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Abstract

We study three fundamental statistical learning problems: distribution estimation,
property estimation, and property testing. We establish the profile maximum likeli-
hood (PML) estimator as the first unified sample-optimal approach to a wide range
of learning tasks. In particular, for every alphabet size k and desired accuracy ε:
Distribution estimation Under `1 distance, PML yields optimal Θ(k/(ε2 log k))
sample complexity for sorted distribution estimation, and a PML-based estimator
empirically outperforms the Good-Turing estimator on the actual distribution;
Additive property estimation For a broad class of additive properties, the PML
plug-in estimator uses just four times the sample size required by the best estimator
to achieve roughly twice its error, with exponentially higher confidence;
α-Rényi entropy estimation For an integer α > 1, the PML plug-in estimator
has optimal k1−1/α sample complexity; for non-integer α > 3/4, the PML plug-in
estimator has sample complexity lower than the state of the art;
Identity testing In testing whether an unknown distribution is equal to or at least ε
far from a given distribution in `1 distance, a PML-based tester achieves the optimal
sample complexity up to logarithmic factors of k.
With minor modifications, most of these results also hold for a near-linear-time
computable variant of PML.

1 Introduction

A distribution p over a discrete alphabet X of size k corresponds to an element of the simplex

∆X :=

{
p ∈ Rk≥0 :

∑
x∈X

p(x) = 1

}
.

A distribution property is a mapping f : ∆X → R associating a real value with each distribution. A
distribution property f is symmetric if it is invariant under domain-symbol permutations. A symmetric
property is additive, i.e., additively separable, if it can be written as f(p) :=

∑
x f(p(x)), where for

simplicity we use f to denote both the property and the corresponding real function.

Many important symmetric properties are additive. For example,

• Support size S(p) :=
∑
x 1p(x)>0, a fundamental quantity arising in the study of vocabu-

lary size [29, 53, 67], population estimation [34, 52], and database studies [37].
• Support coverage Cm(p) :=

∑
x(1 − (1 − p(x))m), where m is a given parameter, the

expected number of distinct elements observed in a sample of size m, arising in biologi-
cal [17, 49] and ecological [17–19, 23] research;

• Shannon entropy H(p) := −
∑
x p(x) log p(x), the primary measure of information [24,

66] with numerous applications to machine learning [14, 22, 63] and neuroscience [30, 51];
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• Distance to uniformity D(p) := ‖p− pu‖1, where pu is the uniform distribution over ∆X ,
a property being central to the field of distribution property testing [10, 12, 15, 65].

Besides being additive and symmetric, these four properties have yet another attribute in common.
Under the appropriate interpretation, they are also all 1-Lipschitz. Specifically, for two distributions
p, q ∈ ∆X , let Γp,q be the collection of distributions over X × X with marginals p and q on the first
and second factors respectively. The relative earth-mover distance [70], between p and q is

R(p, q) := inf
γ∈Γp,q

E
(X,Y )∼γ

∣∣∣∣log
p(X)

q(Y )

∣∣∣∣ .
One can verify [70, 71] that H , D, and C̃m := Cm/m are all 1-Lipschitz on the metric space
(∆X , R), and S̃ := S/k is 1-Lipschitz over (∆≥1/k, R), the set of distributions in ∆X whose
nonzero probabilities are at least 1/k. We will study all such Lipschitz properties in later sections.

An important symmetric non-additive property is Rényi entropy, a well-known measure of randomness
with numerous applications to unsupervised learning [44, 77] and image registration [50, 54]. For
a distribution p ∈ ∆X and a non-negative real parameter α 6= 1, the α-Rényi entropy [64] of p is
Hα(p) := (1− α)−1 log (

∑
x p

α
x). In particular, denoted by H1(p) := limα→1Hα(p), the 1-Rényi

entropy is exactly Shannon entropy [64].

1.1 Problems of interest

In this work, we consider three fundamental statistical learning problems concerning the estimation
and testing of distributions and their properties.

