
PIDForest: Anomaly Detection via Partial
Identification

Parikshit Gopalan
VMware Research

pgopalan@vmware.com

Vatsal Sharan
Stanford University

vsharan@stanford.edu

Udi Wieder
VMware Research

uwieder@vmware.com

Abstract

We consider the problem of detecting anomalies in a large dataset. We propose a
framework called Partial Identification which captures the intuition that anomalies
are easy to distinguish from the overwhelming majority of points by relatively
few attribute values. Formalizing this intuition, we propose a geometric anomaly
measure for a point that we call PIDScore, which measures the minimum density
of data points over all subcubes containing the point. We present PIDForest: a
random forest based algorithm that finds anomalies based on this definition. We
show that it performs favorably in comparison to several popular anomaly detection
methods, across a broad range of benchmarks. PIDForest also provides a succinct
explanation for why a point is labelled anomalous, by providing a set of features
and ranges for them which are relatively uncommon in the dataset.1

1 Introduction

An anomaly in a dataset is a point that does not conform to what is normal or expected. Anomaly
detection is a ubiquitous machine learning task with diverse applications including network mon-
itoring, medicine and finance [1, Section 3]. There is an extensive body of research devoted to it,
see [1, 2] and the references therein. Our work is primarily motivated by the emergence of large
distributed systems, like the modern data center which produce massive amounts of heterogeneous
data. Operators need to constantly monitor this data, and use it to identify and troubleshoot problems.
The volumes of data involved are so large that a lot of the analysis has to be automated. Here we
highlight some of the challenges that an anomaly detection algorithm must face.

1. High dimensional, heterogeneous data: The data collected could contains measurements
of metrics like cpu usage, memory, bandwidth, temperature, in addition to categorical data
such as day of the week, geographic location, OS type. This makes finding an accurate
generative model for the data challenging. The metrics might be captured in different units,
hence algorithms that are unit-agnostic are preferable. The algorithm needs to scale to high
dimensional data.

2. Scarce labels: Most of the data are unlabeled. Generating labels is time and effort intensive
and requires domain knowledge. Hence supervised methods are a non-starter, and even
tuning too many hyper-parameters of unsupervised algorithms could be challenging.

3. Irrelevant attributes: Often an anomaly manifests itself in a relatively small number of
attributes among the large number being monitored. For instance, a single machine in a
large datacenter might be compromised and behave abnormally.

4. Interpretability of results: When we alert a datacenter administrator to a potential
anomaly, it helps to point to a few metrics that might have triggered it, to help in trou-
bleshooting.

1The full version of this paper is available at https://arxiv.org/abs/1912.03582.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://arxiv.org/abs/1912.03582

In the generative model setting, anomalies come with a simple explanation: a model that fits the
data, under which the anomalous observation is unlikely. Interpretability is more challenging for
algorithms that do not assume a generative model. In this work, we are particularly interested in
random forest based methods for anomaly detection, namely the influential work on Isolation Forests
[3] (we refer to this algorithm as iForest) and subsequent work [4, 5]. iForest is a remarkably simple
and efficient algorithm, that has been found to outperform other anomaly detection methods in several
domains [6]. Yet, there is no crisp definition of ground truth for what constitutes an anomaly: the
anomaly score is more or less defined as the output of the algorithm. We believe that a necessary
step for interpretability is a clear articulation of what is an anomaly, separate from the algorithmic
question of how it is found.

Our contributions. We summarize the main contributions of this work:

1. In Section 2, we motivate and propose a new anomaly measure that we call PIDScore.
Our definition corresponds to an intuitive notion of what is an anomaly and has a natural
geometric interpretation. It is inspired by the notion of Partial Identification introduced
by Wigderson and Yehudayoff [7] can be viewed as a natural generalization of teaching
dimension [8, 9].

2. Our definition sheds light on the types of points likely to be labeled as anomalies by the
iForest algorithm, and also on the types of points it might miss. We build on this intuition
to design an efficient random forest based algorithm—PIDForest, which finds anomalies
according to PIDScore, in Section 3.

3. We present extensive experiments on real and synthetic data sets showing that our algorithm
consistently outperforms or matches six popular anomaly detection algorithms. PIDForest
is the top performing algorithm in 6 out of 12 benchmark real-world datasets, while no
other algorithm is the best in more than 3. PIDForest is also resilient to noise and irrelevant
attributes. These results are in Section 4 and 5.

We begin by describing our proposed anomaly measure, PIDScore at a high level. Let the sparsity of
a dataset T in a subcube of the attribute space be the volume of the subcube divided by the number
of points from T that it contains. For a dataset T and a point x, PIDScore(x, T) measures the
maximum sparsity of T in all subcubes C containing x. A point x is labelled anomalous if it belongs
to a region of the attribute space where data points are sparse.

Given this definition, one could aim for an algorithm that preprocesses T , then takes a point x and
computes PIDScore(x, T). Such an algorithm is likely to suffer from the curse of dimensionality
like in Nearest Neighbor based methods, and not scale to high volumes of data. Instead we adopt the
approach of iForest [3] which focuses on what is anomalous, rather than the entire dataset. We call
the resulting algorithm PIDForest. Like in iForest, PIDForest builds a collection of decision trees that
partition space into subcubes. In PIDForest, the choice of the splits at each node favors partitions
of greatly varying sparsity, the variance in the sparsity is explicitly the quantity we optimize when
choosing a split. In contrast, previous work either choose splits randomly [3] or based on the range
[4]. Choosing coordinates that have greater variance in their marginal distribution lets us hone in on
the important coordinates, and makes our algorithm robust to irrelevant/noisy attributes, which are
unlikely to be chosen. Secondly, we label each leaf by its sparsity rather than depth in the tree. The
score of a point is the maximum sparsity over all leaves reached in the forest.

While notions of density have been used in previous works on clustering and anomaly detection, our
approach differs from prior work in important ways.

1. Dealing with heterogeneous attributes: Dealing with subcubes and volumes allows us to
handle heterogeneous data where some columns are real, some are categorical and possibly
unordered. All we need is to specify two things for each coordinate: what constitutes an
interval, and how length is measured. Subcubes and volumes are then defined as products
over coordinates. This is in sharp contrast to methods that assume a metric. Notions like
`1/`2 distance add different coordinates and might not be natural in heterogeneous settings.

2. Scale invariance: For a subcube, we only care about the ratio of its volume to the volume
of the entire attribute space. Hence we are not sensitive to the units of measurement.

3. Considering subcubes at all scales: In previous works, density is computed using balls of
a fixed radius, this radius is typically a hyperparameter. This makes the algorithm susceptible

2

to masking, since there may be a dense cluster of points, all of which are anomalous. We
take the minimum over subcubes at all scales.

