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Abstract

We study the problem of how to repeatedly sell to a buyer running a no-regret,1

mean-based algorithm. Previous work [Braverman et al., 2018] shows that it is2

possible to design effective mechanisms in such a setting that extract almost all3

of the economic surplus, but these mechanisms require the buyer’s values each4

round to be drawn independently and identically from a fixed distribution. In this5

work, we do away with this assumption and consider the prior-free setting where6

the buyer’s value each round is chosen adversarially (possibly adaptively).7

We show that even in this prior-free setting, it is possible to extract a (1 − ε)-8

approximation of the full economic surplus for any ε > 0. The number of options9

offered to a buyer in any round scales independently of the number of rounds T10

and polynomially in ε. We show that this is optimal up to a polynomial factor;11

any mechanism achieving this approximation factor, even when values are drawn12

stochastically, requires at least Ω(1/ε) options. Finally, we examine what is13

possible when we constrain our mechanism to a natural auction format where14

overbidding is dominated. Braverman et al. [2018] show that even when values are15

drawn from a known stochastic distribution supported on [1/H, 1], it is impossible16

in general to extract more than O(log logH/ logH) of the economic surplus. We17

show how to achieve the same approximation factor in the prior-independent setting18

(where the distribution is unknown to the seller), and an approximation factor of19

O(1/ logH) in the prior-free setting (where the values are chosen adversarially).20

1 Introduction21

Revenue optimal auction design in settings where a seller interacts repeatedly with a buyer (like in22

the sale of Internet ads) is a problem of high commercial relevance. The promise of dynamic auctions,23

that allow the linking of buyers’ decisions across time, is the significantly higher revenue they can24

achieve over running independent/decoupled auctions across time. The technical challenges that25

dynamic auctions introduce, along with their practical impact has inspired a lot of recent work in this26

area [Papadimitriou et al., 2016, Ashlagi et al., 2016, Mirrokni et al., 2018].27

Traditionally, almost all work in dynamic mechanism design operates in the regime where the28

players’ types (e.g. bidders’ values) are drawn stochastically from a fixed distribution. In many29

situations this is far from a realistic assumption – for example, if the values of a buyer are modelled30

as a distribution, this underlying distribution likely drifts over time and is also subject to shocks31

determined by uncontrolled exogenous events. But this assumption is also in many ways critical: in a32

dynamic mechanism in an adversarial setting, a fully rational buyer (who cares about the effect of his33

current action on his future utility) would be unable to compute his future utility at any point of time34

in the game and thus unable to meaningfully best-respond.35
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On the other hand, auctions for digital ads have become increasingly more complex over time. The36

design space of dynamic auctions, in which a buyer bids on many items over the course of many37

rounds, is very rich and has room for exceedingly complex auctions. A bidder may have difficulty38

behaving fully rationally in such an auction: the bidder may not have accurate priors for bidders,39

the bidder may not completely understand the mechanism, and finding an equilibrium might be40

computationally hard. Instead of acting fully rationally, a bidder might instead choose to try to learn41

how to bid over time, for example by using a no-regret learning algorithm. Recently, several streams42

of work (e.g. Agrawal et al. [2018], Braverman et al. [2018]) have explored the problem of how43

to design dynamic auctions for such bidders. In all cases these works assume, as is standard, that44

bidders’ values are stochastically generated.45

However, one intriguing feature of modelling a bidder as a learning agent is that it no longer restricts46

us to the stochastic setting – the actions taken by a learning algorithm are perfectly well-defined in47

(and ostensibly even designed for) the prior-free setting where values are drawn adversarially. This48

opens a wealth of questions of how to robustly design dynamic mechanisms that perform well in the49

worst-case against some class of learning agents. In this paper, we explore this question for one of the50

simplest problems in dynamic mechanism design: repeatedly selling a single item to a single buyer51

for T rounds.52

We build off the setting of [Braverman et al., 2018], where they model the buyer as a learner running53

a mean-based low-regret algorithm. Intuitively, mean-based algorithms prefer to select actions that54

have performed historically well on average (it can be shown that many classic learning algorithms,55

like EXP3, Multiplicative Weights, and Follow-the-Perturbed-Leader, are all mean-based low-regret56

algorithms). In [Braverman et al., 2018], the authors show that surprisingly, when the buyer’s values57

vt ∈ [0, 1] are drawn from a fixed distribution, it is possible to design a simple mechanism that obtains58

almost the full economic surplus (i.e., Val = E[
∑
t vt]) as revenue. Their mechanism, however, relies59

crucially on the fact that the buyer’s values are drawn from the same distribution every round. In60

particular, it is straightforward to verify that there exist sequences of values for the buyer that result61

in this mechanism receiving asymptotically zero total revenue.62

In this paper we design mechanisms for this problem in the prior-free setting, when the buyer’s values63

vt ∈ [0, 1] are chosen adversarially (possibly adaptively). In the course of doing this, we aim to64

minimize the complexity of our mechanisms, measured in terms of the number of distinct options (i.e.65

“bids”) the mechanism presents to the bidder in any round. We call this quantity the option-complexity66

of the mechanism. Note that in mechanisms with high option-complexity it becomes harder to learn67

how to bid. If the option-complexity of the mechanism begins to scale with the number of rounds T ,68

this may even nullify any sort of low-regret or mean-based guarantee the learning algorithm has (it69

may not even be possible to explore all potential options).70

Upper bound in the adversarial setting: We design a non-adaptive (i.e., does not use histor-71

ical bids/allocation/prices) option-based mechanism that yields a revenue of Val − O(εT ) with72

O
(

ln(1/ε)
ε3

)
options, where the instance (v1, · · · , vT ) is chosen by a (possibly adaptive) adversary73

and Val is the total economic surplus defined by Val =
∑T
t=1 vt.74

Lower bound in the stochastic (and hence adversarial) setting: We show that even if values are75

drawn from an unknown stochastic distribution (i.e. in every round the buyer’s value was drawn76

independently from some distribution D), any non-adaptive option-based mechanism needs to offer77

at least Ω(1/ε) options to attain a Val−O(εT ) revenue. This implies the option-complexity of our78

algorithm is tight up to a polynomial factor in 1/ε.79

Upper bound in the stochastic setting with unknown distribution via critical mechanisms: Fi-80

nally, although our mechanisms have relatively low option-complexity, they can still appear unnatural81

and complex. We examine what is possible by further restricting our mechanisms to critical mecha-82

nisms [Braverman et al., 2018], by imposing the desiderata of individual rationality, monotonicity of83