(Sorted) distribution estimation

A natural learning problem is to estimate an unknown distribution p ∈ ∆X from an i.i.d. sample
Xn ∼ p. For any two distributions p, q ∈ ∆X , let `(p, q) be the loss when we approximate p by q.
A distribution estimator p̂ : X ∗ → ∆X associates every sequence xn ∈ X ∗ with a distribution p̂(xn).
We measure the performance of an estimator by its sample complexity

n(p̂, ε, δ) := min{n : ∀p ∈ ∆X , Pr
Xn∼p

(`(p, p̂(Xn)) ≥ ε) ≤ δ},

the smallest sample size that p̂ requires to estimate all distributions in ∆X to a desired accuracy
ε > 0, with error probability δ ∈ (0, 1). The sample complexity of distribution estimation over ∆X is

n(ε, δ) := min{n(p̂, ε, δ) : p̂ : X ∗ → ∆X },
the lowest sample complexity of any estimator. For simplicity, we will omit δ when δ = 1/3.

For a distribution p ∈ ∆X , we denote by {p} the multiset of its probabilities. The sorted `1 distance
between two distributions p, q ∈ ∆X is

`<
1(p, q) := min

p′∈∆X :{p′}={p}
‖p′ − q‖1 ,

the smallest `1 distance between q and any sorted version of p. As illustrated in Section 7.1 of the
supplementary material, this is essentially the 1-Wasserstein distance between uniform measures on
the probability multisets {p} and {q}. We will consider both the sorted and unsorted `1 distances.

Property estimation

Often we would like to estimate a given property f of an unknown distribution p ∈ ∆X based on
a sample Xn ∼ p. A property estimator is a mapping f̂ : X ∗ → R. Analogously, the sample
complexity of f̂ in estimating f over a set P ⊂ ∆X is

nf (f̂ ,P, ε, δ) := min{n : ∀p ∈ P, Pr
Xn∼p

(|f̂(Xn)− f(p)| ≥ ε) ≤ δ},

the smallest sample size that f̂ requires to estimate f with accuracy ε and confidence 1− δ, for all
distributions in P . The sample complexity of estimating f over P is

nf (P, ε, δ) := min{nf (f̂ ,P, ε, δ) : f̂ : X ∗ → R},
the lowest sample complexity of any estimator. For simplicity, we will omit P when P = ∆X , and
omit δ when δ = 1/3. The standard “median trick" shows that log(1/δ) ·nf (P, ε) ≥ Ω(nf (P, ε, δ)).
By convention, we say an estimator f̂ is sample-optimal if nf (f̂ ,P, ε) = Θ(nf (P, ε)).
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Property testing: Identity testing

A closely related problem is distribution property testing, of which identity testing is the most
fundamental and well-studied [15, 32]. Given an error parameter ε, a distribution q, and a sample
Xn from an unknown distribution p, identity testing aims to distinguish between the null hypothesis

H0 : p = q

and the alternative hypothesis
H1 : ‖p− q‖1 ≥ ε.

A property tester is a mapping t̂ : X ∗ → {0, 1}, indicating whether H0 or H1 is accepted. Analogous
to the two formulations above, the sample complexity of t̂ is

nq(t̂, ε, δ) := min{n : ∀i ∈ {0, 1} and ∀p ∈ Hi, Pr
Xn∼p

(
t̂(Xn) 6= i

)
≤ δ},

and the sample complexity of identity testing with respect to q is

nq(ε, δ) := min{n(t̂, ε, δ) : t̂ : X ∗ → {0, 1}}.

Again, when δ = 1/3, we will omit δ. For q = pu, the problem is also known as uniformity testing.

1.2 Profile maximum likelihood

The multiplicity of a symbol x ∈ X in a sequence xn := x1, . . . , xn ∈ X ∗ is µx(xn) := |{j : xj =
x, 1 ≤ j ≤ n}|, the number of times x appears in xn. These multiplicities induce an empirical
distribution pµ(xn) that associates a probability µx(xn)/n with each symbol x ∈ X .

The prevalence of an integer i ≥ 0 in xn is the number ϕi(xn) of symbols appearing i times in xn.
For known X , the value of ϕ0 can be deduced from the remaining multiplicities, hence we define
the profile of xn to be ϕ(xn) = (ϕ1(xn), . . . , ϕn(xn)), the vector of all positive prevalences. For
example, ϕ(alfalfa) = (0, 2, 1, 0, 0, 0, 0). Note that the profile of xn also corresponds to the multiset
of multiplicities of distinct symbols in xn.

