2Y >t Stĝt+1 + 〈ĝt+1, Atĝt+1〉 . (19)

But, since ĝt+1 ∈ H̃t, we have ĝt+1 = Ptĝt+1 which yields

Y >t Stĝt+1 = Y >t StPtĝt+1 = Y >t StÃ
−1
t ÃtPtĝt+1 .

Then, using that ÃtPt = (PtCtPt + λI)Pt = PtAtPt, we get

Y >t Stĝt+1 = Y >t StPtÃ
−1
t Pt︸ ︷︷ ︸

ĝ>t+1

Atĝt+1 = 〈ĝt+1, Atĝt+1〉 .

Thus, combining with (19) we get

Lt(ĝt+1) = ‖Yt‖2 − 〈ĝt+1, Atĝt+1〉 .

Similarly, substituting g̃t into (18) and using g̃t ∈ H̃t, we can show

Lt−1(g̃t) = ‖Yt−1‖2 − 〈g̃t, At−1g̃t〉 .

Combining the last two equations implies

Lt−1(g̃t)− Lt(ĝt+1) = −y2
t + 〈ĝt+1, Atĝt+1〉 − 〈g̃t, At−1g̃t〉 . (20)

Furthermore, using the definition of ĝt+1, we have

PtAtĝt+1 = PtAtPtÃ
−1
t PtS

∗
t Yt = PtÃtÃ

−1
t PtS

∗
t Yt = PtS

∗
t Yt .

The same calculation with g̃t yields

PtAt−1g̃t = Pt(Ct−1 + λI)Pt(PtCt−1Pt + λI)−1S∗t−1Yt−1

= Pt(PtCt−1Pt + λI)(PtCt−1Pt + λI)−1S∗t−1Yt−1 = PtS
∗
t−1Yt−1 . (21)

Together with the previous equality, it entails

PtAtĝt+1 − PtAt−1g̃t = Pt(S
∗
t Yt − S∗t−1Yt−1) = ytPtφ(xt) . (22)

Then, because f̂t ∈ H̃t, we have ŷt = f̂t(xt) =
〈
f̂t, φ(xt)

〉
=
〈
f̂t, Ptφ(xt)

〉
. This yields

(yt − ŷt)2 = y2
t − 2ytŷt + ŷ2

t

= y2
t − 2

〈
f̂t, ytPtφ(xt)

〉
+
〈
f̂t, φ(xt)⊗ φ(xt)f̂t

〉
(22)
≤ y2

t − 2
〈
f̂t, PtAtĝt+1 − PtAt−1g̃t

〉
+
〈
f̂t, φ(xt)⊗ φ(xt)f̂t

〉
= y2

t − 2
〈
f̂t, Atĝt+1 −At−1g̃t

〉
+
〈
f̂t, (At −At−1)f̂t

〉
, (23)

where the last equality uses ft ∈ H̃t and that At −At−1 = φ(xt)⊗ φ(xt).
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Putting equations (20) and (23) together, we get

Z(t)
(17)
= (yt − ŷt)2 + Lt−1(g̃t)− Lt(ĝt+1)

(20)+(23)
≤

(
〈ĝt+1, Atĝt+1〉 − 2

〈
f̂t, Atĝt+1

〉
+
〈
f̂t, Atf̂t

〉)
−
(
〈g̃t, At−1ĝt〉 − 2

〈
Pt−1f̂t, At−1g̃t

〉
+
〈
f̂t, At−1f̂t

〉)
=

〈
ĝt+1 − f̂t, At(ĝt+1 − f̂t)

〉
−
〈
f̂t − g̃t, At−1(f̂t − g̃t)

〉
︸ ︷︷ ︸

≥0

≤
〈
ĝt+1 − f̂t, Ãt(ĝt+1 − f̂t)

〉
(10)+(11)

=
〈
PtÃ

−1
t Pt(S

∗
t Yt − S∗t−1Yt−1), ÃtPtÃ

−1
t Pt(S

∗
t Yt − S∗t−1Yt−1)

〉
= y2

t

〈
PtÃ

−1
t Ptφ(xt), ÃtPtÃ

−1
t Ptφ(xt)

〉
= y2

t

〈
Ã−1
t Ptφ(xt), Ptφ(xt)

〉
where the last equality is because PtÃt = ÃtPt from the definition of Ãt := C̃t + λI with
C̃t := PtCtPt.

Therefore, plugging back into (17), we have

Z1 ≤
n∑
t=1

y2
t

〈
Ã−1
t Ptφ(xt), Ptφ(xt)

〉
+ Ω(t) , (24)

where we recall that Ω(t) := Lt−1(ĝt)− Lt−1(g̃t).

