
Appendix: Envy-Free Classification

A Natarajan Dimension Primer

We briefly present the Natarajan dimension. For more details, we refer the reader to [27].

We say that a family G multi-class shatters a set of points x1, . . . , xn if there exist labels y1, . . . yn
and y

0

1, . . . , y
0

n such that for every i 2 [n] we have yi 6= y
0

i, and for any subset C ⇢ [n] there exists
g 2 G such that g(xi) = yi if i 2 C and g(xi) = y

0

i otherwise. The Natarajan dimension of a family
G is the cardinality of the largest set of points that can be multi-class shattered by G.

For example, suppose we have a feature map  : X ⇥ Y ! Rq that maps each individual-outcome
pair to a q-dimensional feature vector, and consider the family of functions that can be written as
g(x) = arg maxy2Y

w
> (x, y) for weight vectors w 2 Rq . This family has Natarajan dimension at

most q.

For a set S ⇢ X of points, we let G
��
S

denote the restriction of G to S, which is any subset of G of
minimal size such that for every g 2 G there exists g0 2 G

��
S

such that g(x) = g
0(x) for all x 2 S.

The size of G
��
S

is the number of different labelings of the sample S achievable by functions in G.
The following Lemma is the analogue of Sauer’s lemma for binary classification.
Lemma 1 (Natarajan). For a family G of Natarajan dimension d and any subset S ⇢ X , we have��G
��
S

��  |S|
d
|Y|

2d
.

Classes of low Natarajan dimension also enjoy the following uniform convergence guarantee.
Lemma 2. Let G have Natarajan dimension d and fix a loss function ` : G ⇥ X ! [0, 1]. For any

distribution P over X , if S is an i.i.d. sample drawn from P of size O( 1
✏2 (d log |Y|+ log 1

� )), then

with probability at least 1� � we have supg2G

��Ex⇠P [`(g, x)]�
1
n

P
x2S `(g, x)

��  ✏.

B Appendix for Section 3

Theorem 1. Let d be a metric on X , P be a distribution on X , and u be an L-Lipschitz utility

function. Let S be a set of individuals such that there exists X̂ ⇢ X with P (X̂ ) � 1 � ↵ and

supx2X̂
d(x,NNS(x))  �/(2L). Then for any classifier h : S ! �(Y) that is EF on S, the

extension h : X ! �(Y) given by h(x) = h(NNS(x)) is (↵,�)-EF on P .

Proof. Let h : S ! �(Y) be any EF classifier on S and h : X ! �(Y) be the nearest neighbor
extension. Sample x and x

0 from P . Then, x belongs to the subset X̂ with probability at least
1 � ↵. When this occurs, x has a neighbor within distance �/(2L) in the sample. Using the
Lipschitz continuity of u, we have |u(x, h(x)) � u(NNS(x), h(NNS(x)))|  �/2. Similarly,
|u(x, h(x0)) � u(NNS(x), h(NNS(x0)))|  �/2. Finally, since NNS(x) does not envy NNS(x0)
under h, it follows that x does not envy x

0 by more than � under h.

Lemma 3. Suppose X ⇢ Rq
, d(x, x0) = kx�x

0
k2, and let D = supx,x02X

d(x, x0) be the diameter

of X . For any distribution P over X , � > 0, ↵ > 0, and � > 0 there exists X̂ ⇢ X such that P (X̂ ) �

1� ↵ and, if S is an i.i.d. sample drawn from P of size |S| = O( 1
↵ (

LD
p
q

� )q(d log
LD

p
q

� + log 1
� )),

then with probability at least 1� �, supx2X̂
d(x,NNS(x))  �/(2L).

Proof. Let C be the smallest cube containing X . Since the diameter of X is D, the side-length of C
is at most D. Let s = �/(2L

p
q) be the side-length such that a cube with side-length s has diameter

�/(2L). It takes at most m = dD/se
q cubes of side-length s to cover C. Let C1, . . . , Cm be such a

covering, where each Ci has side-length s.