For a distribution p ∈ ∆X , let
p(xn) := Pr

Xn∼p
(Xn = xn)

be the probability of observing a sequence xn under i.i.d. sampling from p, and let

p(ϕ) :=
∑

yn:ϕ(yn)=ϕ

p(yn)

be the probability of observing a profile ϕ. While the sequence maximum likelihood estimator maps
a sequence to its empirical distribution, which maximizes the sequence probability p(xn), the profile
maximum likelihood (PML) estimator [58] over a set P ⊆ ∆X maps each profile ϕ to a distribution

pϕ := arg max
p

p(ϕ)

that maximizes the profile probability. Relaxing the optimization objective, for any β ∈ (0, 1), a β-
approximate PML estimator [4] maps each profile ϕ to a distribution pβϕ such that pβϕ(ϕ) ≥ β · pϕ(ϕ).

Originating from the principle of maximum likelihood, PML was proved [2, 4, 6, 7, 25, 58] to possess
a number of useful attributes, such as existence over finite discrete domains, majorization by empirical
distributions, consistency for distribution estimation under both sorted and unsorted `1 distances, and
competitiveness to other profile-based estimators.

Let ε be an error parameter and f be one of the four properties in the introduction. Set n := nf (ε).
Recently, Acharya et al. [4] showed that for some absolute constant c′ > 0, if c < c′ and ε ≥ n−c, then
a plug-in estimator for f , using an exp(−n1−Θ(c))-approximate PML, is sample-optimal. Motivated
by this result, Charikar et al. [20] constructed an explicit exp(−O(n2/3 log3 n))-approximate PML
(APML) whose computation time is near-linear in n. Combined, these results provide a unified,
sample-optimal, and near-linear-time computable plug-in estimator for the four properties.
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2 New results and implications

2.1 New results

Additive property estimation

Recall that for any property f , the expression nf (ε) denotes the smallest sample size required by any
estimator to achieve accuracy ε with confidence 2/3, for all distributions in ∆X . Let f be an additive
symmetric property that is 1-Lipschitz on (∆X , R). Let ε > 0 and n ≥ nf (ε) be error and sampling
parameters. For an absolute constant c ∈ (10−2, 10−1), if ε ≥ n−c,
Theorem 1. The PML plug-in estimator, when given a sample of size 4n from any distribution
p ∈ ∆X , will estimate f(p) up to an error of (2 + o(1))ε, with probability at least 1− exp (−4

√
n).

For a different c > 0, Theorem 1 also holds for APML, which is near-linear-time computable [20].

Rényi entropy estimation

For X of finite size k and any p ∈ ∆X , it is well-known that Hα(p) ∈ [0, log k]. The following
theorems characterize the performance of the PML plug-in estimator in estimating Rényi entropy.

For any distribution p ∈ ∆X , error parameter ε ∈ (0, 1), absolute constant λ ∈ (0, 0.1), and sampling
parameter n, draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,
Theorem 2. For α ∈ (3/4, 1), if n = Ωα(k1/α/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−
√
n).

Theorem 3. For non-integer α > 1, if n = Ωα(k/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−n1−λ).

Theorem 4. For integer α > 1, if n = Ωα(k1−1/α(ε2 log(1/ε))−(1+α)) and Hα(p) ≤ (log n)/4,
Pr(|Hα(pϕ)−Hα(p)| ≥ ε) ≤ 1/3.

Replacing 3/4 by 5/6, Theorem 2 also holds for APML with a better probability bound exp(−n2/3).
In addition, Theorem 3 holds for APML without any modifications.

Sorted distribution estimation

Let c be the absolute constant defined just prior to Theorem 1. For any distribution p ∈ ∆X , error
parameter ε ∈ (0, 1), and sampling parameter n, draw a sample Xn ∼ p and denote its profile by ϕ.
Theorem 5. If n = Ω(n(ε)) = Ω

(
k/(ε2 log k)

)
and ε ≥ n−c,

Pr(`<
1(pϕ, p) ≥ ε) ≤ exp(−Ω(

√
n)).

For a different c > 0, Theorem 5 also holds for APML with a better probability bound exp(−n2/3).

Identity testing

The recent works of Diakonikolas and Kane [26] and Goldreich [31] provided a procedure reducing
identity testing to uniformity testing, while modifying the desired accuracy and alphabet size by only
absolute constant factors. Hence below we consider uniformity testing.