Organization. We present the definition of PIDScore in Section 2, and the PIDForest algorithm
(with a detailed comparison to iForest) in Section 3. We present experiments on real world data
in Section 4 and synthetic data in Section 5. We further discuss related work in Section A in the
Appendix (which is included in the supplementary material).

2 Partial Identification and PIDScore

A motivating example: Anomalous Animals. Imagine a tabular data set that contains a row for
every animal on the planet. Each row then contains attribute information about the animal such as the
species, color, weight, age and so forth. The rows are ordered. Say that Alice wishes to identify a
particular animal in the table unambiguously to Bob, using the fewest number of bits.

If the animal happens to be a white elephant, then Alice is in luck. Just specifying the species and
color narrows the list of candidates down to about fifty (as per Wikipedia). At this point, specifying
one more attribute like weight or age will probably pin the animal down uniquely. Or she can just
specify its order in the list.

If the animal in question happens to be a white rabbit, then it might be far harder to uniquely identify,
since there are tens of millions of white rabbits, unless that animal happens to have some other
distinguishing features. Since weight and age are numeric rather than categorical attributes, if one
could measure them to arbitrary precision, one might be able to uniquely identify each specimen.
However, the higher the precision, the more bits Alice needs to communicate to specify the animal.

We will postulate a formal definition of anomaly score, drawing on the following intuitions:

1. Anomalies have short descriptions. The more exotic/anomalous the animal Alice has in mind,
the more it stands out from the crowd and the easier it is for her to convey it to Bob. Constraining
just a few carefully chosen attributes sets anomalies apart from the vast majority of the population.

2. Precision matters in real values. For real-valued attributes, it makes sense to specify a range in
which the value lies. For anomalous points, this range might not need to be very narrow, but for
normal points, we might need more precision.

3. Isolation may be overkill. The selected attributes need not suffice for complete isolation. Partial
identification aka narrowing the space down to a small list can be a good indicator of an anomaly.

First some notation: let T denote a dataset of n points in d dimensions. Given indices S ⊆ [d] and
x ∈ Rd, let xS denote the projection of x onto coordinates in S. Logarithms are to base 2.

2.1 The Boolean setting

We first consider the Boolean setting where the set of points is T ⊆ {0, 1}d. Assume that T has
no duplicates. We define idLength(x, T) to be the minimum number of co-ordinates that must be
revealed to uniquely identify x among all points in T . Since there are no duplicates, revealing all
coordinates suffices, so idLength(x, T) ≤ d,
Definition 1. (IDs for a point) We say that S ⊆ [d] is an ID for x ∈ T if xS 6= yS for all y ∈ T \{x}.
Let ID(x, T) be the smallest ID for x breaking ties arbitrarily. Let idLength(x, T) = |ID(x, T)|.

While on first thought idLength is an appealing measure of anomaly, it does not deal with duplicates,
and further, the requirement of unique identification is fairly stringent. Even in simple settings points
might not have short IDs. For example, if H is the Hamming ball consisting of 0d and all d unit
vectors, then idLength(0d,H) = d, since we need to reveal all the coordinates to separate 0d from
every unit vector. One can construct examples where even the average value of idLength(x, T) over
all points can be surprisingly high [9].

We relax the definition to allow for partial identification. Given x ∈ T and S ⊆ [d], the set of
impostors of x in T are all points that equal x on all coordinates in S. Formally Imp(x, T , S) =
{y ∈ T s.t. xS = yS}. We penalize sets that do not identify x uniquely by the logarithm of the
number of impostors. The intuition is that this penalty measures how many bits it costs Alice to
specify x from the list of impostors.

3

Definition 2. (Partial ID) We define

PID(x, T) = arg min
S⊆[d]

(|S|+ log2(|Imp(x, T , S)|)), (1)

pidLength(x, T) = min
S⊆[d]

(|S|+ log2(|Imp(x, T , S)|)). (2)

It follows from the definition that pidLength(x, T) ≤ min(log2(n), idLength(x, T)). The first
inequality follows by taking S to be empty so that every point in T is an impostor, the second by
taking S = ID(x, T) so that the only impostor is x itself. Returning to the Hamming ball example, it
follows that pidLength(0d, T) = log2(d+ 1) where we take the empty set as the PID.

We present an alternate geometric view of pidLength, which generalizes naturally to other settings.
A subcube C of {0, 1}d is the set of points obtained by fixing some subset S ⊆ [d] coordinates
to values in 0, 1. The sparsity of T in a subcube C is ρ0,1(T , C) = |C|/|C ∩ T |. The notation
C 3 x means that C contains x, hence minC3x is the minimum over all C that contain x. One can
show that for x ∈ T , maxC3x ρ0,1(T , C) = 2d−pidLength(x,T), see appendix D for a proof. This
characterization motivates using 2−pidLength(x,T) as an anomaly score: anomalies are points that lie
in relatively sparse subcubes. Low scores come with a natural witness: a sparse subcube PID(x, T)
containing relatively few points from T .

2.2 The continuous setting

Now assume that all the coordinates are real-valued, and bounded. Without loss of generality, we
may assume that they lie in the range [0, 1], hence T is a collection of n points from [0, 1]d. An
interval I = [a, b], 0 ≤ a ≤ b ≤ 1 is of length len(I) = b− a. A subcube C is specified by a subset
of co-ordinates S and intervals Ij for each j ∈ S. It consists of all points such that xj ∈ Ij for all
j ∈ S. To simplify our notation, we let C be I1 × I2 · · · × Id where Ij = [0, 1] for j 6∈ S. Note that
vol(C) = Πj len(Ij). Define the sparsity of T in C as ρ(T , C) = vol(C)/|C ∩T |. PIDScore(x, T)
is the maximum sparsity over all subcubes of [0, 1]d containing x.
Definition 3. For x ∈ T , let

PID(x, T) = arg max
C3x

ρ(T , C), PIDScore(x, T) = max
C3x

ρ(T , C).

To see the analogy to the Boolean case, define pidLength(x, T) = − log(PIDScore(x, T)). Fix
C = PID(x, T). Since vol(C) =

∏
j∈[d] len(Ij), we can write

pidLength(x, T) = log(|C ∩ T |/vol(C)) =
∑
j∈[d]

log(1/len(Ij)) + log(|C ∩ T |). (3)

This exposes the similarities to Equation (2): C ∩ T is exactly the set of impostors for x, whereas∑
j∈[d] log(1/len(Ij)) is the analog of |S|. In the boolean setting, we pay 1 for each coordinate from

S, here the cost ranges in [0,∞) depending on the length of the interval. In the continuous setting,
the j 6∈ S iff Ij = [0, 1] hence log(1/len(Ij)) = 0, hence we pay nothing for coordinates outside S.
Restricting to an interval of length p costs log(1/p). If p = 1/2, we pay 1, which is analogous to the
Boolean case where we pay 1 to cut the domain in half. This addresses the issue of having to pay
more for higher precision. Note also that the definition is scale-invariant as multiplying a coordinate
by a constant changes the volume of all subcubes by the same factor.

