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A IBP prior term derivation

We provide derivations for logP(Bj0 | B\j0) for the cost expression in Eq. (9) of the main text.

First note that due to exchangeability of the IBP, customer \j0 may be considered as the last one,
hence:
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It is now easy to see that when i ≤ L\j0 , the contribution of the IBP prior is log
m

\j0
i

α+J−1−m\j0
i

, and

when L\j0 < i ≤ L\j0 + Lj0 , it is log αγ0
(α+J−1)(i−L\j0 )

.

B Proof of Lemma 1

Lemma 1 (Algorithmic convergence). Algorithm 1 (of the main text) creates a sequence of iterates
for which logP(B | v) converges as the number of iterations n→∞.

Proof. Since the Hungarian algorithm finds a globally optimal solution to the assignment problem
for Bj , each Hungarian step must yield a larger or equal objective function value (logP(B | v))
compared to the previous Bj (where B\j and the hyperparameters are held fixed). Similarly, the
hyperparameter optimization step is assumed to find a global optimum (for Gaussian priors it is
closed form) of logP(B | v) with B fixed and must therefore not decrease the objective logP(B | v).
Therefore, each step in Algorithm 1 cannot decrease logP(B | v). Since the logP(B | v) is bounded
from above by 0 (since P(B | v) is discrete-valued), this implies that Algorithm 1 creates a sequence
of iterates for which the objective function value converges.
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C Proof of Theorem 1: Gaussian hyperparameter consistency

First consider µ̂0. Recall that

µ̂0 =
1

L

L∑
i=1

1

mi

∑
j,l

Bjilvjl.

Hence, Eµ̂0 = µ0 since the marginal expectation Evjl = µ0 and the Bjil are assumed known. Since
the vjl are Gaussian with bounded variance, and the underlying L global atoms are independent, µ̂0

will concentrate around its mean when L→∞. Hence µ̂0 is consistent as desired.

Next, consider σ̂2. Recall that
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Since the vjl are Gaussian with bounded variance and at least L of them are independent, and the Bjil
are binary, σ̂2 concentrates around its expectation as the total number of global atoms with multiple
assignments

∑L
i=1 I((

∑
j,lB

j
il) > 1)→∞ where I(·) is the indicator function. This follows by the

Bernstein inequality for subexponential random variables [6]. Now
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Recalling that N is the total number of local parameters, hence
∑
i,j,lB

j
il = N and it follows that

given the Bjil, σ̂
2 is consistent.

Finally, we consider the σ̂2
0 estimate, which depends on µ̂0 and σ̂2. Recall that
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Note that since the vjl are Gaussian, for fixed Bjil, σ̂
2
0 will concentrate around its expectation if

L→∞ (again by the Bernstein inequality for subexponential random variables [6]). Note further
that if µ̂0 = µ0 and σ̂ = σ, Eσ̂2

0 = σ2
0 since the variance
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which holds since the Bjil are binary. Hence by smoothness, if µ̂0 and σ̂2 are consistent, σ̂2
0 will be as

well.

D Hyperparameter estimation quality

Using our simulated experiments we verify the correctness of our hyperparameter estimation proce-
dure and statement of Theorem 1. In Figure 1 we vary σ and measure relative estimation error, which
is defined as absolute error normalized by the true value. In this experiment we utilized k-means
estimates of the local centroids for SPAHM. We see that when the variance of local centroids with
respect to the global ones is not too big, SPAHM produces high quality estimates as well as precision
in recovering true number of global parameters. It is interesting to note the almost exact σ recovery —
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Figure 1: Verification of the hyperparamter estimation quality

this is because estimate for σ presented in Section 4.1 of the main text did not require the assumption
that σ2

0 + σ2/mi ≈ σ2
0 ∀i and was derived exactly. For other hyperparameters the assumption was

needed and appears to introduce minor bias. Additionally we note that hyperparameters α and γ0
need to be set by the modeler as they represent prior beliefs regarding the amount of sharing of global
parameters (i.e. α) across datasets and their quantity (i.e. γ0). In all our experiments we set α = 1
and γ0 = 1, except sparse Gaussian process experiment where we set γ0 = 50 as we expected larger
number of inducing points needed to model weather across all 50 states.

E HDP-HMM details

Our HMM models use multivariate Normal-Wishart observation models and Hierarchical Dirichlet
process allocation models. The state specific transition probabilities πk are drawn according to the
following generative process. First, we draw β ∼ GEM(γ) from the stick breaking distribution. That
is,

βj = νj

j−1∏
l=1

(1− νl); νj | γ ∼ Beta(1, γ); j = 1, 2, . . . , (2)

We then draw πk from a Dirichlet process with a discrete base measure shared across states,

πk | η, κ, β ∼ DP(η + κ,
ηβ + κδk
η + κ

); k = 1, 2, . . . , (3)

where η is a concentration parameter and κ is a “stickyness” parameter which encourages state persis-
tence. The latent states for a particular sequence then evolve as zt, evolve as zt+1 | zt, {πk}∞k=1 ∼ πzt .
Finally, observations at time step t, yt ∈ RD are drawn from a Normal Wishart distribution,

µk | µ0, λ,Λk ∼ N (µ0, (λΛk)−1)

Λk | S, n0 ∼Wishart(n0, S)

yt | zt = k ∼ N (yt | µk,Λ−1k )

(4)

For all our experiments, we set κ to 10.0, γ = 5. and η = 0.5. For the observation model, we set
n0 = 1 and S to an identity matrix I, encoding our belief that E[Λ−1k ] = I.

