
A Detailed proofs

A.1 Proof of Lemma 1

Assuming that the actual MDP M is in the extended MDP M
+, i.e., r̄(s, a) 2 B�(s, a) and

p(·|s, a) 2 C�(s, a) for all s 2 S, a 2 A, we have

max
s

ui(s)�min
s0

ui(s
0)  (M)

where ui(s) is the i-step optimal undiscounted value of state s.

Proof. By assumption, the actual mean rewards r̄ and transitions p are contained in the extended
MDP M

+, i.e., for any s 2 S and a 2 A, r̄(s, a) 2 B�(s, a) and p(·|s, a) 2 C�(s, a). Thus for any
policy ⇡ : S ! A in the actual MDP M , we can construct a corresponding policy ⇡

+ : S ! A+ in
the extended MDP M

+

⇡
+(s) :=

⇣
⇡(s), p(·|s,⇡(s)), r̄(s,⇡(s))

⌘
.

Following ⇡
+ in M

+ induces the same stochastic process (st, at, rt)t�0 as following ⇡ in M . In
particular they have the same expected hitting times and expected rewards. By definition ui(s) is
the value of following an optimal i-step non-stationary policy starting at s in the extended MDP
M+. For any s

0, by optimality, ui(s) must be no worse than first following ⇡
+ from s to s

0 and
then following the optimal i-step non-stationary policy from s

0 onward. Along the path from s to
s
0, we receive rewards according to �3(⇡+) = r̄ and after arriving at s0, we have missed at most
rmaxhs!s0(M+

,⇡
+)-many rewards of ui(s0) so in expectation

ui(s) � E

2

4
hs!s0 (M

+,⇡+)�1X

t=0

rt

3

5+ ui(s
0)� E[rmaxhs!s0(M

+
,⇡

+)]

= E

2

4
hs!s0 (M

+,⇡+)�1X

t=0

rt � rmax

3

5+ ui(s
0)

By definition of ⇡+, hitting time hs!s0(M,⇡) = hs!s0(M
+
,⇡

+)

= E

2

4
hs!s0 (M,⇡)�1X

t=0

rt � rmax

3

5+ ui(s
0).

Moving the terms around and we get

ui(s
0)� ui(s)  E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5 .

Since this holds for any ⇡ by optimality, we can choose one with the smallest expected hitting cost

ui(s
0)� ui(s)  min

⇡:S!A
E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5 .

Since s, s
0 are arbitrary, we can maximize over pairs of states on both sides and get

max
s0

ui(s
0)�min

s
ui(s)  max

s,s0
min

⇡:S!A
E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5 = (M).

It should be noted that even in some cases where the hitting time is infinity—in a non-communicating
MDPs for example— can still be finite and this inequality is still true! In these cases, rt = rmax
except for finitely many terms implying ⇢

⇤(M, s) = rmax.
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A.2 Proof of Theorem 2

Given an MDP M with finite maximum expected hitting cost (M) < 1 and an unsaturated optimal
average reward ⇢

⇤(M) < rmax, the maximum expected hitting cost of any PBRS-parametrized MDP
M

' is bounded by a multiplicative factor of two
1

2
(M)  (M')  2(M).

Proof. We denote the expected hitting cost between two states s, s0 as

c(s, s0) := min
⇡:S!A

E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5 .

Suppose that the pair of states (s, s0) maximizes the expected hitting cost in M which is assumed to
be finite

(M) = c(s, s0) < 1.

Furthermore, the condition that ⇢⇤(M) < rmax implies that the hitting times are finite for the
minimizing policies. This ensures that the destination state is actually hit in the stochastic process.

Considering the expected hitting cost of the reverse pair, (s0, s),
(M) = max{c(s, s0), c(s0, s)}  c(s, s0) + c(s0, s) (11)

since hitting costs are nonnegative.

With '-shaping,

c
'(s, s0) = min

⇡:S!A
E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � r
'
t

3

5

= min
⇡:S!A

E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � (rt � '(st) + '(st+1))

3

5

By telescoping sums

= min
⇡:S!A

E

2

4'(s0)� '(shs!s0 (M,⇡)) +

hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5

By definition of a finite hitting time, shs!s0 (M,⇡) = s
0

= '(s)� '(s0) + min
⇡:S!A

E

2

4
hs!s0 (M,⇡)�1X

t=0

rmax � rt

3

5

= '(s)� '(s0) + c(s, s0) (12)
and that the minimizing policy for a state pair will not change. Therefore,

(M')

By definition of MEHC
� max{c'(s, s0), c'(s0, s)}

By (12)
= max{c(s, s0) + '(s)� '(s0), c(s0, s) + '(s0)� '(s)}

The maximum is no smaller than half of the sum

� 1

2
[c(s, s0) + c(s0, s)]

By (11)

� 1

2
(M).

We obtain the other half of the inequality by observing M = (M')�'.
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