Part 2. Upper-bound of the approximation terms Ω(t). We recall that we use the convention
Pn+1 = I which does not change the algorithm. Let t ≥ 1, expending the square losses we get

Ω(t+ 1) =

t∑
s=1

[
(ĝt+1(xs)− ys)2 − (g̃t+1(xs)− ys)2 + λ‖ĝt+1‖2 − λ‖g̃t+1‖2

]
=

t∑
s=1

[
��y

2
s − 2 〈ĝt+1, ysφ(xs)〉+ 〈ĝt+1, φ(xs)⊗ φ(xs)ĝt+1〉

−��y
2
s + 2 〈g̃t+1, ysφ(xs)〉 − 〈g̃t+1, φ(xs)⊗ φ(xs)g̃t+1〉+ λ‖ĝt+1‖2 − λ‖g̃t+1‖2

]
= 2 〈g̃t+1 − ĝt+1, S

∗
t Yt〉+ 〈ĝt+1, Atĝt+1〉 − 〈g̃t+1, Atg̃t+1〉

Since both g̃t+1 and ĝt+1 belong to H̃t+1, we have
Ω(t+ 1) = 2 〈g̃t+1 − ĝt+1, Pt+1S

∗
t Yt〉+ 〈ĝt+1, Atĝt+1〉 − 〈g̃t+1, Atg̃t+1〉 ,

which using that Pt+1S
∗
t Yt = Pt+1Atg̃t+1 by Equality (21) yields

Ω(t+ 1) = 2 〈g̃t+1 − ĝt+1, Pt+1Atg̃t+1〉+ 〈ĝt+1, Atĝt+1〉 − 〈g̃t+1, Atg̃t+1〉
= 2 〈g̃t+1 − ĝt+1, Atg̃t+1〉+ 〈ĝt+1, Atĝt+1〉 − 〈g̃t+1, Atg̃t+1〉
= −2 〈ĝt+1, Atg̃t+1〉+ 〈ĝt+1, Atĝt+1〉+ 〈g̃t+1, Atg̃t+1〉
= 〈g̃t+1 − ĝt+1, At(g̃t+1 − ĝt+1)〉 .

Let us denote Bt = Pt+1AtPt+1. Then, remarking that ĝt+1 = PtÃ
−1
t PtAtg̃t+1 and that (Pt+1 −

PtÃ
−1
t PtAt)Pt = 0, we have

Ω(t+ 1) =
〈

(Pt+1 − PtÃ−1
t PtAt)g̃t+1, At(Pt+1 − PtÃ−1

t PtAt)g̃t+1

〉
=
〈

(Pt+1 − PtÃ−1
t PtBt)g̃t+1, Bt(Pt+1 − PtÃ−1

t PtBt)g̃t+1

〉
=
∥∥B1/2

t (Pt+1 − PtÃ−1
t PtBt)g̃t+1

∥∥2

=
∥∥B1/2

t (Pt+1 − PtÃ−1
t PtBt)(Pt+1 − Pt)g̃t+1

∥∥2

≤
∥∥B1/2

t (Pt+1 − PtÃ−1
t PtBt)‖2‖(Pt+1 − Pt)g̃t+1

∥∥2
. (25)
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We now upper-bound the two terms of the right-hand-side. For the first one, we use that∥∥∥Pt+1 −B1/2
t PtÃ

−1
t PtB

1/2
t

∥∥∥2

=
∥∥∥Pt+1 − 2B

1/2
t PtÃ

−1
t PtB

1/2
t +B

1/2
t PtÃ

−1
t PtB

1/2
t B

1/2
t PtÃ

−1
t︸ ︷︷ ︸

Pt

PtB
1/2
t

∥∥∥
=
∥∥∥Pt+1 −B1/2

t PtÃ
−1
t PtB

1/2
t

∥∥∥2

∈ {0, 1} , (26)

where in the second equality we used that PtB
1/2
t B

1/2
t PtÃ

−1
t = PtBtPtÃ

−1
t = PtÃtÃ

−1
t = Pt.

Therefore, using that B1/2
t Pt+1 = Pt+1B

1/2
t we get

‖B1/2
t (Pt+1 − PtÃ−1

t PtBt)‖2 =
∥∥∥B1/2

t

[
(Pt+1 − PtÃ−1

t PtBt)(Pt+1 − Pt)
]∥∥∥2

=
∥∥∥(Pt+1 −B1/2

t sPtÃ
−1
t PtB

1/2
t )B

1/2
t (Pt+1 − Pt)

∥∥∥2

≤
∥∥∥Pt+1 −B1/2

t PtÃ
−1
t PtB

1/2
t

∥∥∥2 ∥∥∥B1/2
t (Pt+1 − Pt)

∥∥∥2

(26)
≤
∥∥∥B1/2

t (Pt+1 − Pt)
∥∥∥2

≤
∥∥∥C1/2

t (Pt+1 − Pt)
∥∥∥2

+ λ

≤ µt + λ ,

where µt :=
∥∥(Pt+1 − Pt)C1/2

t

∥∥2
. Plugging back into (25), this yields

Ω(t+ 1) ≤ (µt + λ)‖(Pt+1 − Pt)g̃t+1‖2 . (27)

Then, substituting g̃t+1 with its definition and using ‖Yt‖2 ≤ tB2, we get

‖(Pt+1 − Pt)g̃t+1‖2 = ‖(Pt+1 − Pt)A−1
t S∗t Yt‖2

(Cauchy-Schwarz)
≤ ‖(Pt+1 − Pt)A−1

t S∗t ‖2‖Yt‖2

≤ tB2‖(Pt+1 − Pt)A−1
t S∗t StA

−1
t (Pt+1 − Pt)‖

(Ct=S
∗
t St)= tB2‖(Pt+1 − Pt)A−1

t CtA
−1
t (Pt+1 − Pt)‖ .