Other attributes: To handle attributes over a domain D, we need to specify what subsets of
D are intervals and how we measure their length. For discrete attributes, it is natural to define
len(I) = |I|/|D|. When the domain is ordered intervals are naturally defined, for instance months
between April and September is an interval of length 1/2. We could also allow wraparound in intervals,
say months between November and March. For unordered discrete values, the right definition of
interval could be singleton sets, like country = Brazil or certain subsets, like continent = the Americas.
The right choice will depend on the dataset. Our definition is flexible enough to handle this: We can
make independent choices for each coordinate, subcubes and volumes are then defined as products,
and PIDScore can be defined using definition 3.

IDs and PIDs. The notion of IDs for a point is natural and has been studied in the computational
learning literature under various names: the teaching dimension of a hypothesis class [8], discriminant

4

[10], specifying set [11] and witness set [9]. Our work is inspired by the work of Wigderson and
Yehudayoff [7] on population recovery, which is the task of learning mixtures of certain discrete
distributions on the Boolean cube. Their work introduces the notion of partial identification in the
Boolean setting. The terminology of IDs and impostors is from their work. They also consider PIDs,
but with a different goal in mind (to minimize the depth of a certain graph constructed using the PID
relation). Our definition of pidLength, the extension of partial identification to the continuous setting
and its application to anomaly detection are new contributions.

3 The PIDForest algorithm

We do not know how to compute PIDScore exactly, or even a provable approximation of it in a way
that scales well with both d and n. The PIDForest algorithm described below is heuristic designed to
approximate PIDScore. Like with iForest, the PIDForest algorithm builds an ensemble of decision
trees, each tree is built using a sample of the data set and partitions the space into subcubes. However,
the way the trees are constructed and the criteria by which a point is declared anomalous are very
different. Each node of a tree corresponds to a subcube C, the children of C represent a disjoint
partition of C along some axis i ∈ [d] (iForest always splits C into two , here we allow for a finer
partition). The goal is to have large variance in the sparsity of the subcubes. Recall that the sparsity
of a subcube C with respect to a data set T is ρ(C, T) = vol(C)/|C ∩ T |. Ultimately, the leaves
with large ρ values will point to regions with anomalies.

For each tree, we pick a random sample P ⊆ T of m points, and use that subset to build the tree.
Each node v in the tree corresponds to subcube C(v), and a set of points P (v) = C(v) ∩ P . For
the root, C(v) = [0, 1]d and P (v) = P . At each internal node, we pick a coordinate j ∈ [d], and
breakpoints t1 ≤ · · · ≤ tk−1 which partition Ij into k intervals, and split C into k subcubes. The
number of partitions k is a hyper-parameter (taking k < 5 works well in practice). We then partition
the points P (v) into these subcubes. The partitions stop when the tree reached some specified
maximum depth or when |P (v)| ≤ 1. The key algorithmic problem is how to choose the coordinate
j and the breakpoints by which it should be partitioned. Intuitively we want to partition the cube into
some sparse regions and some dense regions. This intuition is formalized next.

Let Ij ⊆ [0, 1] be the projection of C onto coordinate i. Say the breakpoints are chosen so that we
partition Ij into I1j , . . . , Ikj . This partitions C into C1, . . . , Ck where the intervals corresponding to
the other coordinates stay the same. We first observe that in any partition of C, the average sparsity
of the subcubes when weighted by the number of points is the same. Let

pi :=
len(Iij)

len(I)
=

vol(Ci)

vol(C)
, qi :=

|P ∩ Ci|
|P |

,

=⇒ ρ(Ci) =
vol(Ci)

|P ∩ Ci|
=
pivol(C)

qi|P |
=
piρ(C)

qi
.

Since a qi fraction of points in P have sparsity ρ(Ci), the expected sparsity for a randomly chosen
point from P is ∑

i∈[k]

qiρ(Ci) =
∑
i∈[k]

piρ(C) = ρ(C).

In words, in any partition of C if we pick a point randomly from P (v) and measure the sparsity of
its subcube, on expectation we get ρ(C). Recall that our goal is to split C into sparse and dense
subcubes. Hence a natural objective is to maximize the variance in the sparsity:

Var(P, {Ci}i∈[k]) =
∑
i∈[k]

qi(ρ(Ci)− ρ(C))2 =
∑
i∈[k]

qiρ(Ci)2 − ρ(C)2. (4)

A partition that produces large variance in the sparsity needs to partition space into some sparse
regions and other dense regions, which will correspond to outliers and normal regions respectively.
Alternately, one might choose partitions to optimize the maximum sparsity of any interval in the
partition, or some higher moment of the sparsity. Maximizing the variance has the advantage that
it turns out to equivalent to a well-studied problem about histograms, and admits a very efficient
streaming algorithm. We continue splitting until a certain predefined depth is reached, or points are
isolated. Each leaf is labeled with the sparsity of its subcube.

5

PIDForest Fit
Params: Num of trees t, Samples m, Max degree k, Max depth h.
Repeat t times:

Create root node v.
Let C(v) = [0, 1]d, P (v) ⊆ T be a random subset of size m .
Split(v)

Split(v):
For j ∈ [d], compute the best split into k intervals.
Pick j that maximizes variance, split C along j into {Ci}ki=1.
For i ∈ [k] create child vi s.t. C(vi) = Ci, P (vi) = P (v) ∩ Ci.
If depth(vi) ≤ h and |P (vi)| > 1 then Split(vi).
Else, set PIDScore(vi) = vol(C(vi))/|P (vi)|.

In Appendix C, we show that the problem of finding the partition along a coordinate j that maximizes
the variance in the sparsity can be reduced to the problem of finding a k-histogram for a discrete
function f : [n] → R, which minimizes the squared `2 error. This is a well-studied problem [12,
13, 14] and there an efficient one-pass streaming algorithm for computing near-optimal histograms
due to Guha et al. [15]. We use this algorithm to compute the best split along each coordinate, and
then choose the coordinate that offers the most variance reduction. Using their algorithm, finding the
optimal split for a node takes time O(dm log(m)). This is repeated at most kh times for each tree
(typically much fewer since the trees we build tend to be unbalanced), and t times to create the forest.
We typically choose m ≤ 200, k ≤ 5, h ≤ 10 and t ≤ 50.