The uniformity tester TPML shown in Figure 1 is purely based on PML and satisfies
Theorem 6. If ε = Ω̃(k−1/4) and n = Ω̃(

√
k/ε2), then the tester TPML(X

n) will be correct with
probability at least 1− k−2. The tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/

√
k.

The Ω̃(·) notation only hides logarithmic factors of k. The tester TPML is near-optimal as for uniform
distribution pu, the results in [28] yield an Ω(

√
k log k/ε2) lower bound on npu(ε, k−2).

For space considerations, we postpone proofs and additional results to the supplementary material.
The rest of the paper is organized as follows. Section 2.2 presents several immediate implications of
the above theorems. Section 3 and Section 4 illustrate PML’s theoretical and practical advantages by
comparing it to existing methods for a variety of learning tasks. Section 5 concludes the paper and
outlines multiple promising future directions.
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Input: parameters k, ε, and a sample Xn ∼ p with profile ϕ.
if maxxµx(Xn) ≥ 3 max{1, n/k} log k then return 1;

elif ‖pϕ − pu‖2 ≥ 3ε/(4
√
k) then return 1;

else return 0.

Figure 1: Uniformity tester TPML

2.2 Implications

Several immediate implications are in order.

We say that a plug-in estimator is universally sample-optimal for estimating symmetric properties
if there exist absolute positive constants c1, c2 and c3, such that for any 1-Lipschitz property on
(∆X , R), with probability ≥ 9/10, the plug-in estimator uses just c1 times the sample size n required
by the minimax estimator to achieve c2 times its error, whenever this error is at least n−c3 .

Note that the “1-Lipschitz property” class can be replaced by other general property classes, but not
by those containing only a few specific properties, since “universal” means “applicable to all cases”.

Theorem 1 makes PML the first plug-in estimator that is universally sample-optimal for a broad class
of distribution properties. In particular, Theorem 1 also covers the four properties considered in [4].
To see this, as mentioned in the introduction, C̃m, H , and D are 1-Lipschitz on (∆X , R); as for S̃,
the following result [4] relates it to C̃m for distributions in ∆≥1/k, and proves PML’s optimality.

Lemma 1. For any ε > 0, m = k log(1/ε), and p ∈ ∆≥1/k,

|S̃(p)− C̃m(p) log (1/ε) | ≤ ε.

The theorem also applies to many other properties. As an example [70], given an integer s > 0, let
fs(x) := min{x, |x− 1/s|}. Then to within a factor of two, fs(p) :=

∑
x fs(px) approximates the

`1 distance between any distribution p and the closest uniform distribution in ∆X of support size s.

In Section 3.2 we compare Theorem 1 with existing results and present more of its implications.

Theorem 2 and 3 imply that for all non-integer α > 3/4 (resp. α > 5/6), the PML (resp. APML)
plug-in estimator achieves a sample complexity better than the best currently known [5]. This makes
both the PML and APML plug-in estimators the state-of-the-art algorithms for estimating non-integer
order Rényi entropy. See Section 3.3 for an introduction of known results, and see Section 3.4 for a
detailed comparison between existing methods and ours.

Theorem 4 shows that for all integer α > 1, the sample complexity of the PML plug-in estimator
has optimal k1−1/α dependence [5, 55] on the alphabet size.

Theorem 5 makes APML the first distribution estimator under sorted `1 distance that is both near-
linear-time computable and sample-optimal for a range of desired accuracy ε beyond inverse poly-
logarithmic of n. In comparison, existing algorithms [2, 38, 72] either run in polynomial time in the
sample sizes, or are only known to achieve optimal sample complexity for ε = Ω(1/

√
log n), which

is essentially different from the applicable range of ε ≥ n−Θ(1) in Theorem 5. We provide a more
detailed comparison in Section 3.6.

Theorem 6 provides the first PML-based uniformity tester with near-optimal sample complexity.
As stated, the tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/

√
k. This is a stronger

guarantee since by the Cauchy-Schwarz inequality, ‖p− pu‖1 ≥ ε implies ‖p− pu‖2 ≥ ε/
√
k.