price and allocation in bid, and overbidding being dominated (see Section 2). Braverman et al. [2018]84

show that the seller can use a critical mechanism to extract a good revenue but not all of surplus,85

in particular showing the seller can always guarantee revenue equal to an O( log logH
logH ) fraction of86

total economic surplus when buyer values lie in the interval [ 1
H , 1], and that this competitive ratio87

is tight. This critical mechanism requires full knowledge of the value distribution D. We design a88
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critical mechanism that achieves this same approximation factor, but in a prior-independent setting89

where the distribution D is unknown. In addition, we show that it is possible to achieve a slightly90

worse competitive ratio of O( 1
logH ) in the prior-free (adversarial values) setting by adapting existing91

prior-free mechanisms for the single-shot instance of this problem.92

We emphasize that all the mechanisms we present are non-adaptive (i.e. allocation and payment rules93

at all times are fixed starting at the beginning of the protocol, and are not functions of the historical94

bids/allocations/payments) as in [Braverman et al., 2018].95

1.1 Related Work96

Our work is closely related to the dynamic mechanism design literature, such as [Balseiro et al.,97

2017, Liu and Psomas, 2017, Agrawal et al., 2018, Mirrokni et al., 2018, Balseiro et al., 2019],98

which studies how to sell items online to a fixed set of buyers, whose valuations are drawn from99

some distributions. However, the buyers are fully strategic such that their bidding strategies aim to100

maximize their accumulative utility throughout the auction. In contrast to these works, we model the101

buyers are running no-regret algorithms.102

No-regret algorithms were first introduced in the context of the multi-armed bandit problem and have103

been widely studied (see Bubeck et al. [2012] for a survey). Applications of low-regret learning104

to algorithmic game theory are widespread (e.g. [Roughgarden, 2012, Syrgkanis and Tardos,105

2013, Nekipelov et al., 2015, Daskalakis and Syrgkanis, 2016]). Most applications to dynamic106

auction design are from the perspective of seller attempting to learn the optimal auction [Cole and107

Roughgarden, 2014, Devanur et al., 2016, Morgenstern and Roughgarden, 2015, 2016, Gonczarowski108

and Nisan, 2017, Cai and Daskalakis, 2017, Dudík et al., 2017] but some recent papers have studied109

the problem of applying learning algorithms to the problem of learning how to bid Feng et al. [2018],110

Balseiro et al. [2018].111

As pointed out in a seminal empirical work [Nekipelov et al., 2015], bidders’ behavior on Bing is112

largely consistent with a no-regret learning algorithm, which motivates a question of designing a113

dynamic mechanism against such a no-regret learning behavior. Braverman et al. [2018] initiated the114

study of mechanism design against a no-regret buyer when the buyer’s valuations are drawn from a115

fixed and known distribution. In contrast to their works, we design mechanisms against a no-regret116

buyer in a prior-free / prior-independent setting.117

2 Model and Preliminaries118

Our setting is similar to the setting considered in [Braverman et al., 2018]: we consider a multiple119

round auction where every round a seller attempts to sell an item to a buyer running a low-regret (in120

fact, mean-based) algorithm to learn how to bid.121

Specifically, we consider a T -round auction with one buyer and one seller. In each round t, there is122

one item for sale. At the beginning of this round, the buyer learns his private valuation vt ∈ V ⊆ [0, 1]123

for this item. These valuations vt can be generated in one of two ways: (1) Adversarial, where vt is124

chosen arbitrarily by a (possibly adaptive) adversary; and (2) Stochastic, where vt is independently125

drawn from some distribution D. This distribution D may either be known to the seller or not and we126

will mostly consider the case where D is unknown to the seller (i.e., the prior-independent setting).127

For simplicity, we assume the values vt belong to a finite set V . This is solely for the purpose of128

providing a finite number of different contexts to the buyer’s learning algorithm and otherwise does129

not affect our mechanism at all.130

To measure the performance of our mechanisms, we compare the revenue extracted from the mecha-131

nism to the welfare, the total value the buyer assigns to all the items.132

Definition 1. The welfare Val(v1, · · · , vT ) is equal to
∑T
t=1 vt.133

The welfare clearly provides an upper bound on the revenue of our mechanisms. In cases where vt is134

drawn from some distributionD, we will write Val(D) = Ex∼D[x] ·T to denote the expected welfare135

under this distribution.136
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2.1 Mechanism format137

Since the buyer is running a learning algorithm, it is especially important to specify the manner of138

interaction between the buyer and the seller. We consider two classes of mechanisms for the seller:139

option-based mechanisms, and critical mechanisms.140

In a option-based mechanism, the seller offers the buyer K options (labeled 1 through K) each round.141

If the buyer selects choice i at time t, the buyer receives the item with probability ai,t and pays a price142

pi,t. A natural measure of complexity for such mechanisms is the number of options K presented to143

the buyer, which we refer to as the option-complexity of the mechanism. Limiting this complexity is144

especially important when interacting with learning agents, as they require some time to explore each145

option (indeed, as K approaches T , the low regret guarantees of the learning algorithms we consider146

become vacuous).147

Critical mechanisms [Braverman et al., 2018] are a subset of option-based mechanisms that are148

reasonable. In a critical mechanism, the buyer interacts with the mechanism each round by submitting149

a bid b. The buyer then receives the item with probability at(b) and pays a price pt(b). These150

allocation/payment rules should satisfy the following properties:151

• Individual rationality: pt(b) satisfies pt(b) ≤ b · at(b), i.e. a bidder should never be charged152

more than their bid in expectation.153

• Monotonicity: pt(b) and at(b) are weakly increasing in b, i.e., submitting a higher bid should154

never decrease the winning probability or the payment.155

• Overbidding is dominated: If the bidder’s value is v, it should never be in their interest to156

submit a bid b > v, i.e. if b > v then v · at(v)− pt(v) > v · at(b)− pt(b) for all t.157

In both option-based mechanisms and critical mechanisms, we assume that the seller is completely158

non-adaptive and sets the allocation / payment functions at the beginning of the protocol.159

2.2 No-regret learner160

In contrast to a utility-maximizing buyer, we consider a buyer who follows some no-regret strategy161

for the multi-armed bandit problem. In a classic multi-armed bandit problem with T rounds, the162

learner (in our setting, the buyer) selects one of K options (‘arms’) on round t and receives a reward163

ri,t ∈ [0, 1] if he selects option i. The rewards can be chosen adversarially and the learner’s objective164

is to maximize his total reward.165

Let it be the arm pulled by the learner at round t. The regret for a (possibly randomized) strategy166