Producing an anomaly score for each point is fairly straightforward. Say we want to compute a score
for y ∈ [0, 1]d. Each tree in the forest maps y to a leaf node v and gives it a score PIDScore(v). We
take the 75% percentile score as our final score (any robust analog of the max will do).

Comparison to Isolation Forest. iForest repeatedly samples a set S ofm points from T and builds
a random tree with those points as leaves. The tree is built by choosing a random co-ordinate xi, and
a random value in its range about which to split. The intuition is that anomalous points will be easy
to separate from the rest, and will be isolated at small depth. What kind of points are likely to be
labeled anomalous by iForest?

In one direction, if a point is isolated at relatively low depth k in a tree, then it probably belongs in
a sparse subcube. Indeed, a node at depth k corresponds to a subcube C of expected volume 2−k,
which is large for small k. The fact that the sample contains no points from C implies that C ∩ T
is small, with high probability (this can be made precise using a VC-dimension argument). Hence
ρ(C, T) = vol(C)/|C ∩ T | is fairly large.

Being in a sparse subcube is necessary but not sufficient. This is because iForest chooses which
coordinate we split on as well as the breakpoint at random. Thus to be isolated at small depth
frequently, a point needs to lie in an abundant number of low-density subspaces: picking splits at
random should have a good chance of defining such a subspace. Requiring such an abundance of
sparse subcubes can be problematic. Going back to the animals example, isolating white elephants is
hard unless both Color and Type are used as attributes, as there is no shortage of elephants or white
animals. Moreover, which attributes are relevant can depend on the point: weight might be irrelevant
in isolating a white elephant, but it might be crucial to isolating a particularly large elephant. This
causes iForest to perform poorly in the presence of irrelevant attributes, see for instance [5].

This is the fundamental difference between PIDForest and iForest and its variants. PIDForest zooms
in on coordinates with signal—where a split is most beneficial. Attributes with little signal are
unlikely to be chosen for splitting. For concrete examples, see Section 5. The tradeoff is that we incur
a slightly higher cost at training time, the cost of prediction stays pretty much the same.

4 Real-world Datasets

We show that PIDForest performs favorably in comparison to several popular anomaly detection
algorithms on real-world benchmarks. We select datasets from varying domains, and with different

6

number of datapoints, percentage of anomalies and dimensionality. The code and data for all
experiments is available online.2 Detailed parameters of the datasets are in Table 2 in the appendix.

Dataset Descriptions: The first set of datasets are classification datasets from the UCI [16] and
openML repository [17] (they are also available at [18]). Three of the datsets—Thyroid, Mammogra-
phy and Seismic—are naturally suited to anomaly detection as they are binary classification tasks
where one of the classes has a much smaller occurrence rate (around 5%) and hence can be treated as
anomalous. Thyroid and Mammography have real-valued attributes whereas Seismic has categorical
attributes as well. Three other datasets—Satimage-2, Musk and Vowels—are classification datasets
with multiple classes, and we combine the classes and divide them into inliers and outliers as in
[19]. Two of the datasets—http and smtp—are derived from the KDD Cup 1999 network intrusion
detection task and we preprocess them as in [20]. These two datasets have have significantly more
datapoints (about 500k and 100k respectively) and a smaller percentage of outliers (less than 0.5%).

The next set of real-world datasets—NYC taxicab, CPU utilization, Machine temperature (M.T.) and
Ambient temperature (A.T.)—are time series datasets from the Numenta anomaly detection benchmark
which have been hand-labeled with anomalies rooted in real-world causes [21]. The length of the time
series is 10k-20k, with about 10% of the points marked anomalous. We use the standard technique of
shingling with a sliding window of width 10, hence each data point becomes a 10 dimensional vector
of 10 consecutive measurements from the time series.

Methodology: We compare PIDForestwith six popular anomaly detection algorithms: Isolation
Forest (iForest), Robust Random Cut Forest (RRCF), one-class SVM (SVM), Local Outlier Factor
(LOF), k-Nearest Neighbour (kNN) and Principal Component Analysis (PCA). We implement
PIDForest in Python, it takes about 500 lines of code. For iForest, SVM and LOF we used the
scikit-learn implementations, for kNN and PCA we used the implementations on PyOD [22] , and
for RRCF we use the implementation from [23]. Except for RRCF, we run each algorithm with
the default hyperparameter setting as varying the hyperparameters from their default values did not
change the results significantly. For RRCF, we use 500 trees instead of the default 100 since it yielded
significantly better performance. For PIDForest, we fix the hyperparameters of depth to 10, number
of trees to 50, and the number of samples used to build each tree to 100. We use the area under the
ROC curve (AUC) as the performance metric. As iForest, PIDForest and RRCF are randomized, we
repeat these algorithms for 5 runs and report the mean and standard deviation. SVM, LOF, kNN and
PCA are deterministic, hence we report a single AUC number for them.

Results: We report the results in Table 1. PIDForest is the top performing or jointly top performing
algorithm in 6 out of the 12 datasets, and iForest, kNN and PCA are top performing or jointly top
performing algorithms in 3 datasets each. Detailed ROC performance curves of the algorithms are
given in Fig. 6 and 7 in the Appendix. While the running time of our fit procedure is slower than
iForest, it is comparable to RRCF and faster than many other methods. Even our vanilla Python
implementation on a laptop computer only takes about 5 minutes to fit a model to our largest dataset
which has half a million points.

Recall from Section 3 that PIDForest differs from iForest in two ways, it optimizes for the axis to
split on, and secondly, it uses sparsity instead of depth as the anomaly measure. To further examine
the factors which contribute to the favorable performance of PIDForest, we do an ablation study
through two additional experiments.

Choice of split: Optimizing for the choice of split rather than choosing one at random seems
valuable in the presence of irrelevant dimensions. To measure this effect, we added 50 additional
random dimensions sampled uniformly in the range [0, 1] to two low-dimensional datasets from Table
1—Mammography and Thyroid (both datasets are 6 dimensional). In the Mammography dataset,
PIDForest (and many other algorithms as well) suffers only a small 2% drop in performance, whereas
the performance of iForest drops by 15%. In the Thyroid dataset, the performance of all algorithms
drops appreciably. However, PIDForest has a 13% drop in performance, compared to a 20% drop for
iForest. The detailed results are given in Table 3 in the Appendix.

Using sparsity instead of depth: In this experiment, we test the hypothesis that the sparsity of the
leaf is a better anomaly score than depth for the PIDForest algorithm. The performance of PIDForest
deteriorates noticeably with depth as the score, the AUC for Thyroid drops to 0.847 from 0.876,
while the AUC for Mammography drops to 0.783 from 0.840.