Note that several other uniformity testers in the literature (see Section 3.7) also provide the same `2
testing guarantee, since all of them are essentially counting sample collisions, i.e., the number of
location pairs such that the sample points at those locations are equal.
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3 Related work and comparisons

3.1 Additive property estimation

The study of additive property estimation dates back at least half a century [16, 34, 35] and has steadily
grown over the years. For any additive symmetric property f and sequence xn, the simplest and most
widely-used approach uses the empirical (plug-in) estimator f̂E(xn) := f(pµ(xn)) that evaluates f
at the empirical distribution. While the empirical estimator performs well in the large-sample regime,
modern data science applications often concern high-dimensional data, for which more involved meth-
ods have yielded property estimators that are more sample-efficient. For example, for relatively large k
and for f being S̃, C̃m,H , orD, recent research [45, 59, 69, 70, 75, 76] showed that the empirical esti-
mator is optimal up to logarithmic factors, namely nf (P, ε) = Θε(nf (f̂E ,P, ε)/log nf (f̂E ,P, ε)),
where P is ∆≥1/k for S̃, and is ∆X for the other properties.

Below we classify the methods for deriving the corresponding sample-optimal estimators into two
categories: plug-in and approximation, and provide a high-level description. For simplicity of
illustration, we assume that ε ∈ (0, 1].

The plug-in approach essentially estimates the unknown distribution multiset, which suffices for
computing any symmetric properties. Besides the empirical and PML estimators, Efron and Thisted
[29] proposed a linear-programming approach that finds a multiset estimate consistent with the
sample’s profile. This approach was then adapted and analyzed by Valiant and Valiant [69, 72],
yielding plug-in estimators that achieve near-optimal sample complexities for H and S̃, and optimal
sample complexity for D, when ε is relatively large.

The approximation approach modifies non-smooth segments of the probability function to correct
the bias of empirical estimators. A popular modification is to replace those non-smooth segments by
their low-degree polynomial approximations and then estimate the modified function. For several
properties including the above four and power sum Pα(p) :=

∑
x p

α
x , where α is a given parameter,

this approach yields property-dependent estimators [45, 59, 75, 76] that are sample-optimal for all ε.

More recently, Acharya et al. [4] proved the aforementioned results on PML estimator and made it the
first unified, sample-optimal plug-in estimator for S̃, C̃m, H and D and relatively large ε. Following
these advances, Han et al. [38] refined the linear-programming approach and designed a plug-in
estimator that implicitly performs polynomial approximation and is sample-optimal for H , S̃, and
Pα with α < 1, when ε is relatively large.

3.2 Comparison I: Theorem 1 and related property-estimation work

In terms of the estimator’s theoretical guarantee, Theorem 1 is essentially the same as Valiant and
Valiant [70]. However, for each property, k, and n, [70] solves a different linear program and
constructs a new estimator, which takes polynomial time. On the other hand, both the PML estimator
and its near-linear-time computable variant, once computed, can be used to accurately estimate
exponentially many properties that are 1-Lipschitz on (∆X , R). A similar comparison holds between
the PML method and the approximation approach, while the latter is provably sample-optimal for
only a few properties. In addition, Theorem 1 shows that the PML estimator often achieves the
optimal sample complexity up to a small constant factor, which is a desired estimator attribute shared
by some, but not all approximation-based estimators [45, 59, 75, 76].

In term of the method and proof technique, Theorem 1 is closest to Acharya et al. [4]. On the other
hand, [4] establishes the optimality of PML for only four properties, while our result covers a much
broader property class. In addition, both the above mentioned “small constant factor” attribute, and
the confidence boost from 2/3 to 1− exp(−4

√
n) are unique contributions of this work. The PML

plug-in approach is also close in flavor to the plug-in estimators in Valiant and Valiant [69, 72]
and their refinement in Han et al. [38]. On the other hand, as pointed out previously, these plug-in
estimators are provably sample-optimal for only a few properties. More specifically, for estimating H ,
S̃, and C̃m, the plug-in estimators in [69, 72] achieve sub-optimal sample complexities with regard to
the desired accuracy ε; and the estimation guarantee in [38] is provided in terms of the approximation
errors of Õ(

√
n) polynomials that are not directly related to the optimal sample complexities.
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3.3 Rényi entropy estimation

Motivated by the wide applications of Rényi entropy, heuristic estimators were proposed and studied
in the physics literature following [36], and asymptotically consistent estimators were presented and
analyzed in the statistical learning literature [46, 78]. For the special case of 1-Rényi (or Shannon)
entropy, the works of [69, 70] determined the sample complexity to be nf (ε) = Θ(k/(ε log k)).