Because Ct and At = Ct + λI are co-diagonalizable, we have

C
1/2
t A−1

t = A−1
t C

1/2
t ,

which, together with ‖A−2
t ‖ ≤ 1/λ2 leads to

‖(Pt+1 − Pt)g̃t+1‖2 ≤ tB2‖(Pt+1 − Pt)C1/2
t A−2

t C
1/2
t (Pt+1 − Pt)‖

≤ tB2

λ2
‖(Pt+1 − Pt)C1/2

t ‖2

=
tµtB

2

λ2
.

Therefore, Inequality (27) concludes the proof of the second part

Ω(t+ 1) ≤ (µt + λ)
tµtB

2

λ2
. (28)

Conclusion of the proof. Combining (16), (24), and (28), we obtain

Rn(f) ≤
n∑
t=1

y2
t

〈
Ã−1
t Ptφ(xt), Ptφ(xt)

〉
+

n+1∑
t=1

Ω(t)

≤
n∑
t=1

y2
t

〈
Ã−1
t Ptφ(xt), Ptφ(xt)

〉
+

n+1∑
t=1

(µt−1 + λ)
(t− 1)µt−1B

2

λ2
,

which concludes the proof of the theorem.
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C Proofs of Section 2 (Kernel-AWV)

C.1 Proof of Proposition 1

First, remark that Kernel-AWV corresponds to PKAWV with H̃t = H and thus Pt = I for all t ≥ 1.
Therefore, applying Theorem 9 with Pt = I yields the regret bound,

Rn(f) ≤ λ‖f‖2 +

n∑
t=1

〈
A−1
t φ(xt), φ(xt)

〉
H ,

for all f ∈ H. The rest of the proof consists in upper-bounding the second term in the right hand side.
Remarking that At = At−1 + φ(xt)⊗ φ(xt) and applying Lemma 10 stated below we have〈

A−1
t φ(xt), φ(xt)

〉
H = 1− det(At−1/λ)

det(At/λ)
.

It is worth pointing out that det(At/λ) is well defined since At = I + Ct with Ct =
∑t
s=1 φ(xs)⊗

φ(xs) at most of rank t ≥ 0. Then we use 1− u ≤ log(1/u) for u > 0 which yields〈
A−1
t φ(xt), φ(xt)

〉
H ≤ log

det(At/λ)

det(At−1/λ)
.

Summing over t = 1, . . . , n, using A0 = λI and An = λI + Cn we get
n∑
t=1

〈
A−1
t φ(xt), φ(xt)

〉
H ≤ log

(
det
(
I +

Cn
λ

))

=

∞∑
k=1

log

(
1 +

λk(Cn)

λ

)
,

which concludes the proof.

The following Lemma is a standard result of online matrix theory (see Lemma 11.11 of [CBL06]).
Lemma 10. Let V : H → H be a linear operator. Let u ∈ H and let U = V − u⊗ u. Then,〈

V −1u, u
〉
H = 1− det(U)

det(V )
.

C.2 Proof of Proposition 2

Using that for x > 0

log(1 + x) ≤ x

x+ 1
(1 + log(1 + x)) ,

and denoting by a(λ) the quantity a(s, λ) := 1 + log(1 + s/λ), we get for any n ≥ 1

log
(

1 +
λk(Knn)

λ

)
≤ λk(Knn)

λ+ λk(Knn)
a(λk(Knn), λ).

Therefore, summing over k ≥ 1 and denoting by λ1 the largest eigenvalue of Knn

n∑
k=1

log
(

1 +
λk(Knn)

λ

)
≤ a(λ1, λ)

n∑
k=1

λk(Knn)

λ+ λk(Knn)
(29)

= a(λ1, λ) Tr
(
Knn(Knn + λI)−1

)
= a(λ1, λ)deff(λ)

where the last equality is from the definition of deff(λ). Combining with Proposition 1, substituting a
and upper-bounding

λ1(Knn) ≤ Tr(Knn) =

n∑
t=1

‖φ(xt)‖2 ≤ nκ2

concludes the proof.
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D Proofs of Section 3.1 (PKAWV with Taylor’s expansion)

D.1 Proof of Theorem 3

Applying Theorem 9 with a fix projection P and following the lines of the proof of Proposition 1 we
get

Rn(f) ≤ λ‖f‖2 +B2
n∑
j=1

log

(
1 +

λj(PCnP )

λ

)
+ (µ+ λ)

nµB2

λ2
,

where µ = ‖(I − P )C
1/2
n ‖2. Moreover we have for all i = 1, . . . , n using that C̃n = PCnP =

PSnS
∗
nP , we have

λi(C̃n) = λi(PCnP ) = λi(PS
∗
nSnP ) = λi(SnPPS

∗
n) = λi(SnPS

∗
n) ≤ λi(Knn).