2https://github.com/vatsalsharan/pidforest

7

https://github.com/vatsalsharan/pidforest

Data set PIDForest iForest RRCF LOF SVM kNN PCA
Thyroid 0.876 ± 0.013 0.819 ± 0.013 0.739± 0.004 0.737 0.547 0.751 0.673

Mammo. 0.840 ± 0.010 0.862 ± 0.008 0.830 ± 0.002 0.720 0.872 0.839 0.886
Seismic 0.733 ± 0.006 0.698 ± 0.004 0.701 ± 0.004 0.553 0.601 0.740 0.682

Satimage 0.987 ± 0.001 0.994 ± 0.001 0.991 ± 0.002 0.540 0.421 0.936 0.977

Vowels 0.741 ± 0.008 0.736 ± 0.026 0.813± 0.007 0.943 0.778 0.975 0.606

Musk 1.000 ± 0.000 0.998 ± 0.003 0.998 ± 0.000 0.416 0.573 0.373 1.000
http 0.986 ± 0.004 1.000 ± 0.000 0.993 ± 0.000 0.353 0.994 0.231 0.996

smtp 0.923 ± 0.003 0.908 ± 0.003 0.886 ± 0.017 0.905 0.841 0.895 0.823

NYC 0.564 ± 0.004 0.550 ± 0.005 0.543 ± 0.004 0.671 0.500 0.697 0.511

A.T. 0.810 ± 0.005 0.780 ± 0.006 0.695 ±0.004 0.563 0.670 0.634 0.792

CPU 0.935 ± 0.003 0.917 ± 0.002 0.785 ± 0.002 0.560 0.794 0.724 0.858

M.T. 0.813 ± 0.006 0.828 ± 0.002 0.7524 ± 0.003 0.501 0.796 0.759 0.834

Table 1: Results on real-world datasets. We bold the algorithm(s) which get the best AUC.

100 300 500 700 900
num of samples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Effects of masking

Isolation Forest
PIDForest

(a) Masking. Accuracy is the fraction of true out-
liers in the top 5% of reported anomalies.

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100
ac

cu
ra

cy
Mixture of Gaussians with added Noise

PIDForest
Isolation Forest
EM
LOF

(b) y−axis measures how many of the 100 true
anomalies were reported by the algorithm in the
top 100 anomalies.

Figure 1: Synthetic experiments on masked anomalies and Gaussian data.

5 Synthetic Data

We compare PIDForest with popular anomaly detection algorithms on synthetic benchmarks. The
first experiment checks how the algorithms handle duplicates in the data. The second experiment
uses data from a mixture of Gaussians, and highlights the importance of the choice of coordinates
to split in PIDForest. The third experiment tests the ability of the algorithm to detect anomalies in
time-series (see Appendix B). In all these experiments, PIDForest outperforms prior art.

Masking and sample size. It is often the case that anomalies repeat multiple times in the data. This
phenomena is called masking and is a challenge for many algorithms. iForest counts on sampling to
counter masking: not too many repetitions occur in the sample. But the performance is sensitive to
the sampling rate, see [4, 5]. To demonstrate it, we create a data set of 1000 points in 10 dimensions.
970 of these points are sampled randomly in {−1, 1}10 (hence most of these points are unique). The
remaining 30 are the all-zeros vector, these constitute a masked anomaly. We test if the zero points are
declared as anomalies by PIDForest and iForest under varying sample sizes. The results are reported
in Fig. 1a. Whereas PIDForest consistently reported these points as anomalies, the performance
of iForest heavily depends on the sample size. When it is small, then masking is negated and the
anomalies are caught, however the points become hard to isolate when the sample size increases.

8

0.5 0.6 0.7 0.8 0.9
recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

Time Series

n_buckets 2
n_buckets 3
n_buckets 4
n_buckets 5
n_buckets 6

(a) Varying number of buckets

0.5 0.6 0.7 0.8 0.9
recall

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

Time Series

n_samples 50
n_samples 100
n_samples 150
n_samples 200
n_samples 250

(b) Varying number of samples

Figure 2: Robustness to choice of hyperparameters

Mixtures of Gaussians and random noise. We use a generative model where the ground truth
anomalies are the points of least likelihood. The first two coordinates of the 1000 data points are
sampled by taking a mixture of two 2−dimensional Gaussians with different means and covariances
(the eigenvalues are {1, 2}, the eigenvectors are chosen at random). The remaining d dimensions are
sampled uniformly in the range [−2, 2]. We run experiments varying d from 0 to 19. In each case we
take the 100 points smallest likelihood points as the ground truth anomalies. For each algorithm we
examine the 100 most anomalous points and calculate how many of these belong to the ground truth.
We compare PIDForest with Isolation Forest, Local Outlier Factor (LOF), an algorithm that uses
Expectation Maximization (EM) to fit the data to a mixture of Gaussians, RRCF, SVM, kNN and
PCA. For clarity, the results for the first four algorithms are reported in Fig. 1b and the rest appear in
Fig. 4b in the Appendix. Note that even without noise (d = 0) PIDForest is among the best generic
algorithms. As the number of noisy dimensions increase PIDForest focuses on the dimensions with
signal, so it performs better. Some observations:

1. The performance of iForest degrades rapidly with d, once d ≥ 6 it effectively outputs a random
set. Noticeably, PIDForest performs better than iForest even when d = 0. This is mainly due to
the points between the two centers being classified as normal by iForest. PIDForest classifies
them correctly as anomalous even though they are assigned to leaves that are deep in the tree.

2. The EM algorithm is specifically designed to fit a mixture of two Gaussians, so it does best for
small or zero noise, i.e. when d is small. PIDForest beats it once d > 2.

3. Apart from PIDForest, a few other algorithms such as RRCF, SVM and kNN also do well (see
Fig. 4b in the Appendix)—but their performance is crucially dependent on the fact that the noise
is of the same scale as the Gaussians. If we change the scale of the noise (which could happen
if the measuring unit changes), then the performance of all algorithms except PIDForest drops
significantly. In Figs. 5a and 5b in the Appendix, we repeat the same experiment as above but
with the noisy dimensions being uniform in [−10, 10] (instead of [−2, 2]). The performance of
PIDForest is essentially unchanged, and it does markedly better than all other algorithms.