Let Ci be any cube in the cover for which P (Ci) > ↵/m. The probability that a sample of
size n drawn from P does not contain a sample in Ci is at most (1 � ↵/m)n  e

�n↵/m. Let

12



I = {i 2 [m] : P (Ci) � ↵/m}. By the union bound, the probability that there exists i 2 I such
that Ci does not contain a sample is at most me

�n↵/m. Setting

n =
m

↵
ln

m

�

= O

✓
1

↵

✓
LD

p
q

�

◆q✓
q log

LD
p
q

�
+ log

1

�

◆◆

results in this upper bound being �. For the remainder of the proof, assume this high probability event
occurs.

Now let X̂ =
S

i2I Ci. For each j 62 I , we know that P (Cj) < ↵/m. Since there at most m such
cubes, their total probability mass is at most ↵. It follows that P (X̂ ) � 1� ↵. Moreover, every point
x 2 X̂ belongs to one of the cubes Ci with i 2 I , which also contains a sample point. Since the
diameter of the cubes in our cover is �/(2L), it follows that dist(x,NNS(x))  �/(2L) for every
x 2 X̂ , as required.

Theorem 2. There exists a space of individuals X ⇢ Rq
, and a distribution P over X such

that, for every randomized algorithm A that extends classifiers on a sample to X , there exists an

L-Lipschitz utility function u such that, when a sample of individuals S of size n = 4q/2 is drawn

from P without replacement, there exists an EF classifier on S for which, with probability at least

1� 2 exp(�4q/100)� exp(�4q/200) jointly over the randomness of A and S, its extension by A is

not (↵,�)-EF with respect to P for any ↵ < 1/25 and � < L/8.

Proof. Let the space of individuals be X = [0, 1]q and the outcomes be Y = {0, 1}. We partition the
space X into cubes of side length s = 1/4. So, the total number of cubes is m = (1/s)q = 4q. Let
these cubes be denoted by c1, c2, . . . cm, and let their centers be denoted by µ1, µ2, . . . µm. Next, let
P be the uniform distribution over the centers µ1, µ2, . . . µm. For brevity, whenever we say “utility
function” in the rest of the proof, we mean “L-Lipschitz utility function.”

To prove the theorem, we use Yao’s minimax principle [33]. Specifically, consider the following
two-player zero sum game. Player 1 chooses a deterministic algorithm D that extends classifiers on
a sample to X , and player 2 chooses a utility function u on X . For any subset S ⇢ X , define the
classifier hu,S : S ! Y by assigning each individual in S to his favorite outcome with respect to the
utility function u, i.e. hu,S(x) = arg maxy2Y

u(x, y) for each x 2 S, breaking ties lexicographically.
Define the cost of playing algorithm D against utility function u as the probability over the sample S

(of size m/2 drawn from P without replacement) that the extension of hu,S by D is not (↵,�)-EF
with respect to P for any ↵ < 1/25 and � < L/8. Yao’s minimax principle implies that for any
randomized algorithm A, its expected cost with respect to the worst-case utility function u is at
least as high as the expected cost of any distribution over utility functions that is played against
the best deterministic algorithm D (which is tailored for that distribution). Therefore, we establish
the desired lower bound by choosing a specific distribution over utility functions, and showing that
the best deterministic algorithm against it has an expected cost of at least 1 � 2 exp(�m/100) �
exp(�m/200).

To define this distribution over utility functions, we first sample outcomes y1, y2, . . . , ym i.i.d. from
Bernoulli(1/2). Then, we associate each cube center µi with the outcome yi, and refer to this outcome
as the favorite of µi. For brevity, let ¬y denote the outcome other than y, i.e. ¬y = (1� y). For any
x 2 X , we define the utility function as follows. Letting cj be the cube that x belongs to,

u(x, yj) = L

h
s

2
� kx� µjk1

i
; u(x,¬yj) = 0. (6)

See Figure 5 for an illustration.

We claim that the utility function of Equation (6) is indeed L-Lipschitz with respect to any Lp norm.
This is because for any cube ci, and for any x, x

0
2 ci, we have

|u(x, yi)� u(x0
, yi)| = L |kx� µik1 � kx

0
� µik1|

 Lkx� x
0
k1  Lkx� x

0
kp.