D.2 Proof of Theorem 4

To apply our Thm. 3, we need first (1) to recall that the functions gk, k ∈ Nd0 are inH, (2) to show
that they can approximate perfectly the kernel and (3) to quantify the approximation error of GM
for the kernel function. First we recall some important existing results about the considered set of
functions. For completeness, we provide self-contained (and often shorter and simplified) proofs of
the following lemmas in Appendix F.

The next lemma states that gk with k ∈ N is an orthonormal basis for H induced by the Gaussian
kernel.
Lemma 11 ([SHS06]). For any k, k′ ∈ Nd0,

gk ∈ H, ‖gk‖H = 1, 〈gk, gk′〉H = 1k=k′ .

Note that byproduct of the lemma, we have that GM ⊂ H and moreover that the matrix Q is the
identity, indeed Qij =

〈
gki , gkj

〉
H = 1ki=kj . This means that the functions in GM are linearly

independent. Moreover the fact that Q = Ir further simplifies the computation of the embedding φ̃
(see (38)) in the implementation of the algorithm.

The next lemma recalls the expansion of k(x, x′) in terms of the given basis.
Lemma 12 ([CKS11]). For any x ∈ X ,

k(x, x′) = 〈φ(x), φ(x′)〉H =
∑
k∈Nd0

gk(x)gk(x′). (30)

Finally, next lemma provides approximation error of k(x, x′) in terms of the set of functions in GM ,
when the data is contained in a ball or radius R.
Lemma 13 ([CKS11]). Let R > 0. For any x, x′ ∈ Rd such that ‖x‖, ‖x′‖ ≤ R we have∣∣∣k(x, x′)−

∑
g∈GM

g(x)g(x′)
∣∣∣ ≤ (R/σ)2M+2

(M + 1)!
. (31)

Now we are ready to prove Thm. 4.

Proof of point 1. First, note that r := |GM |, the cardinality of GM , corresponds to the number of
monomials of the polynomial (1 + x1 + · · · + xd)

d, i.e. r := |GM | =
(
M+d
M

)
. By recalling that(

n
k

)
≤ (en/k)k for any n, k ∈ N, we have

r =

(
M + d

M

)
=

(
M + d

d

)
≤ ed(1 +M/d)d.

We conclude the proof of the first point of the theorem, by considering that PKAWV used with the set
of functions GM consists in running the online linear regression algorithm of [Vov01, AW01] with
r := |GM | features (see Appendix H for details). It incurs thus a computational cost of O(nr2 +nrd)
in time (no r3 since we don’t need to invert Q which we have proven to be the identity matrix as
consequence of Lemma 11) and O(r2) in memory.
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Proof of point 2. By Lemma 11 we have that GM ⊂ H and Q = Ir, so the functions in GM are
linearly independent. Then we can apply Thm. 3 obtaining the regret bound in Eq. (5):

Rn(f) ≤ λ
∥∥f∥∥2

+B2
n∑
j=1

log

(
1 +

λj(Knn)

λ

)
+B2 (µ+ λ)n

λ2
µ , (32)

where µ :=
∥∥(I−P )C

1/2
n

∥∥2
and Cn :=

∑n
t=1 φ(xt)⊗φ(xt). The proof consists in upper-bounding

the last approximation term B2 (µ+λ)n
λ2 µ. We start by upper-bounding µ as follows

µ :=
∥∥(I − P )C1/2

n

∥∥2
=
∥∥(I − P )Cn(I − P )

∥∥
=

∥∥∥∥∥(I − P )

n∑
t=1

φ(xt)⊗ φ(xt)(I − P )

∥∥∥∥∥
≤

n∑
t=1

‖(I − P )φ(xt)⊗ φ(xt)(I − P )‖

=

n∑
t=1

‖(I − P )φ(xt)‖2

=

n∑
t=1

〈(I − P )φ(xt), φ(xt)〉

=

n∑
t=1

〈φ(xt), φ(xt)〉 − 〈Pφ(xt), Pφ(xt)〉

=

n∑
t=1

k(xt, xt)− ‖Pφ(xt)‖2 ,

where we used that 〈Pφ(xt), φ(xt)〉 = 〈Pφ(xt), Pφ(xt)〉. Now, since by Lemma 11, the gk form
an orthonormal basis ofH, we have that

‖Pφ(xt)‖2 =
∑
g∈GM

g(xt)
2 .

where we recall that P the projection onto GM . Therefore, by Lemma 13,

µ ≤ (R/σ)2M+2n

(M + 1)!

Stirling
≤ ne−(M+1) log

(
(M+1)σ2

eR2

)
√

2π(M + 1)
≤ ne−(M+1)√

2π(M + 1)

M≥1

≤ n

9
e−M , (33)

where we used the fact that n! is lower bounded by the Stirling approximation as n! ≥
√

2πnen log n
e ,

for n ∈ N0 and that M + 1 ≥ e2R2/σ2, so log M+1
eR2/σ2 ≥ 1. Now, since M ≥ 2 log(n/(λ ∧ 1)), we

have M ≥ log(n/λ) and thus

µ ≤ n

9
e−M ≤ λ

9
≤ λ.

