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Abstract

This supplementary document contains complete proofs of the theorems presented1

in the article “Theoretical Limits of Pipeline Parallel Optimization and Application2

to Distributed Deep Learning”.3

1 Proofs of lower bounds4

All proofs of lower bounds rely on splitting the worst-case functions of convex and non-convex5

optimization [1, 2, 3].6

Convex and smooth case Let β > 0, G a computation graph and i1, ..., i∆ ⊂ J1, nK a chain of7

non-root nodes of size ∆. Let the functions fj : Rd → R for j ∈ J1, nK be defined as8

• fi1(θ) =
(
θ, β8

[∑k
i=1(θ2i+1 − θ2i)

2 + θ2
1 − 2θ1

])
∈ Rd+19

• fi∆(θ) = θd+1 + β
8

[∑k
i=1(θ2i − θ2i−1)2 + θ2

2k+1

]
10

• fij (θ) = θ if j ∈ J1,∆− 1K11

• fj(θ) = 0 otherwise12

where k ∈ N is a parameter of the function and all functions fik in the chain {i1, ..., i∆} only depend13

on their predecessor’s output θik−1
. Intuitively, a partial sum is stored in the d+ 1 coordinate and14

updated on node i1 and i∆. By construction, the objective function is15

fG(θ) =
β

8

[
2k∑
i=1

(θi+1 − θi)2 + θ2
1 + θ2

2k+1 − 2θ1

]
. (1)

First, note that ∇fG(θ) = β
8 (Mθ − 2e1) where M =

(
M ′ 0
0 0

)
and M ′ ∈ R(2k+1)×(2k+1) is16

a tridiagonal matrix with 2 on the diagonal and −1 on the upper and lower diagonals. A simple17

calculation shows that 0 �M � 4I , and thus fG is β-smooth. The optimum of fG is obtained for18

θ∗i = 1− i
2k+2 , and19

fG(θ∗) = −β
8

(
1− 1

2k + 2

)
. (2)

Let kt = maxi |{k ∈ J1, dK : ∃θ ∈ Mi,t s.t. θk 6= 0}| be the maximum number of non-zero20

coordinates between 1 and d. Due to the form of the local functions, forward passes cannot increase21

kt. Moreover, each backward pass can only increase the number of non-zero coordinates by one: on22
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node i1 for odd number of coordinates, and on node i∆ for even number of coordinates. Hence, one23

can only increase the number of non-zero coordinates by performing a backward pass on i1, then24

a forward pass on i1, ..., i∆−1, and finally a backward pass on i∆−1, ..., i2 in order to increase the25

number of non-zero coordinates and send it to node i1. When ∆ ≥ 2, this leads to at least ∆ − 126

operations to increase kt by one, and thus27

kt ≤
⌊
t− 1

∆− 1

⌋
+ 1 ≤ 2(t− 1)

∆
+ 1. (3)

Moreover, the last upper bound of Eq. (3) also holds when ∆ = 1, as we then have kt ≤ btc. Finally,28

for all i ∈ Jkt, dK, one has θt,i = 0 and29

fG(θt) ≥ −
β

8

(
1− 1

kt + 1

)
. (4)

Choosing k = kt and noting that R2 = ‖θ0 − θ∗‖2 = ‖θ∗‖2 ≤ 2(k+1)
3 directly implies30

fG(θt)− fG(θ∗) ≥ β

16(kt + 1)
≥ 3βR2

32
(

2(t−1)
∆ + 2

)2 . (5)

Non-convex and smooth case Let β > 0, G a computation graph and i1, ..., i∆ ⊂ J1, nK a chain31

of non-root nodes of size ∆. Let the functions fj : Rd → R for j ∈ J1, nK be defined as32

• fi1(θ) =
(
θ,−Ψ(1)Φ(θ1) +

∑k
i=1 Ψ(−θ2i)Φ(−θ2i+1)−Ψ(θ2i)Φ(θ2i+1)