Moreover, for the other outcome, we have u(x,¬yi) = u(x0
,¬yi) = 0. It follows that u is L-

Lipschitz within every cube. At the boundary of the cubes, the utility for any outcome is 0, and hence
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Figure 5: Illustration of X and an example utility function u for d = 2. Red shows preference for 1,
blue shows preference for 0, and darker shades correspond to more intense preference. (The gradients
are rectangular to match the L1 norm, so, strangely enough, the misleading X pattern is an optical
illusion.)

u is also continuous throughout X . Because it is piecewise Lipschitz and continuous, u must be
L-Lipschitz throughout X , with respect to any Lp norm.

Next, let D be an arbitrary deterministic algorithm that extends classifiers on a sample to X . We draw
the sample S of size m/2 from P without replacement. Consider the distribution over favorites of in-
dividuals in S. Each individual in S has a favorite that is sampled independently from Bernoulli(1/2).
Hence, by Hoeffding’s inequality, the fraction of individuals in S with a favorite of 0 is between
1
2 � ✏ and 1

2 + ✏ with probability at least 1� 2 exp(�m✏
2). The same holds simultaneously for the

fraction of individuals with favorite 1.

Given the sample S and the utility function u on the sample (defined by the instantiation of their
favorites), consider the classifier hu,S , which maps each individual µi in the sample S to his favorite
yi. This classifier is clearly EF on the sample. Consider the extension h

D

u,S of hu,S to the whole of X
as defined by algorithm D. Define two sets Z0 and Z1 by letting Zy = {µj /2 S | h

D

u,S(µj) = y},
and let y⇤ denote an outcome that is assigned to at least half of the out-of-sample centers, i.e., an
outcome for which |Zy⇤ | � |Z¬y⇤ |. Furthermore, let ✓ denote the fraction of out-of-sample centers
assigned to y⇤. Note that, since |S| = m/2, the number of out-of-sample centers is also exactly m/2.
This gives us |Zy⇤ | = ✓

m
2 , where ✓ �

1
2 .

Consider the distribution of favorites in Zy⇤ (these are independent from the ones in the sample
since Zy⇤ is disjoint from S). Each individual in this set has a favorite sampled independently from
Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in Zy⇤ whose favorite is
¬y⇤ is at least 1

2 � ✏ with probability at least 1� exp(�m
2 ✏

2). We conclude that with a probability at
least 1� 2 exp(�m✏

2)� exp(�m
2 ✏

2), the sample S and favorites (which define the utility function
u) are such that: (i) the fraction of individuals in S whose favorite is y 2 {0, 1} is between 1

2 � ✏ and
1
2 + ✏, and (ii) the fraction of individuals in Zy⇤ whose favorite is ¬y⇤ is at least 1

2 � ✏.

We now show that for such a sample S and utility function u, hD

u,S cannot be (↵,�)-EF with respect
to P for any ↵ < 1/25 and � < L/8. To this end, sample x and x

0 from P . One scenario where x

envies x0 occurs when (i) the favorite of x is ¬y⇤, (ii) x is assigned to y⇤, and (iii) x0 is assigned to
¬y⇤. Conditions (i) and (ii) are satisfied when x is in Zy⇤ and his favorite is ¬y⇤. We know that at
least a 1

2 � ✏ fraction of the individuals in Zy⇤ have the favorite ¬y⇤. Hence, the probability that
conditions (i) and (ii) are satisfied by x is at least ( 12 � ✏)|Zy⇤ |

1
m = ( 12 � ✏) ✓2 . Condition (iii) is

satisfied when x
0 is in S and has favorite ¬y⇤ (and hence assigned ¬y⇤), or, if x0 is in Z¬y⇤ . We

know that at least a
�
1
2 � ✏

�
fraction of the individuals in S have the favorite ¬y⇤. Moreover, the size

of Z¬y⇤ is (1� ✓)m2 . So, the probability that condition (iii) is satisfied by x
0 is at least

�
1
2 � ✏

�
|S|+ |Z¬y⇤ |

m
=

1

2

✓
1

2
� ✏

◆
+

1

2
(1� ✓).
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Since x and x
0 are sampled independently, the probability that all three conditions are satisfied is at

least ✓
1

2
� ✏

◆
✓

2
·


1

2

✓
1

2
� ✏

◆
+

1

2
(1� ✓)

�
.