Therefore, the approximation term in (32) is upper-bounded as

B2 (µ+ λ)

λ2
µn ≤ 2B2µn

λ

(33)
≤ 2B2n2e−M

9λ

which using again M ≥ 2 log(n/(λ ∧ 1)) entails

B2 (µ+ λ)

λ2
µn ≤ 2

9
B2(λ ∧ λ−1) ≤ 4B2

9
log
(

1 +
1

λ

)
, (34)

where in the last inequality we used that (λ ∧ λ−1)/2 ≤ log(1 + 1/λ) for any λ > 0. Now, since
log(1 + x) is concave on [0,∞), by subadditivity∑n

j=1 log
(

1 +
λj(Knn)

λ

)
≥ log

(
1 +

∑n
j=1

λj(Knn)
λ

)
.
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By definition of trace in terms of eigenvalues and of the diagonal of Knn, we have
n∑
j=1

λj(Knn) = Tr(Knn) =

n∑
j=1

k(xj , xj) = n,

where the last step is due to the fact that for the Gaussian kernel we have k(x, x) = 1, for any x ∈ X .
Then

B2 log

(
1 +

1

λ

)
≤ B2 log

(
1 +

n

λ

)
≤ B2

n∑
j=1

log

(
1 +

λj(Knn)

λ

)
. (35)

Plugging back into Inequality (34) and substituting into (32) concludes the proof of the Theorem.

E Proofs of Section 3.2 (PKAWV with Nyström projections)

E.1 Proof of Theorem 6

The proof consists of a straightforward combination of Proposition 5 and Theorem 9. According to
Proposition 5, with probability at least 1− δ, we have for all t ≥ 1,

µt = ‖(Pt+1 − Pt)C1/2
t ‖2 ≤ ‖(I − Pt)C

1/2
t ‖21Pt+1 6=Pt ≤ µ1Pt+1 6=Pt ,

with |In| ≤ 9deff(µ) log(2n/δ)2. Therefore, from Theorem 9, if µ ≤ λ, the regret is upper-bounded
as

Rn(f) ≤ λ‖f‖2 +B2deff(λ) log

(
e+

enκ2

λ

)
+ 2

µn(|In|+ 1)B2

λ
.

Furthermore, similarly to any online linear regression algorithm in a m-dimensional space, the
efficient implementation of the algorithm (see Appendix H) requires O(m2) space and time per
iteration, where m = |In| is the size of the dictionary. This concludes the proof of the theorem.

E.2 Proof of Corollary 7

We recall that the notation . denotes an approximate inequality which is up to logarithmic multi-
plicative terms and may depend on unexplained constants. Here, we only consider non-constant
quantities n, λ, m and µ and focus on the polynomial dependence on n. Keeping this in mind, the
high-probability regret upper-bound provided by Theorem 6 can be rewritten as

Rn(f) . λ+
(n
λ

)γ
+
µn|In|
λ

, (36)

for all f ∈ H. It only remains to optimize the parameters µ and λ. Choosing µ = d−1
eff (m) ensures

that the size of the dictionary is upper-bounded as |In| . deff(µ) = m.

Moreover, by assumption m = deff(µ) ≤
(
n
µ

)γ
and thus µ ≤ nm−

1
γ . Therefore, the regret is

upper-bounded with high-probability as

Rn(f) . λ+
(n
λ

)γ
+
n2(m

γ−1
γ + 1)

λ
. (37)

Now, according to the value of m, two regimes are possible:

• If the dictionary is large enough, i.e., m ≥ n
2γ

1−γ2 then, once λ is optimized, the last term
of the right-hand side is negligible. The regret upper-bound consists then in optimizing
λ+ (n/λ)γ in λ yielding to the choice λ = n

γ
1+γ . We get the upper-bound

Rn(f) . n
γ
γ+1 + nγn−

γ2

1+γ + n2n−
γ
γ+1n

−2
γ+1 . n

γ
γ+1 ,

which recovers the optimal rate in this case.
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• Otherwise, if m ≤ n
2γ

1−γ2 , then the last term of the r.h.s. of (37) is predominant. The
dictionary is too small to recover the optimal regret bound. The parameter λ is optimizes the
trade-off λ+ n2m(γ−1)/γ/λ which leads to the choice λ = nm

1
2−

1
2γ . The upper-bound on

the regret is then

Rn(f) . nm
γ−1
2γ +m

1−γ
2 + nm

1−γ
2γ + γ−1

γ . nm
γ−1
2γ .

This concludes the proof.