Robustness to choice of hyperparameters. One of the appealing properties of PIDForest is that
the quality of the output is relatively insensitive to the exact value of the hyper-parameters. We tested
multiple settings and found that each hyper-parameter has a moderate value above which the quality
of the output remains stable. Figure 2a shows precision-recall in the synthetic time-series experiment,
where we vary the parameter k (number of buckets). We see that k = 2 is too little, but there is
relatively small variation between k = 3, 4, 5, 6. Similar behavior was observed for the number of
samples m (see Figure 2b), number of trees t and depth of each tree h, and also with the mixture of
Gaussians experiment. Since these parameters do affect the running time directly, we set them to the
smallest values for which we got good results.

6 Conclusion

We believe that PIDForest is arguably one of the best off-the-shelf algorithms for anomaly detection
on a large, heterogenous dataset. It inherits many of the desirable features of Isolation Forests,
while also improving on it in important ways. Developing provable and scalable approximations to
PIDScore is an interesting algorithmic challenge.

9

Acknowledgment

VS’s contribution were supported by NSF award 1813049.

References
[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM

Comput. Surv., 41(3):15:1–15:58, 2009.

[2] Charu C. Aggarwal. Outlier Analysis. Springer Publishing Company, Incorporated, 2nd edition,
2013. ISBN 9783319475783.

[3] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings of the 8th
IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,
Italy, pages 413–422, 2008.

[4] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random cut forest based
anomaly detection on streams. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2712–2721, 2016.

[5] Tharindu R. Bandaragoda, Kai Ming Ting, David W. Albrecht, Fei Tony Liu, Ye Zhu, and
Jonathan R. Wells. Isolation-based anomaly detection using nearest-neighbor ensembles.
Computational Intelligence, 34(4):968–998, 2018.

[6] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong.
Systematic construction of anomaly detection benchmarks from real data. In Proceedings of the
ACM SIGKDD workshop on outlier detection and description, pages 16–21. ACM, 2013.

[7] Avi Wigderson and Amir Yehudayoff. Population recovery and partial identification. Mach.
Learn., 102(1):29–56, January 2016. ISSN 0885-6125. doi: 10.1007/s10994-015-5489-9. URL
http://dx.doi.org/10.1007/s10994-015-5489-9.

[8] S.A. Goldman and M.J. Kearns. On the complexity of teaching. J. Comput. Syst. Sci., 50
(1):20–31, February 1995. ISSN 0022-0000. doi: 10.1006/jcss.1995.1003. URL http:
//dx.doi.org/10.1006/jcss.1995.1003.

[9] Eyal Kushilevitz, Nathan Linial, Yuri Rabinovich, and Michael E. Saks. Witness sets for families
of binary vectors. J. Comb. Theory, Ser. A, 73(2):376–380, 1996. doi: 10.1006/jcta.1996.0031.
URL https://doi.org/10.1006/jcta.1996.0031.

[10] Balas K. Natarajan. Machine learning: A theoretical approach. Morgan Kaufmann Publishers,
Inc., 1991.

[11] Martin Anthony, Graham Brightwell, Dave Cohen, and John Shawe-Taylor. On exact specifica-
tion by examples. In Proceedings of the Fifth Annual Workshop on Computational Learning The-
ory, COLT ’92, pages 311–318, New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi:
10.1145/130385.130420. URL http://doi.acm.org/10.1145/130385.130420.

[12] Nick Koudas, S Muthukrishnan, and Divesh Srivastava. Optimal histograms for hierarchical
range queries. In PODS, pages 196–204, 2000.

[13] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin J
Strauss. Fast, small-space algorithms for approximate histogram maintenance. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 389–398. ACM,
2002.

[14] Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin J Strauss. Histogramming data
streams with fast per-item processing. In International Colloquium on Automata, Languages,
and Programming, pages 681–692. Springer, 2002.

[15] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms
for histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, March
2006. ISSN 0362-5915. doi: 10.1145/1132863.1132873. URL http://doi.acm.org/
10.1145/1132863.1132873.

10

http://dx.doi.org/10.1007/s10994-015-5489-9
http://dx.doi.org/10.1006/jcss.1995.1003
http://dx.doi.org/10.1006/jcss.1995.1003
https://doi.org/10.1006/jcta.1996.0031
http://doi.acm.org/10.1145/130385.130420
http://doi.acm.org/10.1145/1132863.1132873
http://doi.acm.org/10.1145/1132863.1132873

[16] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[17] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.
2641198. URL http://doi.acm.org/10.1145/2641190.2641198.

[18] Shebuti Rayana. ODDS library, 2016. URL http://odds.cs.stonybrook.edu.

[19] Charu C Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensem-
bles. ACM Sigkdd Explorations Newsletter, 17(1):24–47, 2015.

[20] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised
outlier detection using finite mixtures with discounting learning algorithms. Data Mining and
Knowledge Discovery, 8(3):275–300, 2004.

[21] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134–147, 2017.

[22] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
arXiv preprint arXiv:1901.01588, 2019.

[23] Tharindu R. Bandaragoda, Kai Ming Ting, David W. Albrecht, Fei Tony Liu, Ye Zhu, and
Jonathan R. Wells. rrcf: Implementation of the robust random cut forest algorithm for anomaly
detection on streams. Journal of Open Source Software, 4(35):1336, 2019.

[24] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies. Artif. Intell.
Rev., 22(2):85–126, 2004.

[25] Animesh Patcha and Jung-Min Jerry Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer Networks, 51:3448–3470, 2007.

[26] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Iden-
tifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’00, pages 93–104, New York, NY,
USA, 2000. ACM. ISBN 1-58113-217-4. doi: 10.1145/342009.335388. URL http:
//doi.acm.org/10.1145/342009.335388.

[27] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional spaces. In
Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery, PKDD ’02, pages 15–26, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-
44037-2. URL http://dl.acm.org/citation.cfm?id=645806.670167.

[28] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. SIGMOD Rec., 29(2):427–438, May 2000. ISSN 0163-5808. doi:
10.1145/335191.335437. URL http://doi.acm.org/10.1145/335191.335437.

[29] Tao Shi and Steve Horvath. Unsupervised learning with random forest predictors. Journal of
Computational and Graphical Statistics, 15(1):118–138, 2006.

[30] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996. URL http:
//dl.acm.org/citation.cfm?id=3001460.3001507.

[31] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic
subspace clustering of high dimensional data for data mining applications. SIGMOD Rec.,
27(2):94–105, June 1998. ISSN 0163-5808. doi: 10.1145/276305.276314. URL http:
//doi.acm.org/10.1145/276305.276314.

11

http://doi.acm.org/10.1145/2641190.2641198
http://odds.cs.stonybrook.edu
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388
http://dl.acm.org/citation.cfm?id=645806.670167
http://doi.acm.org/10.1145/335191.335437
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://doi.acm.org/10.1145/276305.276314
http://doi.acm.org/10.1145/276305.276314

A Relation to prior work

Anomaly detection is a widely studied area with a number of comprehensive surveys and books
[1, 24, 25]. In the following we discuss the basic techniques and how they relate to our work.