For general α-Rényi entropy, the best-known results in Acharya et al. [5] state that for integer and non-
integer α values, the corresponding sample complexities nf (ε, δ) are Oα(k1−1/α log(1/δ)/ε2) and
Oα(kmin{1/α,1} log(1/δ)/(ε1/α log k)), respectively. The upper bounds for integer α are achieved
by an estimator that corrects the bias of the empirical plug-in estimator. To achieve the upper
bounds for non-integer α values, one needs to compute some best polynomial approximation of zα,
whose degree and domain both depend on n, and construct a more involved estimator using the
approximation approach [45, 75] mentioned in Section 3.1.

3.4 Comparison II: Theorem 2 to 4 and related Rényi-entropy-estimation work

Our result shows that a single PML estimate suffices to estimate the Rényi entropy of different
orders α. Such adaptiveness to the order parameter is a significant advantage of PML over existing
methods. For example, by Theorem 3 and the union bound, one can use a single APML or PML
to accurately approximate exponentially many non-integer order Rényi entropy values, yet still
maintains an overall confidence of 1− exp(−k0.9). By comparison, the estimation heuristic in [5]
requires different polynomial-based estimators for different α values. In particular, to construct each
estimator, one needs to compute some best polynomial approximation of zα, which is not known to
admit a closed-form formula for α 6∈ Z. Furthermore, even for a single α and with a sample size

√
k

times larger, such estimator is not known to achieve the same level of confidence as PML or APML.

As for the theoretical guarantees, the sample-complexity upper bounds in both Theorem 2 and 3
are better than those mentioned in the previous section. More specifically, for any α ∈ (3/4, 1) and
δ ≥ exp(−k−0.5), Theorem 2 shows that nf (ε, δ) = Oα(k1/α/(ε1/α log k)). Analogously, for any
non-integer α > 1 and δ ≥ exp(−k−0.9), Theorem 3 shows that nf (ε, δ) = Oα(k/(ε1/α log k)).
Both bounds are better than the best currently known by a log(1/δ) factor.

3.5 (Sorted) distribution estimation

Estimating large-alphabet distributions from their samples is a fundamental statistical learning tenet.
Over the past few decades, distribution estimation has found numerous applications, ranging from
natural language modeling [21] to biological research [8], and has been studied extensively. Under
the classical `1 and KL losses, existing research [13, 47] showed that the corresponding sample
complexities n(ε) are Θ(k/ε2) and Θ(k/ε), respectively. Several recent works have investigated
the analogous formulation under sorted `1 distance, and revealed a lower sample complexity of
n(ε) = Θ(k/(ε2 log k)). Specifically, under certain conditions, Valiant and Valiant [72], Han et al.
[38] derived sample-optimal estimators using linear programming, and Acharya et al. [2], Das. [25]
showed that PML achieves a sub-optimal O(k/(ε2.1 log k)) sample complexity for relatively large ε.

3.6 Comparison III: Theorem 5 and related distribution-estimation work

We compare our results with existing ones from three different perspectives.

Applicable parameter ranges: As shown by [38], for ε� n−1/3, the simple empirical estimator
is already sample-optimal. Hence we consider the parammeter range ε = Ω(n−1/3). For the
results in [2, 25] and [72] to hold, we would need ε to be at least Ω(1/

√
log n). On the other hand,

Theorem 5 shows that PML and APML are sample-optimal for ε larger than n−Θ(1). Here, the gap is
exponentially large. The result in [38] applies to the whole range ε = Ω(n−1/3), which is larger than
the applicable range of our results.

Time complexity: Both the APML and the estimator in [72] are near-linear-time computable in the
sample sizes, while the estimator in [38] would require polynomial time to be computed.

Statistical confidence: The PML and APML achieve the desired accuracy with an error probability
at most exp(−Ω(

√
n)). On the contrary, the estimator in [38] is known to achieve an error probability
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that decreases only as O(n−3). The gap is again exponentially large. The estimator in [72] admits a
better error probability bound of exp(−n0.02), which is still far from ours.

3.7 Identity testing

Initiated by the work of [33], identity testing is arguably one of the most important and widely-studied
problem in distribution property testing. Over the past two decades, a sequence of works [3, 11, 26–
28, 33, 61, 68] have addressed the sample complexity of this problem and proposed testers with a
variety of guarantees. In particular, applying a coincidence-based tester, Paninski [61] determined
the sample complexity of uniformity testing up to constant factors; utilizing a variant of the Pearson
chi-squared statistic, Valiant and Valiant [68] resolved the general identity testing problem. For an
overview of related results, we refer interested readers to [15] and [32]. The contribution of this work
is mainly showing that PML, is a unified sample-optimal approach for several related problems, and
as shown in Theorem 6, also provides a near-optimal tester for this important testing problem.