A is defined as the difference between performance of the strategy A and the best arm: Reg(A) =167

maxi
∑T
t=1 ri,t − rit,t. A strategy A for the multi-armed bandit problem is no-regret if the expected168

regret is sub-linear in T , i.e., E[Reg(A)] = o(T ). In addition to the bandits setting in which the169

learner only learns the reward of the arm he pulls, our results also apply to the experts setting in170

which the learner can learn the rewards of all arms for every round. In our setting, the buyer learns171

ai,t and pi,t, allowing him to compute the reward as ri,t = ai,t · vt − pi,t. Moreover, the buyer has172

the additional information of her value vt, and thus is in fact facing a contextual bandit problem.173

Contextual Bandits In a contextual bandit problem, the learner is additionally provided a context174

ct from a finite set C. The reward of pulling arm i under context c on round t is now given by ri,t(c).175

In the experts setting, the learner can obtain the values of ri,t(ct) for all arms i under context ct after176

round t, while the learner only learns ri,t(ct) for the arm i he pulls in the bandits setting.177

The notion of regret for a strategyM can be easily extended to the contextual bandit problem by178

considering the best context-specific policy π: Reg(M) = maxπ:C→[K]

∑T
t=1 rπ(ct),t(ct)−rit,t(ct).179

As before, a strategyM is no-regret if E[Reg(M)] = o(T ). When the size of the context C is a180

constant with respect to T , a no-regret strategyM for the contextual bandits can be simply constructed181

from a no-regret strategy A for the classic bandit problem: maintain a separate instance of A for182

every context c ∈ C [Bubeck et al., 2012].183

Among no-regret strategies, we are interested in a special class of mean-based strategies:184

Definition 2 (Mean-based Strategy). Let σi,t(c) =
∑t
s=1 ri,s(c) be the cumulative rewards for185

pulling arm i under context c for the first t rounds. A strategy is γ-mean-based if whenever σi,t(ct) <186
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σj,t(ct) − γT , the probability for the strategy to pull arm i on round t is at most γ. A strategy is187

mean-based if it is γ-mean-based with γ = o(1).188

Intuitively, mean-based strategies are strategies that will pick the arm that historically performs189

the best. Braverman et al. [2018] shows that many no-regret algorithms are mean-based, including190

commonly used variants of EXP3 (for the bandits setting), the Multiplicative Weights algorithm (for191

the experts setting) and the Follow-the-Perturbed-Leader algorithm (for the experts setting).192

3 Option-based Mechanisms193

In this section, we demonstrate a mechanism that can extract full welfare from a mean-based no-regret194

learner even when the values are chosen adversarially.195

3.1 Warm-up: Extracting Full Welfare for V = {1, 2}196

Consider an additive approximation target ε > 0. It is without loss of generality to consider the197

case with 2(1 − ε) > 1: when 2(1 − ε) ≤ 1, the seller can simply implement a scheme with only198

one option that always allocates the item and charges a payment 2(1− ε). We design a menu-based199

mechanism with K = d log ε
log(1−ε)e + 1 choices in addition to the null choice in which the buyer200

receives and pays nothing for the entire time horizon. For the 0-th option, the buyer receives the item201

with probability a0,t = 1 and pays a price p0,t = 2(1 − ε) for all t. As for the remaining K − 1202

options, let κi = ε
(1−ε)i−1T . We will divide the timeline of the i-th option with 1 ≤ i ≤ K into five203

sessions (see Table 1 for details).204

For convenience, let Si = (κi, κi+1]. Intuitively, the i-th option is active when t ∈ Si, which spans205

Li = κi+1−κi = ε2

(1−ε)iT rounds. Among these Li rounds, the item is always allocated to the buyer206

with probability 1 while the payment changes in a way such that: the payment for the first εLi rounds207

is 0, the payment for the last εLi rounds is 2, and the payment for the remaining rounds is 1.208

Session Start Time End Time Allocation Prob. Payment
∅1 0 κi 0 0

0 κi

(
κi + ε3

(1−ε)i

)
T 1 0

1
(
κi + ε3

(1−ε)i

)
T

(
κi+1 − ε3

(1−ε)i

)
T 1 1

2
(
κi+1 − ε3

(1−ε)i

)
T κi+1 1 2

∅2 κi+1 T 0 0
Table 1: Construction of the i-th option

Assume the buyer is running a γ-mean-based algorithm. To analyze the revenue guarantee of our209

mechanism, we consider an arbitrary sequence of valuations (v1, · · · , vT ) and Val =
∑
t vt. The210

high level idea behind this construction is that for the high valuations, i.e, vt = 2, the utility σi,t(2)211

does keep increasing as t increases for the high option (i = 0) while for the low options (i > 0),212

it only increases within the active period Si. Therefore, with sufficiently large t, one could expect213

that σ0,t(2) > σi,t(2) for all i > 0. As for vt = 1, the buyer does not play the high option since its214

payment is too high and we argue that the buyer will play the i-th option if t ∈ Si.215

High valuation Assume that vt = 2. First notice that the cumulative utility for playing the 0-th216

option is σ0,t(2) = εt · 2. Suppose t ∈ Si∗ for some i∗. For i < i∗, the active period of the i-th217

option with i < i∗ is already past and the cumulative utility for playing the i-th option is at most218

σi,t(2) ≤ Li · 2 =
ε2

(1− ε)i
T · 2 ≤ ε2

(1− ε)i∗−1
T · 2 = ε · κi∗ · 2 = σ0,t(2)− ε · (t− κi∗) · 2

As for the i∗-th option, we have σi∗,t(2) ≤ (t− κi∗) · 2 = σ0,t(2)− (κi∗ − (1− ε)t) · 2.219

Moreover, for any i-th option with i > i∗, we simply have σi,t(2) = 0. Therefore, the buyer220

with valuation vt = 2 for t ∈ Si∗ will play the 0-th option with probability at least 1 − Kγ221
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when εt · 2 > γT , ε · (t− κi∗) · 2 > γT , and (κi∗ − (1− ε)t) · 2 > γT , which implies that222

κi∗ + γ
2ε · T < t < κi∗+1 − γ

2(1−ε) · T . Therefore, for each time period Si with 1 ≤ i ≤ K, there223

are at least Li −
(
γ
2ε + γ

2(1−ε)

)
T rounds where the buyer has probability at least 1−Kγ to play224

the 0-th option, which contributes 2(1− ε) revenue per round. Therefore, the expected revenue loss225

from time period Si is at most226

2ε · Li +

(
γ

2ε
+

γ

2(1− ε)