Proximity based methods: Many works detect anomalies by computing distances to nearest neigh-
bors in various methods [5, 26, 27, 28, 29]. There are many different methods with pros and cons,
which we do not discuss here. The important common feature is that these algorithms utilize a notion
of distance, typically Euclidean, as a proxy for similarly across points. Once the notion of distance is
established it is used find the closest neighbor, or the close k neighbors, it is used to define a ball of a
given radius around a point and so on.

There are few major drawbacks with these approaches. First, as the number of dimensions increases
the distances between points become more and more similar, and notion of a local neighborhood
looses its meaning. Further, distance is an ill suited notion to the general case where some columns
are categorical and some numeric and where we different columns employ different units. Isolation
based algorithms work with the input basis, they do not compute linear combinations of attributes
which are required to change basis. This is an advantage in dealing with heterogeneous data.

Having said that, for homogeneous datasets that involve audio or visual inputs (like Vowels/MNIST),
the input basis may not be the right basis. If the signal has sparsity in some special basis, then `2
distance, or some variant of it like Mahalanobis distance might be a natural metric for such settings.
In such situations kNN, PCA might do better than isolation based approaches.

Density based algorithms: Density has been used as a criterion for several works on clustering. For
instance, DBSCAN [30] builds clusters from maximal connected components out of dense balls (in a
chosen metric) of a certain radius. Outliers are points that do not belong in any such cluster. The
work of Agrawal et al. [31] builds clusters that can be expressed as connected unions of subcubes. A
key difference from these works is that we do not attempt to discover the structure (such as clusters)
in the normal data. Further, rather than only consider balls/subcubes at a particular scale (this scale is
a hyperparameter), our algorithms attempt to minimize density over subcubes at all scales.

Isolation Forest: The most relevant algorithm is the widely used Isolation Forest [3], a detailed
comparison of the technical differences between the two algorithms is in Section 3. Since [3]
chooses randomly which column to split, this causes Isolation Forest’s accuracy to degrade when
extra dimensions are introduced (this is a well known issue, see [4, 5]). Robust Isolation Forest
[4] deals with this by choosing a column based on the size of its range. This makes the algorithm
scale-sensitive and results change based on the units with which the data is reported. PIDForest on
the other hand zooms on the columns which have the most signal, which makes it robust to noisy
and irrelevant dimensions. Another difference is that Isolation Forest insists on full isolation and
then computes the average leaf depth, which makes it sensitive to duplicates or near duplicates. See
Section 5 where we demonstrate these points via experiments.

B Experiments on Synthetic Time Series Data

Time Series: We create a periodic time series using a simple sin function with a period of 40.
We choose 10 locations and fix the value for the next 20 points following each of these locations.
These regions are the anomalies. Finally we add small Gaussian noise to the series. See Fig. 3a for
an example. As in Section 4, we shingle the time series with a window of 10. Fig. 3b shows the
ROC curve (true positive rate (TPR) vs. false positive rate (FPR)), averaged over 10 runs. Since all
dimensions are a priori identical, choosing splits at random seems natural. So we expect iForest to
perform well, and indeed it achieves a precision of almost 1 while catching 5 out of the 10 anomalies.
However, iForest struggles to catch all anomalies, and PIDForest has a significantly better precision
for high recall.

C Finding optimal splits efficiently

In this section we present the algorithm used to split a single dimension. The problem is easy in the
discrete setting, so we focus on the continuous case. We first restate the problem we which solve.

12

1.0

0.5

0.0

0.5

1.0

(a) An example of a time series, the red dots repre-
sent the beginning of an anomalous segment.

0.00 0.02 0.04 0.06
FPR

0.6

0.7

0.8

0.9

TP
R

Time Series - RoC

Isolation Forest
PIDForest

(b) Performance comparison on time series data.

Figure 3: Synthetic experiments on time series data.

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
Isolation Forest
EM
LOF

(a) Comparison of PIDForest with Isolation Forest,
EM and LOF (same as Fig. 1b, duplicated for ease
of comparison).

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
RRCF
SVM
kNN
PCA

(b) Comparison of PIDForest with RRCF, SVM,
kNN and PCA.

Figure 4: Synthetic experiments on Gaussian data (noisy dimensions are uniform in [−2, 2]). For
clarity, we split the results into two figures. y−axis measures how many of the 100 true anomalies
were reported by the algorithm in the top 100 anomalies.

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
Isolation Forest
EM
LOF

(a) Comparison of PIDForest with Isolation Forest,
EM and LOF.

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
RRCF
SVM
kNN
PCA

(b) Comparison of PIDForest with RRCF, SVM,
kNN and PCA.

Figure 5: Synthetic experiments on Gaussian data (noisy dimensions are uniform in [−10, 10]). For
clarity, we split the results into two figures. y−axis measures how many of the 100 true anomalies
were reported by the algorithm in the top 100 anomalies.

13

In what follows, we may assume the dataset P ⊆ I is one-dimensional, since we work with the
projection of the dataset onto the dimension j.

For interval I , a k-interval partition of I is a partition into a set {I1, . . . , Ik} of disjoint intervals.
Letting qi := |P ∩ Ii|/|P |, our goal is to maximize

Var(P, {Ii}i∈[k]) =
∑
i∈[k]

qiρ(Ii)2 − ρ(I)2. (5)

Since the term ρ(I)2 is independent of the partition, we can drop it and restate the problem as follows.

Optimal k-split: Given a set P of m points x1 ≤ · · · ≤ xm from an interval I , and a parameter k,
find a k-interval partition of I so as to maximize

cost(P, k) =

k∑
i=1

qiρ(Ii)
2. (6)

By shifting and scaling, we will assume that the bounding interval I = [0, 1]. We also assume the xis
are distinct (this is not needed, but eases notation). To simplify matters, we restrict to those intervals
whose start and end points are either e0 = 0, em = 1, or ei = (xi + xi+1)/2 for i ∈ [m− 1]. This
avoids issues that might arise from the precision of the end points, and from having points lie on
the boundary of two intervals (to which interval should they belong?). It reduces the search space
of intervals to O(m2). One can use dynamic programming to give an O(m2k) time and O(mk)
space algorithm to solve the problem exactly. However this is too costly, since the procedure runs in
an inner loop of PIDForest Fit. Rather we show the problem reduces to that of computing optimal
k-histograms for an array, for which there are efficient streaming approximation algorithms known.