E.1 MoCAP data details

We consider the problem of discovering common structure in collections of related time series.
Although such problems arise in a wide variety of domains, here we restrict our attention to data
captured from motion capture sensors on joints of people performing exercise routines. We collected
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this data from the CMU MoCap database (http://mocap.cs.cmu.edu). Each motion capture
sequence in this database consists of 64 measurements of human subjects performing various exercises.
Following [2], we select 12 measurements deemed most informative for capturing gross motor
behaviors: body torso position, neck angle, two waist angles, and a symmetric pair of right and left
angles at each subjects shoulders, wrists, knees, and feet. Each MoCAP sequence thus provides a
12-dimensional time series. We use a curated subset [2] of the data from two different subjects each
providing three sequences. In addition to having several exercise types in common this subset comes
with human annotated labels allowing for easy quantitative comparisons across different models.

E.2 Metrics

Normalized Hamming distance We follow [2] and compute the normalized Hamming distance
between the MAP segmentation and the human-provided ground truth annotation using the optimal
alignment of each ground truth state to a predicted state. Normalized Hamming distance then
measures the fraction of time steps where the labels of the ground-truth and estimated segmentations
disagree.

Adjusted Rand Index Rand index [5] is commonly used to measure the quality of a partition with
respect to a ground truth partitioning. It is defined as,

R =
a+ b(
n
2

) , (5)

where a is the number of pairs of elements that are in the same subset in the two partitions and b is
the number of pairs of elements that are in different subsets in the two partitions. The denominator is
the total number of pairs. The adjusted rand index is computed as,

ARI =
R− E(R)

max(R)− E(R)
(6)

E.3 Additional Results

In Figure 2, we present additional matched states discovered by SPAHM.

F Topic Modeling Experiments

We also evaluate SPAHM on the task of topic modeling. Here, we randomly select 40 books from
Project Gutenberg 1, primarily in 2 unrelated domains to introduce heterogeneity in the data - World
War I and Astronomy. For modeling using SPAHM, we first extract 25 topics from each book using
k-means (independently for each book), and then match the topics extracted from each book to
produce the global topics for the entire corpus. As a baseline measure, we compare our method
to Gaussian LDA [1] trained on the whole corpus of 40 books. Unlike SPAHM, Gaussian LDA
requires the number of global topics to be specified a priori. To keep the evaluations fair, we train
the Gaussian LDA for 100 MCMC iterations to extract 150 topics which is similar to the number of
topics extracted by SPAHM (155 topics).

We quantitatively compare the two approaches by calculating the UCI coherence [4] scores over
the Gutenberg dataset [3] consisting of 3000 books separate from the ones used to train the two
models. The coherence score along with the time taken by each model is presented in Table 1, where
higher number implies more coherent topics. As a qualitative measure of the topics found by the two
methods, we select a common topic related to "war" found by both SPAHM and Gaussian LDA, and
look at the closest 15 words to the topic found by each method. We observed that while the general
theme of the topic is captured by both models, Gaussian LDA topic consists of uninformative words
such as "taken", "brought", "took", among the informative words like "army", "military", "command".
On the other hand, 14 of the top 15 words extracted by SPAHM are very relevant to the topic of "war".
We present the corresponding topics in Figure 3 (same as in the main text).

1https://www.gutenberg.org
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Figure 2: Additional matched states discovered by SPAHM

Table 1: Coherence scores and runtimes for estimating Gutenberg topics

SPAHM Gaussian LDA

UCI Coherence score -2.0967 -4.5956
Runtime 42 sec ∼ 600 sec/iteration

army taken force entered brought

took armed carried military captured

allied attacked forces came bringing

Gaussian LDA Topic 16

army military forces armed allied
command commanders civilian captured fighting
attacked taken enemy carried troops

Matched Topic 34
armed soldiers attacked
forces army fighting
fire captured troops

22523: History of the American...

military force forces
army command personnel

operations armed allied

793: Aeroplanes & Dirigibles of War

enemy allied forces
captured attacking armed
force commanders army

26879: Night Bombing with the ...
enemy war forces
fighting allied armed
military invasion enemies

10409: The Crisis of the Naval War

command corps force
army military commanded
allied personnel naval

30047: Aircraft and Submarines

Figure 3: Topic related to war found by SPAHM and Gaussian LDA. The five boxes pointing to the
Matched topic represent local topics that SPAHM fused into the global one. The headers of these five
boxes state the book names along with their Gutenberg IDs.
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