4 Experiments and distribution estimation under `1 distance

A number of different approaches have been taken to computing the PML and its approximations.
Among the existing works, Acharya et al. [1] considered exact algebraic computation, Orlitsky et al.
[57, 58] designed an EM algorithm with MCMC acceleration, Vontobel [73, 74] proposed a Bethe
approximation heuristic, Anevski et al. [7] introduced a sieved PML estimator and a stochastic approx-
imation of the associated EM algorithm, and Pavlichin et al. [62] derived a dynamic programming
approach. Notably and recently, for a sample size n, Charikar et al. [20] constructed an explicit
exp(−O(n2/3 log3 n))-approximate PML whose computation time is near-linear in n.

In Section 4 of the supplementary material, we introduce a variant of the MCMC-EM algorithm in [60]
and demonstrate the exceptional efficacy of PML on a variety of learning tasks through experiments.
In particular, we derive a new distribution estimator for (unsorted) `1 distance by combining the
proposed PML computation algorithm with the denoising procedure in [71] and a novel missing mass
estimator. As shown below, the proposed distribution estimator has the state-of-the-art performance.

Figure 2: Distribution estimation under `1 distance

In Figures 2, samples are generated according to six distributions of the same support size k = 5,000.
Details about these distributions can be found in Section 4.2 of the supplementary material. The
sample size n (horizontal axis) ranges from 10,000 to 100,000, and the vertical axis reflects the
(unsorted) `1 distance between the true distribution and the estimates, averaged over 30 independent
trials. We compare our estimator with three different ones: the improved Good-Turing estimator
in [56, 41], which is provably instance-by-instance near-optimal [56], the empirical estimator, serving
as a baseline, and the empirical estimator with a larger n log n sample size. Note that log n is
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roughly 11. As shown in [56], the improved Good-Turing estimator substantially outperformed
other estimators such as the Laplace (add-1) estimator, the Braess-Sauer estimator [13], and the
Krichevsky-Trofimov estimator [48]. Hence we do not include those estimators here. The following
plots showed that our proposed estimator further outperformed the improved Good-Turing estimator
in all the experiments.

5 Conclusion and future directions

We studied three fundamental problems in statistical learning: distribution estimation, property
estimation, and property testing. We established the profile maximum likelihood (PML) as the first
universally sample-optimal approach for several important learning tasks: distribution estimation
under the sorted `1 distance, additive property estimation, Rényi entropy estimation, and identity
testing. Several future directions are promising. We believe that neither the factor of 4 in the sample
size in Theorem 1, nor the lower bounds on ε in Theorem 1, 5, and 6 are necessary. In other words,
the PML approach is universally sample-optimal for these tasks in all ranges of parameters. It is
also of interest to extend the PML’s optimality to estimating symmetric properties not covered by
Theorem 1 to 4, such as generalized distance to uniformity [9, 39], the `1 distance between the
unknown distribution and the closest uniform distribution over an arbitrary subset of X .

Another important direction is competitive (or instance-optimal) property estimation. It should
be noted that all the referenced works including this paper are of the worst-case nature, namely,
designing estimators with near-optimal worst-case performances. On the contrary, practical and
natural distributions often possess simple structures, and are rarely the worst possible. To address this
discrepancy, the recent work [40, 43] took a competitive approach and constructed estimators whose
performances are adaptive to the simplicity of the underlying distributions. Specifically, for any
property in a broad class and every distribution in ∆X , the expected error of the proposed estimator
with a sample of size n/ log n is at most that of the empirical estimator with a sample of size n, pluses
a distribution-free vanishing function of n. These results not only cover S̃, C̃m, H , and D, for which
the log n-factor is optimal up to constants, but also apply to any non-symmetric additive property∑
x fx(px) where fx is 1-Lipschitz for all x ∈ X , such as the `1-distance to a given distribution.

It would be of interest to study the optimality of the PML approach under this formulation as well.
Readers interested in estimating non-symmetric properties may also find the paper [42] helpful.
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