)
T · 2 +Kγ · Li · 2

where 2ε · Li is the revenue loss of charging 2(1− ε) and Kγ · Li · 2 is the expected revenue loss227

from playing an option other than the 0-th option. Thus, the total expected revenue loss from the228

rounds when vt = 2 is at most229

(εT ) · 2 +
∑
i

[
2ε · Li +

(
γ

2ε
+

γ

2(1− ε)

)
T · 2 +Kγ · Li · 2

]
= O(εT )

where (εT ) · 2 is the revenue loss from the first εT rounds.230

Low valuation Assume that vt = 1. First notice that after the first εT rounds, the cumulative utility231

for playing the 0-th option is σ0,t(1) = (1 − 2(1 − ε))t = −Ω(T ). Since there is a null arm that232

provides cumulative utility 0, the buyer’s probability of playing the 0-th option is at most γ.233

Suppose t ∈ Si∗ for some i∗. From our construction of the i-th option for any i 6= i∗, the buyer’s234

cumulative utility of playing the i-th option is exactly 0: the buyer’s utility gain is 0 in from session235

∅1, ∅2, and 1, while her utility gain from session 0 is exactly cancelled out with his utility loss from236

session 2. As for the i∗-th option, we have237

σi∗,t(1) =


t− κi for t in session 0

ε3

(1−ε)i∗ T for t in session 1

κi+1 − t for t in session 2

Therefore, once κi + γT < t < κi+1 − γT , the buyer with vt = 1 will play the i∗-th option with238

probability 1−Kγ. Therefore, the expected revenue loss within the time period Si is 2γT +Kγ ·Li,239

where Kγ · Li is the expected revenue loss from playing an option other than the i∗-th option. Thus,240

the total revenue loss from the rounds with vt = 1 is at most εT +
∑K
i=1Kγ · Li = O(εT ) where241

εT is the revenue loss from the first εT rounds.242

3.2 Extracting Full Welfare for V = {1, · · · , H}243

We provide an option-based mechanism withK = H ·d 3H
2

ε e options that achieves an additive revenue244

lossO(lnH ·εT ) for V = {1, · · · , H}. As usual, we assume that there is always a null choice in which245

the buyer receives and pays nothing for the entire time horizon. For convenience, letGi =
∑i
τ=1

1
τ be246

the sum of the harmonic series up to i and α = 1− 1
3H . Moreover, κi,j = (GH+2α)· εTH +(j−1)· εT3H2247

where i ∈ V and 1 ≤ j ≤ d 3H
2

ε e. Although κi,j only depends on j, we still use the notation κi,j for248

clarity. We will divide the timeline of the (i, j)-th option into five sessions (see Table 2).249

Session Start Time End Time Allocation Prob. Payment
init 0 α · εTH 0 i

0 α · εTH κi,j − (Gi + α) · εTH 0 0

ready κi,j − (Gi + α) · εTH κi,j 1 0
1 κi,j κi,j+1 1 i
∅ κi,j+1 T 0 H

Table 2: Construction of the (i, j)-th option

Intuitively, the (i, j)-th option starts with a init session in which it does not allocate the item but250

charges a payment i, followed by a 0 session in which the option allocates and charges nothing.251

Therefore, the buyer will not play the (i, j)-th option before its ready session. In the ready session,252
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the option allocates the item for free while in the 1 session, the option allocates the item with a253

payment i. The objective of our construction is to try to ensure that if vt = i for t ∈ (κi,j , κi,j+1],254

then the buyer will play the option (i, j), which generates revenue i.255

Assume the buyer is running a γ-mean-based algorithm. To analyze the revenue guarantee of our256

mechanisms, we consider an arbitrary sequence of valuations (v1, · · · , vT ) and Val =
∑
t vt.257

Lemma 3. If t ∈ (κi,j + γT, κi,j+1 − γT ], then for any option (i′, j′) with i′ 6= i or j′ 6= j,258

σ(i,j),t(i)− σ(i′,j′),t(i) > γT .259

Therefore, for vt = i with t ∈ (κi,j + γT, κi,j+1 − γT ], the buyer will play option (i, j) with260

probability at least 1−Kγ, which generates revenue i per round. Thus, the revenue loss is at most261

H · (GH + 2α) · εT
H

+H · 2γT ·K +Kγ ·H · T = O(lnH · εT )

where H · (GH + 2α) · εTH is the revenue loss for the first maxi κi,1 = (GH + 2α) · εTH rounds,262

H · 2γT ·K is the revenue loss for t ∈ (κi,j , κi,j + γT ] or t ∈ (κi,j+1− γT, κi,j+1], and Kγ ·H ·T263

is the revenue loss from playing an undesired option.264

Theorem 4. If the buyer with V = {1, 2, · · · , H} is running a mean-based algorithm, for any265

constant ε > 0, there exists a non-adaptive option-based mechanism with O(H
3 lnH
ε ) options for the266

seller which obtains revenue at least Val−O(εT ).267

3.3 Extracting Full Welfare for V ⊆ [0, 1]268

Let ε be parameter for the target additive revenue loss O(εT ). For ease of presentation, we will269

rescale V to [0, H] such that H = 1/ε, and thus, it suffices to show that we can obtain O(T ) loss in270

the scaled version. First notice that it suffices to consider V ⊆ [1, H] since for all valuations less than271

1, we will suffer revenue loss at most 1 from each of them.272

Lemma 5. Consider vt such that i < vt < i+ 1 and t ∈ (κi,j , κi,j+1]. Then, for any option (i′, j′)273

with i′ 6∈ {i, i+ 1} or j′ > j, max{σ(i,j),t(vt), σ(i+1,j),t(vt)} − σ(i′,j′),t(vt) > γT .274

Therefore, with probability at least 1−Kγ, the buyer satisfying the requirement of Lemma 5 will275

play either option (i, j′) or option (i+ 1, j′) with j′ ≤ j. Recall that it is in fact that κi,j = κi+1,j276

for all i. Therefore, if the buyer plays option (i+ 1, j), it will generate revenue i+ 1 since option277

(i+ 1, j) is also in its 1 session. Moreover, if the buyer plays option (i, j′) or (i+ 1, j′) with j′ < j,278

then the option is already in its ∅ session and the buyer needs to pay H .279

Thus, the revenue loss from vt is at most 1. Applying a similar argument as in Section 3.2, we can280

conclude that the expected revenue loss is O(T ). Rescale it back to V = [0, 1], we have281