)
∈ Rd+133

• fi∆(θ) = θd+1 +
∑k
i=1 Ψ(−θ2i−1)Φ(−θ2i)−Ψ(θ2i−1)Φ(θ2i)34

• fij (θ) = θ if j ∈ J1,∆− 1K35

• fj(θ) = 0 otherwise36

where k ∈ N is a parameter of the function, Ψ(x) = 1{x > 1/2} exp
(
1− (2x− 1)−2

)
,37

Φ(x) =
√
e
∫ x
−∞ exp(−t2/2)dt, and all functions fik in the chain {i1, ..., i∆} only depend on38

their predecessor’s output θik−1
. By construction, the objective function is39

fG(θ) = −Ψ(1)Φ(θ1) +

2k∑
i=1

Ψ(−θi)Φ(−θi+1)−Ψ(θi)Φ(θi+1) . (6)

This function was used in [3] to prove lower bounds on the convergence rate of non-convex smooth40

optimization. Moreover, similarly to the convex case, the number of non-zero coordinates can only41

increase when performing a backward pass on i1 (for odd number of coordinates) and i∆ (for even42

number of coordinates). Hence, using [3, Theorem 1] and Eq. (3), we have that, for any black-box43

optimization procedure, the time to reach a precision ε > 0 is lower bounded by44

Tε ≥ 1 +
∆

2
(kt − 1) ≥ 1 +

∆

2

(
βD

cε2
− 1

)
, (7)

where c is a constant and D = fG(θ0)−minθ fG(θ) is the initial distance to optimum in function45

value.46

Convex and non-smooth case Let L > 0, G a computation graph and i1, ..., i∆ ⊂ J1, nK a chain47

of non-root nodes of size ∆. Let the functions fj : Rd → R for j ∈ J1, nK be defined as48

• fi1(θ) =
(
θ, γ

∑k
i=1 |θ2i − θ2i−1|+ δmaxi∈{2k+2,...,2k+1+l} θi

)
∈ Rd+149

• fi∆(θ) = θd+1 + γ
∑k
i=1 |θ2i+1 − θ2i| − βθ1 + α

2 ‖θ‖
2
250

• fij (θ) = θ if j ∈ J1,∆− 1K51

• fj(θ) = 0 otherwise52
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where γ, δ, β, α > 0 and k, l ≥ 0 are parameters of the function satisfying 2k + l < d. The objective53

function is thus54

fG(θ) = γ

2k∑
i=1

|θi+1 − θi| − βθ1 + δ max
i∈{2k+2,...,2k+1+l}

θi +
α

2
‖θ‖22 . (8)

This is the function used in [4, Theorem 2] to prove non-smooth convex lower bounds for distributed55

optimization, and the proof is identical by replacing kt the number of non-zero coordinates at time t56

by its correct value given in Eq. (3). Thus, we have, for t < min{l, k∆},57

fG(θt)− fG(θ∗) ≥ 1

2αn

[
γ2

2k
+
δ2

l

]
. (9)

Setting β = γ(1 + 1√
2k

), δ = L
9 , γ = L

9
√
k

, l = btc+ 1, and k =
⌊
t
∆

⌋
+ 1 leads to t < min{l, k∆}58

and59

fG(θt)− fG(θ∗) ≥ RL

36

√
1

(1 + t
∆ )2

+
1

1 + t
, (10)

while fG is L-Lipschitz and ‖θ∗‖2 ≤ R. Inverting this inequality leads to the desired bound on the60

time to reach a fixed precision.61

2 Proofs of PPRS convergence rates62

The PPRS algorithm uses Nesterov’s accelerated gradient descent on the L/γ-smooth function fγG.63

In order to use a single algorithm for both convex and non-convex settings, we did not use the off-the-64

shelf random smoothing algorithm of [5] that is specifically tailored to convex settings. Moreover,65

the simplicity, wide use and good performances of accelerated gradient descent in the deep learning66

community makes it a good candidate for real practical scenarios.67

Convex case To prove the convergence of PPRS for convex objective functions, we a convergence68

result for accelerated gradient descent in the presence of noise on the gradient.69

Lemma 1. Let f : Rd → R be a β-smooth convex function and gt a stochastic gradient of f such that70

E [gt] = ∇f(xt) and var(gt) ≤ σ2. Then, Nesterov’s accelerated gradient descent with η = 1/β71

and µt = λt−1
λt+1

, where λ0 = 0 and λt =
1+
√

1+4λ2
t−1

2 , leads to an approximation error72

f(yt)− f(x∗) ≤ 2β‖x0 − x∗‖2

(t+ 1)2
+

(t+ 1)σ2

2β
, (11)

where x∗ is a minimizer of the objective function f .73

Proof. This is a direct extension of the proof of [2, Theorem 3.19] to the case of stochastic gradients.74