This expression is a quadratic function in ✓, that attains its minimum at ✓ = 1 irrespective of the
value of ✏. Hence, irrespective of D, this probability is at least

⇥
1
2

�
1
2 � ✏

�⇤2. For concreteness, let
us choose ✏ to be 1/10 (although it can be set to be much smaller). On doing so, we have that the
three conditions are satisfied with probability at least 1/25. And when these conditions are satisfied,
we have u(x, hD

u,S(x)) = 0 and u(x, hD

u,S(x
0)) = Ls/2, i.e., x envies x

0 by Ls/2 = L/8. This
shows that, when x and x

0 are sampled from P , with probability at least 1/25, x envies x0 by L/8.
We conclude that with probability at least 1 � 2 exp(�m/100) � exp(�m/200) jointly over the
selection of the utility function u and the sample S, the extension of hu,S by D is not (↵,�)-EF with
respect to P for any ↵ < 1/25 and � < L/8.

To convert the joint probability into expected cost in the game, note that for two discrete, independent
random variables X and Y , and for a Boolean function E(X,Y ), it holds that

PrX,Y (E(X,Y ) = 1) = EX [PrY (E(X,Y ) = 1)] . (7)

Given sample S and utility function u, let E(u, S) be the Boolean function that equals 1 if and only
if the extension of hu,S by D is not (↵,�)-EF with respect to P for any ↵ < 1/25 and � < L/8.
From Equation (7), Pru,S(E(u, S) = 1) is equal to Eu [PrS(E(u, S) = 1)]. The latter term is exactly
the expected value of the cost, where the expectation is taken over the randomness of u. It follows
that the expected cost of (any) D with respect to the chosen distribution over utilities is at least
1� 2 exp(�m/100)� exp(�m/200).

C Appendix for Section 4

This section is devoted to proving our main result:

Theorem 3. Suppose G is a family of deterministic classifiers of Natarajan dimension d, and let

H = H(G,m) for m 2 N. For any distribution P over X , � > 0, and � > 0, if S = {(xi, x
0

i)}
n
i=1 is

an i.i.d. sample of pairs drawn from P of size

n � O

✓
1

�2

✓
dm

2 log
dm|Y| log(m|Y|/�)

�
+ log

1

�

◆◆
,

then with probability at least 1� �, every classifier h 2 H that is (↵,�)-pairwise-EF on S is also

(↵+ 7�,� + 4�)-EF on P .

We start with an observation that will be required later.
Lemma 4. Let G = {g : X ! Y} have Natarajan dimension d. For g1, g2 2 G, let (g1, g2) : X !

Y
2

denote the function given by (g1, g2)(x) = (g1(x), g2(x)) and let G
2 = {(g1, g2) : g1, g2 2 G}.

Then the Natarajan dimension of G
2

is at most 2d.

Proof. Let D be the Natarajan dimension of G2. Then we know that there exists a collection of points
x1, . . . , xD 2 X that is shattered by G

2, which means there are two sequences q1, . . . , qn 2 Y
2 and

q
0

1, . . . , q
0

n 2 Y
2 such that for all i we have qi 6= q

0

i and for any subset C ⇢ [D] of indices, there
exists (g1, g2) 2 G

2 such that (g1, g2)(xi) = qi if i 2 C and (g1, g2)(xi) = q
0

i otherwise.

Let n1 =
PD

i=1 I{qi1 6= q
0

i1} and n2 =
PD

i=1 I{qi2 6= q
0

i2} be the number of pairs on which the
first and second labels of qi and q

0

i disagree, respectively. Since none of the n pairs are equal, we
know that n1 + n2 � D, which implies that at at least one of n1 or n2 must be � D/2. Assume
without loss of generality that n1 � D/2 and that qi1 6= q

0

i1 for i = 1, . . . , n1. Now consider any
subset of indices C ⇢ [n1]. We know there exists a pair of functions (g1, g2) 2 G

2 with (g1, g2)(xi)
evaluating to qi if i 2 C and q

0

i if i 62 C. But then we have g1(xi) = qi1 if i 2 C and g1(xi) = q
0

i1 if
i 62 C, and qi1 6= q

0

i1 for all i 2 [n1]. It follows that G shatters x1, . . . , xn1 , which consists of at least
D/2 points. Therefore, the Natarajan dimension of G2 is at most 2d, as required.