E.3 Proof of Corollary 8

The proof follows the lines of the one of Theorem 6 and Corollary 7. However, here since the
projections are fixed we can apply Theorem 3 instead of Theorem 9. This yields the high-probability
regret upper-bound

Rn(f) . λ+
(n
λ

)γ
+
µn

λ
,

which improves by a factor |In| the last term of the bound (36). The choice µ = d−1
eff (m) yields with

high probability |In| . deff(µ) = m and µ ≤ nm−
1
γ which entails

Rn(f) . λ+
(n
λ

)γ
+
n2m−

1
γ

λ
.

Similarly to Corollary 7 two regimes are possible. The size of the dictionary decides which term is
preponderant in the above upper-bound:

• If m ≥ n
2γ

1+γ the dictionary is large enough to recover the optimal rate for the choice
λ = n

γ
1+γ . Indeed it yields

Rn(f) . n
γ
γ+1 + nγn−

γ2

1+γ + n
2γ
γ+1n−

γ
γ+1 . n

γ
γ+1

• Otherwise m ≤ n
2γ

1+γ and the choice λ = n
γ

1+γ leads to

Rn(f) . n
γ
γ+1 + nγn−

γ2

1+γ + n
2γ
γ+1n−

γ
γ+1 . n

γ
γ+1 .

The last inequality is due to m
1
2 ≤ nm−

1
γ+ 1

2γ because γ ≤ 1 and m ≤ n.

F Proofs of additional lemmas

F.1 Proof of Lemma 11

Recall the following characterization of scalar product for translation invariant kernels (i.e. k(x, x′) =
v(x− x′) for a v : Rd → R) [see BTA11]

〈f, g〉H =

∫
F [f ](ω)F [g](ω)

F [v](ω)
,

where F [f ] is the unitary Fourier transform of f . Let start from the one dimensional case and denote
by H0 the Gaussian RKHS on R. First note that when d = 1, we have gk = ψk. Now, the Fourier
transform of ψk is F [ψk](ω) = 1√

k!
Hk(x/σ2)e−ω

2/(2σ2), for any k ∈ Nd0, where Hk(x) is the k-th

Hermite polynomial [see OLBC10, Eq. 18.17.35 pag. 457], and F [v] = e−ω
2/2, then, by the fact

that Hermite are orthogonal polynomial with respect to e−ω
2/2 forming a complete basis, we have

〈ψk, ψk′〉H0
=

1

k!

∫
Hk(ω)Hk′(ω)e−ω

2/2dω = 1k=k′ .

The multidimensional case is straightforward since Gaussian is a product kernel, i.e. k(x, x′) =∏d
i=1 k(x(i), x(i)) andH = ⊗di=1H0, so

〈
⊗di=1fi,⊗di=1gi

〉
H =

∏d
i=1 〈fi, gi〉H0

[see Aro50]. Now,
since gk = ⊗di=1ψki , we have 〈gk, gk′〉H =

∏d
i=1

〈
ψki , ψk′i

〉
H0

= 1k=k′ .
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F.2 Proof of Lemma 12

First, for j ∈ N0 define

Qj(x, x
′) := e−

‖x‖2

2σ2
− ‖x

′‖2

2σ2
(x>x′/σ2)j

j!
.

First note that, by multinomial expansion of (x>x′)j ,

Qj(x, x
′) =

e−
‖x‖2+‖x′‖2

2σ2

σ2jj!

∑
|t|=j

(
j

t1 . . . td

) d∏
i=1

(x(i))ti(x′
(i)

)ti

=
∑
|t|=j

gt(x)gt(x
′).

Now note that, by Taylor expansion of ex
>x′/σ2

we have

k(x, x′) =

∞∑
j=0

Qj(x, x
′) =

∞∑
j=0

∑
|t|=j

gt(x)gt(x
′)

=
∑
k∈Nd0

gk(x)gk(x′).

Finally, with φ defined as above, and the fact that gk forms an orthonormal basis forH, leads to

〈φ(x), φ′(x)〉 =
∑
k∈Nd0

gk(x)gk(x′) = k(x, x′).

F.3 Proof of Lemma 13

Here we use the same notation of the proof of Lemma 12. Since by Taylor expansion, we have that
k(x, x′) =

∑∞
j=0Qj(x, x

′), by mean value theorem for the function f(s) = es/σ
2

, we have that
there exists c ∈ [0, x>x′] such that

|k(x, x′)−
M∑
j=0

Qj(x, x
′)| = e−

‖x‖2+‖x′‖2

2σ2
cM+1

(M + 1)!

dM+1e
s
σ2

dsM+1
|s=c

≤ (|x>x′|/σ2)M+1

(M + 1)!

≤ (R/σ)2M+2

(M + 1)!

where the last step is obtained assuming ‖x‖, ‖x′‖ ≤ R. Finally note that, by definition of GM ,

∑
g∈GM

g(x)g(x′) =

M∑
|k|≤M

gk(x)gk(x′) =

M∑
j=0

Qj(x, x
′).

G Additional experiments

Additional large scale datasets (cf. Figure 4). We provides results on two additional datasets from
UCI machine learning repository : casp (regression) and ijcnn1. See section 4 for more details.