Theorem 6. If the buyer with V ⊆ [0, 1] is running a mean-based algorithm, for any constant ε > 0,282

there exists a non-adaptive option-based mechanism with O( ln 1/ε
ε3 ) options for the seller which283

obtains revenue at least Val−O(εT ).284

Meanwhile, we provide a lower-bound on the option-complexity, which implies the option-complexity285

of our algorithm is tight up to a polynomial factor in 1
ε .286

Theorem 7. If the buyer with V ⊆ [0, 1] is running a mean-based algorithm, an option-based287

mechanism, which obtains expected revenue at least Val−O(εT ), must have Ω( 1
ε ) options.288

4 Critical mechanisms289

In this section we examine what the seller can accomplish when restricted to a critical mechanism.290

With option-based mechanisms, we have shown in the previous section that it is possible to extract291

arbitrarily close to the full welfare even when the buyer’s values are chosen adversarially. In contrast292

to this, Braverman et al. [2018] show that with a critical mechanism, it is impossible to achieve even293

a constant-factor approximation to the buyer’s welfare, even when the buyer’s values are drawn from294

a distribution known to the seller.295

Theorem 8 (Corollary C.13 of [Braverman et al., 2018]). LetR(D) be the maximum possible revenue296

a seller using a non-adaptive critical mechanism can achieve when the buyer’s values are drawn297
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independently each round from distribution D. Then the ratio R(D)/Val(D) can grow arbitrarily298

small. If D is supported on an interval [1, H], then this ratio can be as small as O(log logH/ logH).299

In Braverman et al. [2018], the authors also demonstrate how to construct a simple mechanism which300

achieves this maximum possible revenue (and hence this O(log logH/ logH) competitive ratio to301

the welfare), but their construction requires detailed knowledge of the distribution D.302

4.1 Values from an unknown distribution303

We show that it is possible achieve this same competitive ratio to the welfare in the prior-independent304

setting, where the seller does not know the distributionD but only a range [1, H] it is supported on. In305

our mechanism, at each time t the seller specifies a reserve price f(t), where f is a decreasing function306

with range [1, H] such that f(t) = max
(

exp
(

1
C · (1− η −

t
T )
)
, 1
)

, where η = (1 + logH)−ε307

and C = 1−η
1+logH for ε ∈ (0, 1). In each round, if the buyer bids above f(t) they receive the item308

and pay b; otherwise, they do not receive the item and pay nothing. More formally, the allocation309

and payment rules (at(b), pt(b)) are defined as follows: if b ≥ f(t), then pt(b) = b, and at(b) = 1;310

otherwise, pt(b) = at(b) = 0.311

Theorem 9. There is a non-adaptive critical mechanism for the seller which obtains expected revenue312

at least O(log logH/ logH)Val(D) from any buyer running a mean-based algorithm whose values313

are drawn independently each round from some distribution D supported on [1, H]. This mechanism314

depends only on H and not on D.315

4.2 Adversarial values316

Additionally, when the buyer’s values are drawn adversarially, we show that it is possible to achieve a317

slightly worse competitive ratio of O(1/ logH).318

This follows naturally from the known fact that it is possible to achieve the same approximation319

guarantee against a strategic buyer with value in [1, H] playing a single-round version of this game320

(see e.g. Chapter 6 of Hartline [2013]) – we simply show that if we run this mechanism every round,321

mean-based buyers will learn to bid in the same manner as strategic buyers.322

Our mechanism (equivalent to the mechanism presented in Theorem 6.5 of Hartline [2013]) is as323

follows: for each b and for all t, we set the allocation probability at(b) = (1 + log b)/(1 + logH)324

and the expected price charged to pt(b) = b/(1 + logH). Note that this mechanism can also be325

interpreted as a second-price auction where the seller draws a random reserve from the distribution326

with a cumulative density function F (r) = 1+log r
1+logH . It can be seen that for any v ∈ [1, H], the327

expected utility U(v, b) = v · at(b)− pt(b) of bidding b with value v, is maximized when b = v. A328

strategic buyer therefore will always bid their value, and pay 1/(1 + logH) of their value in total.329

Intuitively, the mean-based guarantee ensures that a mean-based buyer will (most of the time) choose330

a bid close to v, and thus it contributes a similar amount of revenue as a strategic buyer.331

Theorem 10. There is a non-adaptive critical mechanism for the seller which obtains expected332

revenue at least O(1/ logH)Val from any buyer running a mean-based algorithm whose values are333

adversarially set but lie in the interval [1, H]. This mechanism depends only on H and not on D.334

5 Conclusion335

In this work, we design mechanisms against a no-regret, mean-based buyer in prior-independent and336

prior-free setting. We show that using option-based mechanism can extract almost full welfare in a337

prior-free setting. For critical mechanisms, our mechanism in the prior-independent setting matches338

the best-known guarantee for the prior-dependent setting in the literature, and we obtain a slightly339

worse guarantee for the prior-free setting.340

A nature direction for future work is to understand what can be achieved in an environment with341

multiple learning buyers. Moreover, while both our works and [Braverman et al., 2018] focus on the342

revenue guarantee of the seller against a no-regret buyer, it is interesting to understand what kinds of343

the buyer’s learning strategy can lead to a good utility performance. Furthermore, what combinations344

of the buyer’s learning strategy and the seller’s mechanism can achieve a socially desirable outcome?345
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Appendix424

A Appendix for Option-based Mechanism425

A.1 Proof of Lemma 3426

Session σ(i,j),t(v)
init −t · i

0 −α · εTH · i
ready −α · εTH · i+

(
t− κi,j + (Gi + α) · εTH

)
· v

1 −α · εTH · i+ (Gi + α) · εTH · v + (t− κi,j) · (v − i)
∅ −α · εTH · i+ (Gi + α) · εTH · v + εT

3H2 · (v − i)− (t− κi,j+1)H
Table 3: Cumulative utility of the (i, j)-th option

Proof. Notice that for a valuation vt = i with t ∈ (κi,j , κi,j+1], its cumulative utility for playing427

option (i, j) is428

σ(i,j),t(i) = −α · εT
H
· i+ (Gi + α) · εT

H
· i+ (t− κi,j) · (i− i) = Gi ·

εT

H
· i. (1)

vt’s cumulative utility for playing option (i′, j′) with i′ < i is at most429

σ(i′,j′),t(i) ≤ −α · εT
H
· i′ + (Gi′ + α) · εT

H
· i+ (t− κi′,j′) · (i− i′)

≤ −α · εT
H
· i′ + (Gi′ + α) · εT

H
· i+

εT

3H2
· (i− i′)

= Gi′ ·
εT

H
· i+ (α+

1

3H
) · εT

H
· (i− i′)