First some notation. An interval in [m] is J = {i : ` ≤ i ≤ u}, and |J | = u− `+ 1. Given a function
f : [m]→ R and an interval J ⊆ [m], let f̄(J) =

∑
i∈J f(i)/|J | denote the average of f over the

interval J . A k-interval partition of [m] is a set of pairwise disjoint intervals {J1, . . . , Jk} whose
union is [m]. Given j ∈ [m], let J(j) ∈ I denote the interval containing it.

Optimal k-histograms: Given f : [m]→ R, find a k-interval partition of [m] which maximizes

cost(f, k) =
∑
i∈[k]

|Ji|(f̄(Ji))
2. (7)

We show in Lemma 5 that this is equivalent to finding the k-histogram that minimizes the `2-error.
We now give the reduction from computing k-splits to k-histograms. Recall that e0 = 0, em = 1, or
ei = (xi + xi+1)/2 for i ∈ [m− 1]. For each i ∈ [m], let f(i) = ei − ei−1 denote the length of the
interval [ei−1, ei] which contains xi. There is now a natural correspondence between the discrete
interval J`,u = {`, · · · , u} and the continuous interval I`,u = [e`−1, eu] which contains the points
{x`, · · · , xu} from P , where

f̄(J`,u) =

∑u
i=`(ei − ei−1)

u− `+ 1
=
eu − e`−1
u− `+ 1

= ρ(I`,u)

Thus a k interval partition of [m] translates to a k-interval partition of I , with objective function

cost(f, k) =
∑
i∈[k]

|Ji|(f̄(Ji))
2 =

∑
i∈[k]

|P ∩ Ii|ρ(Ii)
2 = m · cost(P, k).

An efficient streaming algorithm for computing approximately optimal k-histograms is given by
Guha et al. [15], which requires space O(m+ k2) and time O(m+ k3) (we set their parameter ε to
0.1). We use their algorithm in the Fit procedure to find good splits.

Comparison with exact dynamic programming algorithm. As discussed, the variance maxi-
mization problem also admits a much less efficient but exact dynamic programming algorithm. On a
300 dimensional array, the algorithm of [15] is 50x faster than the exact dynamic program in finding
a best 5-bucket histogram (0.05 s vs 2.5s). This is as expected given that the complexity of the DP is
O(m2), whereas the approximate algorithm takes time O(m).

14

D Proofs

Lemma 4. For x ∈ T ,
max
C3x

ρ0,1(T , C) = 2d−pidLength(x,T).

Proof: Given S ⊆ [d], let

Cx(S) = {y ∈ {0, 1}d s.t. yS = xS}

be the subcube consisting of 2d−|S| points that agree with x on S. Since Cx(S)∩T = Imp(x, T , S),

ρ0,1(T , Cx(S)) =
|Cx(S)|/|Cx(S) ∩ T |

|T |
=

2d−|S|

|Imp(x, T , S)|
= 2d−(|S|+log2(|Imp(x,T ,S)|))

Iterating over all subsets S gives all the subcubes that contain x. The RHS is minimized by taking
S = PID(x, T) by Definition 2. This gives the desired result.

Lemma 5. The k-histogram which maximizes the cost minimizes the squared `2error.

Proof: Given a k-interval partition {J1, . . . , Jk}, the minimum `2 error is obtained by approximating
f by its average over each interval. The squared `2 errors is given by∑
j∈m

(f̄(J(j))− f(j))2 =
∑
j∈[m]

(f(j)2 − 2f̄(J(j))f(j) + f̄(J(j))2)

=
∑
j∈[m]

f(j)2 −
∑
i∈[k]

2f̄(Ji)
∑
j∈Ji

f(j) +
∑
i∈[k]

∑
j∈Ji

f̄(J(j))2)

=
∑
j∈[m]

f(j)2 − 2
∑
i∈[k]

|Ji|(f̄(Ji))
2 +

∑
i∈[k]

|Ji|(f̄(Ji))
2 since

∑
j∈Ji

f(j) = |Ji|f̄(Ji)

=
∑
j∈J

f(j)2 −
∑
i∈[k]

|Ji|(f̄(Ji))
2

=
∑
j∈J

f(j)2 − cost(f, k)

Hence maximizing cost(f, k) is equivalent to minimizing the squared error of the histogram.

15

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(a) ROC curve for Thyroid dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(b) ROC curve for Mammography dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(c) ROC curve for Siesmic dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(d) ROC curve for Satimage-2 dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(e) ROC curve for Vowels dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(f) ROC curve for Musk dataset.

Figure 6: ROC curves for the first six datasets from Table 1. For visual clarity, we omit LOF and
SVM which did not perform as well as the other algorithms.

16

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(a) ROC curve for http dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(b) ROC curve for smtp dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(c) ROC curve for NYC taxi dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(d) ROC curve for Ambient temperature dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(e) ROC curve for CPU utilization dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(f) ROC curve for Machine temperature dataset.

Figure 7: ROC curves for the last six datasets from Table 1. For visual clarity, we omit LOF and
SVM which did not perform as well as the other algorithms.

17

Data set n d #outliers (%)
Thyroid 7200 6 534 (7.42%)

Mammography (Mammo.) 11183 6 250 (2.32%)

Seismic 2584 15 170 (6.5%)

Satimage-2 5803 36 71 (1.2%)

Vowels 1456 12 50 (3.4%)

Musk 3062 166 97 (3.2%)

http 567479 3 2211 (0.4%)

smtp 95156 3 30 (0.03%)

NYC taxicab 10321 10 1035 (10%)

Ambient Temperature (A.T.) 7267 10 726 (10%)

CPU utilization 18050 10 1499 (8.3%)

Machine temperature (M.T.) 22695 10 2268 (10%)

Table 2: Details of real-world datasets. The first 8 datasets are derived from classification tasks, and
the last 4 are from time series with known anomalies.

Data set PIDForest iForest RRCF LOF SVM kNN PCA
Thyroid∗ 0.751 ± 0.035 0.641 ± 0.023 0.530 ± 0.005 0.492 0.494 0.495 0.614

Mammography∗ 0.829 ± 0.016 0.722 ± 0.016 0.797 ± 0.013 0.628 0.872 0.817 0.768

Table 3: For the first two datasets in Table 1 we add 50 noisy dimensions to examine the performance
of algorithms in the presence of irrelevant attributes. We bold the algorithm(s) which get the best
AUC, up to statistical error.

18

	Introduction
	Partial Identification and PIDScore
	The Boolean setting
	The continuous setting

	The PIDForest algorithm
	Real-world Datasets
	Synthetic Data
	Conclusion
	Relation to prior work
	Experiments on Synthetic Time Series Data
	Finding optimal splits efficiently
	Proofs