75

Applying Lemma 1 to the optimization of fγG leads to an approximation76

fG(θT )− fG(θ∗) ≤ 2LR2

γ(T + 1)2
+

(T + 1)σ2γ

2L
+ Lγ

√
d, (12)

where θ∗ is a minmizer of fG. Finally, since σ ≤ L/
√
K, choosing γ = Rd−1/4

T+1 and K =77 ⌈
(T + 1)/

√
d
⌉

leads to, after T iterations,78

fG(θT )− fG(θ∗) ≤ 3LRd1/4

T + 1
+
LRd−1/4

2K
≤ 7

2
· LRd

1/4

T + 1
. (13)

Since, each iteration takes a time 2(K −∆ + 1), we thus reach a precision ε in time79

2T (K + ∆− 1) ≤ 2T (T + 1)√
d

+ 2T∆ ≤ 49

2

(
LR

ε

)2

+
7LR

ε
∆d1/4 . (14)
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Non-convex case First, we use a convergence rate of gradient decent in the presence of additive80

noise.81

Lemma 2. Let f : Rd → R be convex and β-smooth, and gt be a noisy gradient of f , i.e. E [gt] =82

∇f(θt) and var(gt) ≤ σ2. Then, gradient descent with η = 1/β leads to83

min
t≤T
‖∇f(θt)‖2 ≤

2β(f(θ0)− f(θ∗))

T
+ σ2 . (15)

Proof. Using the smoothness, of f , we have84

f(θt+1) ≤ f(θt) +∇f(θt)
>(θt+1 − θt) + β

2 ‖θt+1 − θt‖2
≤ f(θt)− 1

2β ‖∇f(θt)‖2 + 1
2βσ

2 ,
(16)

and thus85

‖∇f(θt)‖2 ≤ 2β(f(θt)− f(θt+1)) + σ2 . (17)
Summing over all times t ≤ T gives86

min
t≤T
‖∇f(θt)‖2 ≤

1

T

∑
t≤T

‖∇f(θt)‖2 ≤
2β(f(θ0)− f(θ∗))

T
+ σ2 . (18)

87

Applying Lemma 2 to the minimization of fγG gives88

min
t≤T
‖∇fγG(θt)‖2 ≤

2L(fG(θ0)− fG(θ∗) + 2γL
√
d)

γT
+
L2

K
. (19)

Finally, we use a tail bound for the norm of Gaussian random variables and the fact that, by definition89

of ∂̄rfG(θt), we have that90

v = E
[
∇fG(θt + γX | ‖X‖ ≤ a

√
d
]
∈ ∂̄a√dγfG(θt) , (20)

where a ≥ 1. More specifically, we have91

‖∇fγG(θt)‖ ≥ (1− pa)‖v‖ − paL , (21)

where pa = P
(
‖X‖ > a

√
d
)
≤ (a2e1−a2

)d/2 ≤ (2e)d/2e−da
2/4 using Chernoff’s bound on a92

Chi-square random variable. The result then follows by inverting Eq. (21) and replacing ‖∇fγG(θt)‖93

by its upper bounds94

‖v‖ ≤ 1

1− pa

paL+

√
2L(fG(θ0)− fG(θ∗) + 2γL

√
d)

γT
+
L2

K

 , (22)

and choosing γ = r√
4 log(3L/ε)+2 log(2e)d

, K = 18L2

ε2 and T = 36L(D+2γL
√
d)

γε2 gives ‖v‖ ≤ ε, which95

implies that96

Tr,ε ≤ 2T (K + ∆− 1) = O

(
DL

rε2

(
L2

ε2
+ ∆

)√
d+ log

(
L

ε

))
. (23)

References97

[1] Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Kluwer Academic98

Publishers, 2004.99

[2] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in100

Machine Learning, 8(3-4):231–357, 2015.101

4



[3] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower Bounds for Finding102

Stationary Points I. arXiv e-prints, 2017.103

[4] Kevin Scaman, Francis Bach, Sebastien Bubeck, Laurent Massoulié, and Yin Tat Lee. Opti-104

mal algorithms for non-smooth distributed optimization in networks. In Advances in Neural105

Information Processing Systems 31, pages 2740–2749. 2018.106

[5] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for stochastic107

optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.108

5


	Proofs of lower bounds
	Proofs of PPRS convergence rates