= Gi′ ·
εT

H
· i+

εT

H
· (i− i′)

Taking the difference between σ(i′,j′),t(i) and σ(i,j),t(i), we have430

σ(i,j),t(i)− σ(i′,j′),t(i) ≥ (Gi −Gi′) ·
εT

H
· i− εT

H
· (i− i′)

=

(
i∑

τ=i′+1

i

τ

)
· εT
H
− εT

H
· (i− i′)

=

(
i− i′ +

i∑
τ=i′+1

(
i

τ
− 1)

)
· εT
H
− εT

H
· (i− i′)

=

(
i∑

τ=i′+1

(
i

τ
− 1)

)
· εT
H

> γT

In addition, vt’s cumulative utility for playing option (i′, j′) with i′ > i is at most431

σ(i′,j′),t(i) ≤ max

{
−α · εT

H
· i′ + (Gi′ + α) · εT

H
· i+ (t− κi′,j′) · (i− i′), 0

}
If the maximum is taken by 0, then it is clear that σ(i,j),t(i)− σ(i′,j′),t(i) > γT . On the other hand,432

σ(i′,j′),t(i) ≤ −α · εT
H
· i′ + (Gi′ + α) · εT

H
· i+ (t− κi′,j′) · (i− i′)

≤ −α · εT
H
· i′ + (Gi′ + α) · εT

H
· i

= Gi′ ·
εT

H
· i+ α · εT

H
· (i− i′)
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Taking the difference between σ(i′,j′),t(i) and σ(i,j),t(i), we have433

σ(i,j),t(i)− σ(i′,j′),t(i) ≥ (Gi −Gi′) ·
εT

H
· i+ α · εT

H
· (i′ − i)

=

− i′∑
τ=i+1

i

τ

 · εT
H

+ α · εT
H
· (i′ − i)

=

−(i′ − i) +

i′∑
τ=i+1

τ − i
τ

 · εT
H

+ α · εT
H
· (i′ − i)

≥
(
−(i′ − i) +

i′ − i
H

)
· εT
H

+ α · εT
H
· (i′ − i)

≥ 2

3H
· εT
H
· (i′ − i) > γT

Moreover, notice that (κi,j , κi,j+1] are disjoint intervals for a fix i. In addition, for κi,j + γT < t <434

κi,j+1 − γT , we have for any j′ < j,435

σ(i,j′),t(i) = σ(i,j′),κi,j′+1
(i)− (t− κi,j′+1)H ≤ Gi ·

εT

H
· i−H · γT

where we use the fact that σ(i,j′),κi,j′+1
(i) = Gi · εTH · i for all j′ due to (1). Similarly, for j′ > j,436

σ(i,j′),t(i) = σ(i,j′),κi,j′
(i)− (κi,j′ − t)i ≤ Gi ·

εT

H
· i− i · γT

where we use the fact that σ(i,j′),κi,j′
(i) = Gi · εTH · i for all j′ due to (1).437

A.2 Analysis for Extracting Full Welfare for V ⊆ [0, 1]438

Let ε′ be parameter for the target additive revenue loss O(ε′T ). For ease of presentation, we will439

rescale V to [0, H] such that H = 1/ε′, and thus, it suffices to show that we can obtain O(T ) loss in440

the scaled version. First notice that it suffices to consider V = [1, H] since for all valuations less than441

1, we will suffer revenue loss at most 1 from each of them.442

To extend our result to V = [1, H], consider i < vt < i + 1. Its cumulative utility of playing the443

option (i, j) with κi,j < t ≤ κi,j+1 is444

σ(i,j),t(vt) = −α · εT
H
· i+ (Gi + α) · εT

H
· vt + (t− κi,j) · (vt − i)

≥ Gi ·
εT

H
· vt + α · εT

H
· (vt − i)

= σ(i,j),t(i) + (Gi + α) · εT
H
· (vt − i)

The next lemma demonstrates that the buyer at round t with valuation i < vt < i + 1 and t ∈445

(κi,j , κi,j+1], prefers the option (i, j) over any option (i′, j′) with i′ 6∈ {i, i+ 1}.446

Lemma 11. For any option (i′, j′) with i′ 6= i, σ(i,j),t(vt)− σ(i′,j′),t(vt) > γT .447

Proof. Notice that its cumulative utility of playing the option (i′, j′) with i′ < i is at most448

σ(i′,j′),t(vt) = −α · εT
H
· i′ + (Gi′ + α) · εT

H
· vt + (t− κi′,j′) · (vt − i′)

≤ Gi′ ·
εT

H
· vt + α · εT

H
· (vt − i′) +

εT

3H2
· (vt − i′)

= Gi′ ·
εT

H
· vt +

εT

H
· (vt − i′)

= max
t
{σ(i′,j′),t(i)}+ (Gi′ + 1) · εT

H
· (vt − i)
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Taking the difference between σ(i,j),t(vt) and σ(i′,j′),t(vt) when i′ < i, we have449

σ(i,j),t(vt)− σ(i′,j′),t(vt) ≥

(
i∑

τ=i′+1

(
i

τ
− 1)

)
· εT
H

+

(
− 1

3H
+

i∑
τ=i′+1

1

τ

)
· εT
H
· (vt − i)

≥ 0 +

(
− 1

3H
+

1

i

)
· εT
H
· (vt − i) > γT

where the first inequality partly follows the difference between σ(i,j),t(i) and maxt{σ(i′,j′),t(i)}.450

Next, notice that its cumulative utility of playing the option (i′, j′) with i′ > i is at most451

σ(i′,j′),t(vt) = −α · εT
H
· i′ + (Gi′ + α) · εT

H
· vt + (t− κi′,j′) · (vt − i′)

≤ Gi′ ·
εT

H
· vt + α · εT

H
· (vt − i′)

Taking the difference between σ(i,j),t(vt) and σ(i′,j′),t(vt) when i′ > i+ 1, we have452

σ(i,j),t(vt)− σ(i′,j′),t(vt) ≥ (Gi −Gi′) ·
εT

H
· vt + α · εT

H
· (i′ − i)

≥ (Gi −Gi′) ·
εT

H
· (i+ 1) + α · εT

H
· (i′ − i)

≥

− i′∑
τ=i+1

i+ 1

τ

 · εT
H

+ α · εT
H
· (i′ − i)

=

−(i′ − i) +

i′∑
τ=i+1

τ − i− 1

τ

 · εT
H

+ α · εT
H
· (i′ − i)

≥
(
−(i′ − i) +

i′ − i− 1

i′

)
· εT
H

+ α · εT
H
· (i′ − i)

=

(
− i
′ − i
3H

− i+ 1

i′
+ 1

)
· εT
H

The minimum is obtained when i′ = i+ 2 or i′ = H . When i′ = i+ 2, we have453

− i
′ − i
3H

− i+ 1

i′
+ 1 = − 2

3H
− i+ 1

i+ 2
+ 1 =

1

i+ 2
− 2

3H
≥ 1

H
− 2

3H
> 0

while when i′ = H , we have i ≤ H − 2 and454

−H − i
3H

− i+ 1

H
+ 1 = −H + 2i+ 3

3H
+ 1 ≥ −H + 2(H − 2) + 3

3H
+ 1 =

1

3H
> 0.