Adversarial simulated data (cf. Figure 3) In this experiment we produced the sequence (xt, yt)t∈N
adversarially on the regret function. In particular, given the learning algorithm, we use scipy as a
greedy adversary i.e. at each step an optimization is done on the regret function to find (xt, yt). On
the right of Figure 3, we plot the simulations until n = 80, with (xt, yt) ∈ [−1, 1]d × [−1, 1] where
d = 5. We see that Kernel-AWV, which does not use any approximation, leads to the best regret.
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Figure 3: Regret in adversarial setting.

Figure 4: Average loss and time on (top): regression casp (n = 4.5 × 104, d = 9); (bottom)
classification ijcnn1 (n = 1.5× 105, d = 22).

Furthermore, PKAWV approximations converges very fast to the regret of Kernel-AWV when M
increases. The poor performance of Pros-N-Kons is likely because of its frequent restarts which is
harmful when n is small. On the contrary, FOGD has surprisingly good performance. We run the
simulations up to n = 80 for the high computational cost required by the adversary (especially for
algorithms like Kernel-AWV or Pros-N-Kons).

H Efficient implementation of PKAWV

H.1 Pseudo-code

Here, we detail how the formula (4) can be efficiently computed for the projections considered in
Section 3.
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Fixed embedding We consider fix sub-spaces H̃t = H̃ induced fixed by the span of a fixed set of
functions G = {g1, . . . , gr} ⊂ H as analyzed in Section 3.1. Let denote by φ̃ : X → Rr the map

φ̃(x) = Q−1/2v(x), (38)

with v(x) = (g1(x), . . . , gr(x)), and Q ∈ Rr×r defined as Qij = 〈gi, gj〉H. Then, computing the
prediction ŷt = f̂t(xt) of PKAWV with

f̂t ∈ argmin
f∈H̃=Span(G)

{
t−1∑
s=1

(
ys − f(xs)

)2
+ λ
∥∥f∥∥2

+ f(xt)
2

}

is equivalent to embedding xt in Rr via φ̃ and then performing linear AWV of [AW01, Vov01] with
ŷt = ŵ>t φ̃(xt)

ŵt ∈ argmin
w∈Rr

{
t−1∑
s=1

(
ys − w>φ̃(xs)

)2
+ λ
∥∥w∥∥2

+
(
w>φ̃(xt)

)2}
.

This reduces the total computational complexity to O(nr2 + nrd+ r3) in time and O(r2) in space
(see Algorithm 1 for an efficient implementation).

Algorithm 1 PKAWVwith fixed embedding

Input: λ > 0, φ̃ : X → Rr for r ≥ 1

Initialization: A−1
0 = λ−1Ir, b0 = 0

For t = 1, . . . , n

– receive xt ∈ X
– compute vt = φ̃(xt) ∈ Rr

– update A−1
t = A−1

t−1 −
(A−1
t vt)(A

−1
t vt)

>

1+v>t A
−1
t vt

– predict ŷt = φ̃(xt)
>A−1

t bt−1

– receive yt ∈ R
– update bt = bt−1 + vtyt

Nyström projections Here, we detail how our algorithm can be efficiently implemented with
Nyström projections as considered in section 3.2. If we implement naïvely this algorithm, we
would compute αt = (KT

t,mtKt,mt + λKmt,mt)
−1KT

t,mtYt at each iteration. However, it would
require ndeff(µ) + deff(µ)3 operations per iterations. We could have update this inverse with Sher-
man–Morrison formula and Woodbury formula. However, in practice it leads to numeric instability be-
cause the matrix can have small eigenvalues. Here we use a method described in [RCR15]. The idea is
to use the cholesky decomposition and cholup which update the cholesky decomposition when adding
a rank one matrix i.e. if At = LTt Lt and At+1 = At+ut+1u

T
t+1 then Lt+1 = cholup(Lt, ut+1, ’+’).

Updating the cholesky decomposition with cholup require only deff(µ)2 operations. So, PKAWV
with nyström has a O(ndeff(µ) + deff(µ)2) time complexity per iterations.

23



Algorithm 2 PKAWVwith Nyström projections
Input: λ, µ, β > 0,
Initialization: d1 =

For t = 1, . . . , n

– receive xt ∈ X
– compute zt with KORS
– Kt = (k(xi, x̃j))i≤t,j∈It−1

– It = It−1

– at = (k(xt, x1), ..., k(xt, xt))

– Rt = cholup(Rt, at, ’+’)
If zt = 1

– It = It ∪ {t}
– Kt = (k(xi, xj))i≤t,j∈It
– bt = (k(xt, xj))j∈It

– ct = KT
t−1at + λbt

– dt = aTt at + λk(xt, xt)

– gt =
√

1 + dt
– ut = (ct/(1 + gt), gt)

– vt = (ct/(1 + gt),−1)

– Rt =

(
Rt−1 0

0 0

)
– Rt = cholup(Rt, ut, ’+’)
– Rt = cholup(Rt, vt, ’-’)

– αt = R−1
t R−Tt KT

t (Yt, 0)