We now turn two the theorem’s two main steps, presented in the following two lemmas.
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Lemma 5. Let H ⇢ {h : X ! �(Y)} be a finite family of classifiers. For any � > 0, � > 0,

and � � 0 if S = {(xi, x
0

i)}
n
i=1 is an i.i.d. sample of pairs from P of size n �

1
2�2 ln

|H|

� , then

with probability at least 1 � �, every h 2 H that is (↵,�)-pairwise-EF on S (for any ↵) is also

(↵+ �,�)-EF on P .

Proof. Let f(x, x0
, h) = I{u(x, h(x)) < u(x, h(x0))� �} be the indicator that x is envious of x0 by

at least � under classifier h. Then f(xi, x
0

i, h) is a Bernoulli random variable with success probability
Ex,x0⇠P [f(x, x0

, h)]. Applying Hoeffding’s inequality to any fixed hypothesis h 2 H guarantees that
PrS(Ex,x0⇠P [f(x, x0

, h)] � 1
n

Pn
i=1 f(xi, x

0

i, h) + �)  exp(�2n�2). Therefore, if h is (↵,�)-EF
on S, then it is also (↵ + �,�)-EF on P with probability at least 1 � exp(�2n�2). Applying the
union bound over all h 2 H and using the lower bound on n completes the proof.

Next, we show that H(G,m) can be covered by a finite subset. Since each classifier in H is determined
by the choice of m functions from G and mixing weights ⌘ 2 �m, we will construct finite covers
of G and �m. Our covers Ĝ and �̂m will guarantee that for every g 2 G, there exists ĝ 2 Ĝ such
that Prx⇠P (g(x) 6= ĝ(x))  �/m. Similarly, for any mixing weights ⌘ 2 �m, there exists ⌘̂ 2 �m

such that k⌘ � ⌘̂k1  �. If h 2 H(G,m) is the mixture of g1, . . . , gm with weights ⌘, we let ĥ be
the mixture of ĝ1, . . . , ĝm with weights ⌘̂. This approximation has two sources of error: first, for
a random individual x ⇠ P , there is probability up to � that at least one gi(x) will disagree with
ĝi(x), in which case h and ĥ may assign completely different outcome distributions. Second, even in
the high-probability event that gi(x) = ĝi(x) for all i 2 [m], the mixing weights are not identical,
resulting in a small perturbation of the outcome distribution assigned to x.

Lemma 6. Let G be a family of deterministic classifiers with Natarajan dimension d, and let

H = H(G,m) for some m 2 N. For any � > 0, there exists a subset Ĥ ⇢ H of size

O
� (dm|Y|

2 log(m|Y|/�))dm

�(d+1)m

�
such that for every h 2 H there exists ĥ 2 H satisfying:

1. Prx⇠P (kh(x)� ĥ(x)k1 > �)  �.

2. If S is an i.i.d. sample of individuals of size O(m
2

�2 (d log |Y| + log 1
� )) then w.p. � 1� �,

we have kh(x)� ĥ(x)k1  � for all but a 2�-fraction of x 2 S.

Proof. As described above, we begin by constructing finite covers of�m and G. First, let �̂m ⇢ �m

be the set of distributions over [m] where each coordinate is a multiple of �/m. Then we have
|�̂m| = O((m� )

m) and for every p 2 �m, there exists q 2 �̂m such that kp� qk1  �.

In order to find a small cover of G, we use the fact that it has low Natarajan dimension. This implies
that the number of effective functions in G when restricted to a sample S

0 grows only polynomially
in the size of S0. At the same time, if two functions in G agree on a large sample, they will also agree
with high probability on the distribution.

Formally, let S0 be an i.i.d. sample drawn from P of size O(m
2

�2 d log |Y|), and let Ĝ = G
��
S0 be any

minimal subset of G that realizes all possible labelings of S0 by functions in G. We now argue that with
probability 0.99, for every g 2 G there exists ĝ 2 Ĝ such that Prx⇠P (g(x) 6= ĝ(x))  �/m. For any
pair of functions g, g0 2 G, let (g, g0) : X ! Y

2 be the function given by (g, g0)(x) = (g(x), g0(x)),
and let G2 = {(g, g0) : g, g

0
2 G}. The Natarajan dimension of G2 is at most 2d by Lemma 4.