455

Therefore, for i < vt < i + 1 and t ∈ (κi,j , κi,j+1], the buyer will play option (i′, j′) with456

i′ 6∈ {i, i+ 1} with probability at most γ.457

Moreover, recall that it is indeed that κi,j = κi+1,j for all i. Therefore, if the buyer plays option458

(i+ 1, j), it will generate revenue i+ 1. Moreover, if the buyer plays option (i′, j′) with j′ < j and459

i′ ∈ {i, i+ 1}, then the option is already in its ∅ session and the buyer is going to pay H . Finally, for460

any option (i′, j′) with j′ > j and i′ ∈ {i, i+ 1}, the utility of playing such an option is at most461

σ(i′,j′),t(vt) = −α · εT
H
· i′ +

(
t− κi′,j′ + (Gi′ + α) · εT

H

)
· vt

while the utility of playing the option (i′, j) is462

σ(i′,j),t(vt) = −α · εT
H
· i′ + (Gi + α) · εT

H
· vt + (t− κi′,j) · (vt − i′)
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Taking the difference, we have463

σ(i′,j),t(vt)− σ(i′,j′),t(vt) = (κi′,j′ − κi′,j) · vt + (t− κi′,j) · (vt − i′)

Therefore, when i′ = i, then σ(i′,j),t(vt)− σ(i′,j′),t(vt) is clear positive. Moreover, when i′ = i+ 1,464

we have465

σ(i+1,j),t(vt)− σ(i+1,j′),t(vt) = (κi+1,j′ − κi+1,j) · vt + (t− κi+1,j) · (vt − i− 1)

≥ (κi+1,j+1 − κi+1,j) · vt + (κi+1,j+1 − κi+1,j) · (vt − i− 1)

= (κi+1,j+1 − κi+1,j) · (2vt − i− 1)

> (κi+1,j+1 − κi+1,j) · (2i− i− 1) > γT.

Therefore, we finish showing that for i < vt < i+ 1 and t ∈ (κi,j , κi,j+1], the buyer will play option466

(i′, j′) with i′ ∈ {i, i+ 1} and j′ ≤ j with probability at least 1−Kγ. Thus, the revenue loss from467

vt is at most 1. Applying a similar argument as in Section 3.2, we can conclude that the expected468

revenue loss is O(T ).469

A.3 Proof of Theorem 7470

We first prove a lower-bound for V = {1, 2, · · · , H}.471

Lemma 12. If the buyer with V = {1, 2, · · · , H} is running a mean-based algorithm, a non-adaptive472

menu-based mechanism, which obtains expected revenue at least Val − O(εT ), must have Ω(Hε )473

options, when there exists a null option that always allocates and charges nothing. Ω(Hε ) options are474

necessary even when the values of the buyer are drawn from an unknown distribution.475

Proof. Let Ii,t(c) be a binary variable indicating whether the buyer with value vt = c plays the i-th476

option. Suppose there are K options in total and let477

Pi(c) =

T∑
t=1

Pr[Ii,t(c) = 1] · pi,t

be the expected total revenue obtained from the i-th option when the buyer’s valuations are vt = c478

for all t. Since the expected total revenue is at least Val−O(εT ), when the buyer’s valuations are479

vt = 1 for all t in which the total expected revenue is at least T − µεT for some constant µ, there480

must exist an option i∗ such that481

Pi∗(1) ≥ (1− µε)T
K

.

Moreover, let t∗ = sup{t | σi∗,t(1) ≥ −γT}. t∗ is well-defined since σi∗,0(1) = 0. Notice that for482

all t > t∗, since the buyer is running a mean-based algorithm, we have Pr[Ii∗,t(1)] ≤ γ due to the483

presence of the null option. Therefore, we have484 ∑
t≤t∗

pi∗,t +
∑
t>t∗

γ · pi∗,t ≥ Pi∗(1) ≥ (1− µε)T
K

⇒
∑
t≤t∗

pi∗,t ≥
(1− µε)T

K
− γHT.

where we use the fact that 0 ≤ pi∗,t ≤ H . Notice that the cumulative utility σi∗,t∗(H) is485

σi∗,t∗(H) =
∑
t≤t∗

H · ai∗,t − pi∗,t

= H · σi∗,t∗(1) + (H − 1)
∑
t≤t∗

pi∗,t

≥ (H − 1)(1− µε)T
K

− γH2T

Consider an environment when the buyer’s valuations are vt = H for all t. Since the buyer is running486

a no-regret algorithm, her cumulative utility for the first t∗ rounds is at least σi∗,t∗(H)− o(T ). This487

is true because although the standard no-regret guarantee only applies to the final round T , the regret488

for the first t rounds must also be o(T ), for any t < T . For the sake of contradiction, assume that489

the regret for the first t rounds is Ω(T ). Notice that the no-regret algorithm does not depend on the490
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future. Therefore, consider an environment where the rewards for all options after round t are set to491

be 0, which results in a Ω(T ) regret for the final round T . A contradiction.492

In addition, notice that the revenue loss from the first t∗ rounds is at least the buyer’s cumulative493

utility, and thus, the revenue loss is at least494

σi∗,t∗(H)− o(T ) =
(H − 1)T

K
−O(εT ).