– bt = (k(xt, xj))j∈It

– predict ŷt = bTt αt

– receive yt ∈ R
– update Yt = (Yt−1, yt)
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H.2 Python code

import numpy as np
from math import factorial

class PhiAWV:
def __init__(self, d, sigma=1.0, lbd=1.0, M=2):

self.b = None
self.A_inv = None
self.M = M
self.lbd = lbd
self.sigma = sigma

def taylor_phi(self, x):
res = np.array([1.])
mm = np.array([1.])
for k in range(1,self.M+1):

mm = (np.outer(mm, x)).flatten()
q = self.sigma**k*np.sqrt(factorial(k))
res = np.concatenate((res,mm/q))

c = 2*self.sigma**2
res *= np.exp(-np.dot(x,x)/c)
return np.array(res)

def predict(self, x):
z = self.taylor_phi(x)
if self.b is None:

r = len(z)
self.b = np.zeros(r)
self.A_inv = (1/self.lbd)*np.eye(r)

v = np.dot(self.A_inv, z)
v /= np.sqrt(1 + np.dot(z, v))
self.A_inv -= np.outer(v, v)
w_hat = np.dot(self.A_inv, self.b)
self.z = z
return np.dot(w_hat, z)

def update(self, y):
self.b += y*self.z

def update_inv(A_inv,x):
B = x[:-1][:,None]
C = np.transpose(B)
D = np.array(x[-1])[None,None]
if A_inv.size == 0:

return 1./D
compl = 1./(D - np.dot(np.dot(C,A_inv),B))
R0 = A_inv + np.dot(np.dot(np.dot(np.dot(A_inv,B),compl),C),A_inv)
R1 = - np.dot(np.dot(A_inv,B),compl)
R2 = - np.dot(np.dot(compl,C),A_inv)
R3 = np.array(compl)
return np.block([[R0, R1], [R2, R3]])

def KORS(x, KMM, S, SKS_inv, lbd=1., eps=0.5, beta=1.):
kS = KMM[:,-1]*S
SKS = np.array(S)[None,:] * KMM * np.array(S)[:,None]
en = np.eye(len(kS))[:,-1]
SKS_inv_tmp = update_inv(SKS_inv, kS + lbd*en)
tau = (1+eps)/lbd*(KMM[-1,-1] - np.dot(kS, np.dot(SKS_inv_tmp, kS)))
p = max(min(beta*tau,1),0)
z = np.random.binomial(1,p)
S = S[:-1]
if z:

S.append(1/p)
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SKS_inv = update_inv(SKS_inv, 1/p*KMM[:,-1]*S + lbd*en)
return z, S, SKS_inv

class Nystrom_kernel_AWV:
def __init__(self, d, k, lbd=1.):

self.c = np.zeros(0)
self.X = np.zeros((0,d))
self.Y = np.zeros(0)
self.k = k
self.lbd = lbd
self.R = np.eye(0)
self.chosen_idx = []
self.KnM = np.eye(0)
self.S = []
self.SKS_inv = np.eye(0)

def predict(self, x):
self.X = np.concatenate((self.X,x[None,:]), axis=0)
n = self.X.shape[0]
Kn = np.array([self.k(self.X[i,:],x) for i in self.chosen_idx])
self.KnM = np.concatenate((self.KnM,Kn[None,:]), axis=0)
K_kors = np.concatenate((self.KnM[self.chosen_idx+[n-1],:],

np.concatenate((Kn, [self.k(x, x)]))[:,None]),
axis=1)

z, self.S, self.SKS_inv = KORS(x, K_kors, list(self.S)+[1], \
self.SKS_inv, lbd=self.lbd)

self.R = cholup(self.R, self.KnM[-1,:], '+')
if z:

self.chosen_idx.append(n-1)
M = len(self.chosen_idx)
KM = np.array([self.k(self.X[i,:],x) for i in range(n)])
self.KnM = np.concatenate((self.KnM,KM[:,None]), axis=1)
a = self.KnM[:,-1].T
d = np.dot(a, a) + self.lbd*self.KnM[-1,-1]
if M == 1:

self.R = np.array([[np.sqrt(d)]])
else:

b = self.KnM[self.chosen_idx[:-1],-1]
c = np.dot(self.KnM[:,:-1].T, a) + self.lbd*b
g = np.sqrt(1 + d)
u = np.concatenate((c/(1+g), [g]))
v = np.concatenate((c/(1+g), [-1]))
self.R = np.block([[self.R, np.zeros((M-1,1))],

[np.zeros((1,M-1)), 0]])
self.R = cholup(self.R, u, '+')
self.R = cholup(self.R, v, '-')

Yp = np.concatenate((self.Y, [0]))
if len(self.R) > 0:

self.c = solve_triangular(self.R,
solve_triangular(self.R.T, np.dot(self.KnM.T,self.Y),

lower=True))
Kn = np.array([self.k(self.X[i,:],x) for i in self.chosen_idx])
return np.dot(Kn, self.c)

def update(self, y):
self.Y = np.concatenate((self.Y,np.array(y)[None]), axis=0)
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