Moreover, consider the loss c : G2
⇥ X ! {0, 1} given by c(g, g0, x) = I{g(x) 6= g

0(x)}. Applying
Lemma 2 with the chosen size of |S0

| ensures that with probability at least 0.99 every pair (g, g0) 2 G
2

satisfies ����� E
x⇠P

[c(g, g0, x)]�
1

|S0|

X

x2S0

c(g, g0, x)

����� 
�

m
.

By the definition of Ĝ, for every g 2 G, there exists ĝ 2 Ĝ for which c(g, ĝ, x) = 0 for all x 2 S
0,

which implies that Prx⇠P (g(x) 6= ĝ(x))  �/m.
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Using Lemma 1 to bound the size of Ĝ, we have that

|Ĝ|  |S
0
|
d
|Y|

2d = O

 ✓
m

2

�2
d|Y|

2 log |Y|

◆d
!
.

Since this construction succeeds with non-zero probability, we are guaranteed that such a set Ĝ exists.
Finally, by an identical uniform convergence argument, it follows that if S is a fresh i.i.d. sample of
the size given in Item 2 of the lemma’s statement, then, with probability at least 1� �, every g and ĝ

will disagree on at most a 2�/m-fraction of S, since they disagree with probability at most �/m on
P .

Next, let Ĥ = {h~g,⌘ : ~g 2 Ĝ
m
, ⌘ 2 �̂m} be the same family as H, except restricted to choosing

functions from Ĝ and mixing weights from �̂m. Using the size bounds above and the fact that�N
m

�
= O((Nm )m), we have that

|Ĥ| =

✓
|Ĝ|

m

◆
· |�̂m| = O

✓
(dm2

|Y|
2 log(m|Y|/�))dm

�(2d+1)m

◆
.

Suppose that h is the mixture of g1, . . . , gm 2 G with weights ⌘ 2 �m. Let ĝi be the approximation
to gi for each i, let ⌘̂ 2 �̂m be such that k⌘� ⌘̂k1  �, and let ĥ be the random mixture of ĝ1, . . . , ĝm
with weights ⌘̂. For an individual x drawn from P , we have gi(x) 6= ĝi(x) with probability at most
�/m, and therefore they all agree with probability at least 1� �. When this event occurs, we have
kh(x)� ĥ(x)k1  k⌘ � ⌘̂k1  �.

The second part of the claim follows by similar reasoning, using the fact that for the given sample size
|S|, with probability at least 1� �, every g 2 G disagrees with its approximation ĝ 2 Ĝ on at most a
2�/m-fraction of S. This means that ĝi(x) = gi(x) for all i 2 [m] on at least a (1� 2�)-fraction of
the individuals x in S. For these individuals, kh(x)� ĥ(x)k1  k⌘ � ⌘̂k1  �.

Combining the generalization guarantee for finite families given in Lemma 5 with the finite approxi-
mation given in Lemma 6, we are able to show that envy-freeness also generalizes for H(G,m).

Proof of Theorem 3. Let Ĥ be the finite approximation to H constructed in Lemma 6. If the sample is
of size |S| = O( 1

�2 (dm log(dm|Y| log |Y|/�) + log 1
� )), we can apply Lemma 5 to this finite family,

which implies that for any �
0
� 0, with probability at least 1 � �/2 every ĥ 2 Ĥ that is (↵0

,�
0)-

pairwise-EF on S (for any ↵
0) is also (↵0 + �,�

0)-EF on P . We apply this lemma with �
0 = � + 2�.

Moreover, from Lemma 6, we know that if |S| = O(m
2

�2 (d log |Y|+ log 1
� )), then with probability at

least 1� �/2, for every h 2 H, there exists ĥ 2 Ĥ satisfying kh(x)� ĥ(x)k1  � for all but a 2�-
fraction of the individuals in S. This implies that on all but at most a 4�-fraction of the pairs in S, h and
ĥ satisfy this inequality for both individuals in the pair. Assume these high probability events occur.
Finally, from Item 1 of the lemma we have that Prx1,x2⇠P (maxi=1,2 kh(xi)� ĥ(xi)k1 > �)  2�.