Finally, since the total revenue loss for T rounds is at least the total revenue loss for the first t∗ rounds,495

in order to achieve O(εT ) revenue loss, we must have K = Ω(Hε ).496

Moreover, observe that our proof only uses two sequences of valuations: a sequence with all 1 and497

a sequence of all H . Thus, our lower bound also applies to the stochastic settings with unknown498

distributions. Finally, Theorem 7 is a simple corollary of Lemma 12.499

B Critical mechanisms500

B.1 Values from an unknown distribution501

We will show that it is possible to achieve the approximation guarantees in Theorem 9 via a first-price502

auction with decreasing reserve prices. This is the same type of mechanism used in Braverman et al.503

[2018] to extract the full surplus from buyers drawn with a known distribution. Their construction504

requires complete knowledge of D in order to set these reserve prices over time (specifically, by505

solving a linear program whose coefficients depend on D) – we show we can design a single506

construction that gets the same approximation factor to the total economic surplus without knowledge507

of D.508

In such a mechanism, at each time t the seller specifies a reserve price f(t), where f is a decreasing509

function with range [1, H]. In each round, if the buyer bids above f(t) they receive the item and pay510

b; otherwise, they do not receive the item and pay nothing. More formally, the allocation and payment511

rules (at(b), pt(b)) are defined as follows: if b ≥ f(t), then pt(b) = b, and at(b) = 1; otherwise,512

pt(b) = qt(b) = 0.513

We will often find it easier to work with the function x(v) : [1, H] → [0, T ] where x(v) =514

1 − 1
T · minf(t)≤v t. Note that x(v) equals the number of rounds where a bidder with value v515

has value higher than the reserve price f(t) (in particular, x(v) is an increasing function of v).516

It can be shown (Braverman et al. [2018], Section C) that if the buyer is mean-based, the revenue517

obtained by the seller by using such an auction is given by518

R(D) = T · Ev∼D
[
vx(v)−max

w
(v − w)x(w)

]
− o(T ).

Since this is an expectation over v, we have the following lemma:519

Lemma 13. If the seller is using a first-price auction with decreasing reserve price, then520

R(D)/Val(D) is maximized when D is a singleton distribution.521

We now proceed to prove Theorem 9.522

Proof of Theorem 9. Fix any constant 0 < ε < 1 (e.g. ε = 1/2). The seller will use a first price523

auction with descending reserve price given by524

f(t) = max

(
exp

(
1

C
· (1− η − t

T
)

)
, 1

)
,

where η = (1 + logH)−ε and C = 1−η
1+logH . Note that for this choice of f , x(v) = η + C log v. By525

Lemma 13, R(D)/Val(D) is maximized when D is a singleton distribution. We therefore have that:526
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R(D)

Val(D)T
≥ min

v

vx(v)−maxw(v − w)x(w)

v

= min
v,w<v

(
x(v)−

(
1− w

v

)
x(w)

)
= min

v,w<v

(
(η + C log v)−

(
1− w

v

)
(η + C logw)

)
= min

v,w<v

(
C log

v

w
+
w

v
(η + C logw)

)
.

For a fixed w, this is minimized when v = w
(
η
C + logw

)
. It follows that527

R(D)

Val(D)T
≥ min

w

(
C log

( η
C

+ logw
)

+ 1
)

≥ C log
( η
C

)
≥ (1− (1 + logH)−ε) log((1 + logH)1−ε)

1 + logH

= Θ

(
log logH

logH

)
.

528

B.2 Adversarial values529

In this section we will show that it is possible to achieve a (1/ logH)-approximation to the buyer’s530

welfare if they are playing a mean-based algorithm with adversarial values supported on [1, H].531

This will follow naturally from the known fact that it is possible to achieve the same approximation532

guarantee against a strategic buyer with value in [1, H] playing a single-round version of this game533

(see e.g. Chapter 6 of Hartline [2013]) – we simply show that if we run this mechanism every round,534

mean-based buyers will learn to bid in the same manner as strategic buyers.535

Our mechanism (equivalent to the mechanism presented in Theorem 6.5 of Hartline [2013]) is as536

follows: for each b and for all t, we set the allocation probability at(b) = (1+log b)/(1+logH) and537

the expected price charged to pt(b) = b/(1+logH). Note that this mechanism can also be interpreted538

as a second-price auction where the buyer draws a random reserve from the distribution with CDF539

F (r) = 1+log r
1+logH . It can be seen that for any v ∈ [1, H], the expected utility U(v, b) = v ·at(b)−pt(b)540

of bidding b with value v, is maximized when b = v. A strategic buyer therefore will always bid their541

value, and pay 1/(1 + logH) of their value in total.542

We will show that the mean-based guarantee ensures that a mean-based buyer will (most of the time)543

choose a bid close to v, and thus contribute a similar amount of revenue as a strategic buyer.544

Lemma 14. Let545

U(v, b) = v · at(b)− pt(b) =
v · (1 + log b)− b

1 + logH
.

If U(v, v)− U(v, b) ≤ δ, then |v − b| ≤ H
√

2(1 + logH)δ.546

Proof. Let f(v, b) = v(1 + log b)− b. Note that547

∂

∂b
f(v, b) =

v

b
− 1

and548
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∂2

∂b2
f(v, b) = − v

b2
≤ − 1

H2
.

This implies f is (1/2H2)-strongly concave and maximized when b = v, so549

f(v, v)− f(v, b) ≥ 1

2H2
(v − b)2.

Since U(v, b) = f(v, b)/(1 + logH), this implies that if U(v, v) − U(v, b) ≤ δ, then |v − b| ≤550

H
√

2(1 + logH)δ.551

Proof of Theorem 10. Consider the critical mechanism defined by at(b) = (1 + log b)/(1 + logH)552

and pt(b) = b/(1 + logH). We claim that this mechanism obtains expected revenue at least553
1

1+log(H)Val− o(T ) against any mean-based bidder with values adversarially chosen from [1, H].554

Note that by the mean-based guarantee, with probability at least 1− γ a mean-based algorithm will555

pick a bid bt satisfying556

σvt,t(b
∗)− σvt,t(bt) ≤ γT, (2)

where b∗ = argmaxb σvt,t(b). Now, note that σv,t(b) = t ·U(v, b); since U(v, b) is maximized when557

b = v, b∗ = vt. It then follows from Lemma 14, that if (2) holds, then with probability at least (1−γ)558

|vt − bt| ≤ H
√

2(1 + logH)
γT

t
. (3)

Since vt − bt ≤ H is always true (since vt ≤ H), it follows that in expectation,559

E[bt] ≥ vt − γH −H
√

2(1 + logH)
γT

t

and therefore we have that560

E[Rev] = E

[
T∑
t=1

pt(bt)

]

=
1

1 + logH

T∑
t=1

E[bt]

≥ 1

1 + logH

T∑
t=1

(vt − γH −H
√

2(1 + logH)
γT

t
)

=
Val

1 + logH
− H

1 + logH
γT −H

√
2

1 + logH
γT

T∑
t=1

1

t

≥ Val

1 + logH
− H

1 + logH
γT −H

√
2

1 + logH
γT

=
Val

1 + logH
− o(T ),

where the last inequality holds since γ and
√
γ are both o(1).561

562
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