Now let h 2 H be any classifier that is (↵,�)-pairwise-EF on S. Since the utilities are in [0, 1]
and maxx=xi,x0

i
kh(x) � ĥ(x)k1  � for all but a 4�-fraction of the pairs in S, we know that ĥ is

(↵+4�,� +2�)-pairwise-EF on S. Applying the envy-freeness generalization guarantee (Lemma 5)
for Ĥ, it follows that ĥ is also (↵+ 5�,� + 2�)-EF on P . Finally, using the fact that

Pr
x1,x2⇠P

✓
max
i=1,2

kh(xi)� ĥ(xi)k1 > �

◆
 2�,

it follows that h is (↵+ 7�,� + 4�)-EF on P .

It is worth noting that the (exponentially large) approximation Ĥ is only used in the generalization
analysis; importantly, an ERM algorithm need not construct it.
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D Appendix for Section 5

Here we describe details of the transformation of the optimization problem from (2) to (4). Firstly,
softening constraints of (2) with slack variables, we obtain

min
gk2G,⇠2Rn⇥n

�0

nX

i=1

L(xi, gk(xi)) + �

X

i 6=j

⇠ij

s.t. USF
(k�1)
ii + ⌘̃ku(xi, gk(xi)) � USF

(k�1)
ij + ⌘̃ku(xi, gk(xj))� ⇠ij 8(i, j).

Here, ⇠ij basically captures how much i envies j under the selected assignments (note that, ⇠ij is 0
if the pair is non-envious, so that the algorithm does not go increasing negative envy at the cost of
positive envy for someone else). Plugging in optimal values of the slack variables, we obtain

min
gk2G

nX

i=1

L(xi, gk(xi))

+ �

X

i 6=j

max
⇣
USF

(k�1)
ij + ⌘̃ku(xi, gk(xj))� USF

(k�1)
ii � ⌘̃ku(xi, gk(xi)), 0

⌘
. (8)

Next, we perform convex relaxation of different components of this objective function. For this, let’s
observe the term L(xi, gk(xi)). And, let ~w denote the parameters of gk. By definition, we have

w
>

gk(xi)
xi � w

>

y0xi

for any y
0
2 Y . This implies that

L(xi, gk(xi))  L(xi, gk(xi)) + w
>

gk(xi)
xi � w

>

y0xi

 max
y2Y

�
L(xi, y) + w

>

y xi � w
>

y0xi

 
,

giving us a convex upper bound on the loss L(xi, gk(xi)). As this holds for any y
0
2 Y , we choose

y
0 = yi as defined in the main body, since it leads to the lowest achievable loss value. Therefore, we

have
L(xi, gk(xi))  max

y2Y

�
L(xi, y) + w

>

y xi � w
>

yi
xi

 
.

This right hand side is basically an upper bound which apart from encouraging ~w to have the highest
dot product with xi at yi, also penalizes if the margin by which this is higher is not enough (where the
margin depends on other losses L(xi, y)). This surrogate loss is very similar to multi-class support
vector machines. We perform similar relaxations for the other two components of the objective
function. In particular, for the u(xi, gk(xi)) term, we have

�u(xi, gk(xi))  max
y2Y

�
�u(xi, y) + w

>

y xi � w
>

bixi

 
,

where bi is as defined in the main body. Finally, for the remaining term, we have

u(xi, gk(xj))  max
y2Y

�
u(xi, y) + w

>

y xj � w
>

sixj

 
,

where si is as defined in the main body5. On plugging in the convex surrogates of all three terms in
Equation (8), we obtain the optimization problem (4).

5Note that, instead of using si, an alternative to use in this equation is bj . In particular, for a pair (i, j), using
si encourages the assignment to give i their favorite outcome while j the outcome that i likes the least (and
hence causing i to envy j as less as possible), while using bj encourages the assignment to give both i and j
their favorite outcomes (pushing the assignment to just give everyone their favorite outcomes).
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