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A.1 Stimuli Details

For a better visualization of the test stimuli and how our model handles different violations of
expectations in these stimuli, please refer to the additional videos attached in the supplementary
material.

Overturn (long). This scenario, based on Baillargeon et al. [1985], tests for concepts of solidity
and permanence, by showing objects the seem to move through one another. In the “surprise” scene,
a screen lies flat on the floor with an object positioned behind it . The screen rotates 180 degrees,
initially obscuring the object and then moving through where the object was. The screen finishes
lying flat on the floor in the opposite direction to its initial position. After a pause, the screen rotates
back to its original position, revealing the object again. The “control” scene starts in the same way,
but the screen does not fully rotate, and instead stops before it would overlap with the object. Please
refer to SI_Overturn_Long.mp4.

Overturn (short). This scenario is identical to the overturn (long) scenario, but the video ends
after the first rotation of the screen. Please refer to SI_Overturn_Short.mp4.

Block. This scenario, based on Spelke et al. [1992] and Stahl and Feigenson [2015], tests for
concepts of solidity and continuity. In these videos, a screen starts down with a large, long block
positioned just behind it. The screen rotates up 90 degrees to hide the bottom part of the block, then
an object starts moving in from the side of the scene. Shortly after the object moves behind the
screen, the screen rotates back to its original position. In the “surprise” scene, the object is seen on
the opposite side of the block, while in the “control” scene the object is stopped on the same side of
the block as it entered the occluded area. Please refer to SI_Block.mp4.

Vanish. This scenario, based on Wynn [1992], tests the concept of permanence. In the “surprise”
scenario, the video starts with a raised screen, then shows two objects moving from opposite sides
of the scene till they are behind the screen. One object then comes out from behind the screen, and
the screen is rotated down to reveal that there is no second object behind it. In the three “control”
scenarios, either two objects move out from the screen, or only one object moves behind the screen,
or when the screen is rotated down an object is revealed to have remained in the occluded area. Please
refer to SI_Vanish.mp4.

Create. This scenario tests concepts of permanence in the opposite way as the vanish scenario,
by adding objects to the scene. In the “surprise” scenario, a screen starts down, and then rotates up
while one object moves from the side of the scene till it is behind the screen. Two objects then appear
from behind the screen, moving in opposite directions. In the “control” scenes, either only one object
appears from behind the screen, or two objects move behind the screen and two appear afterwards, or
there is a visible object positioned behind the screen initially. Please refer to SI_Create.mp4.
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Discontinuous (invisible). This scenario, based on Spelke et al. [1995], tests the principle of
continuity, by showing an object disappear behind one occluder and appear out of a spatially distinct
region. The “surprise” starts with two narrow screens that have a large gap between them. An
object moves out from behind one of the screens towards the edge of the video, then reverses and
moves back behind that screen. After a period equal to the time it would take the object to move
across the middle space at its last seen velocity, an identical object moves out from the opposite
screen towards the scene edge, then reverses and goes back behind that screen. Both screens then
rotate down to reveal only an object behind the second screen. In one “control” scene, the video
is the same except that when the screen rotates down there are two identical objects, each behind
one of the screens. In the other two “control” scenes, the two screens are replaced with one wide
screen, with either one or two objects remaining when that screen is rotated down. Please refer to
SI_Discontinuous_Invisible.mp4.

Discontinuous (visible). This scenario is similar to discontinuous (invisible), but tests concepts of
solidity and permanence. These scenes start with the same two narrow screens set apart with a wide
gap between them. A first object moves out from behind one screen, then back behind it. However,
the first object is then seen visibly moving through the gap between the screens, going behind the
second screen, then moving out from behind that screen, and back again behind it. In the “surprise”
scene, when the screens rotate down, there are two identical objects, one behind each screen. In one
“control” scene, only one object remains behind the second screen. The other two “control” scenes
are identical to the discontinuous (visible) control scenes with a single, wide screen. Please refer to
SI_Discontinuous_Visible.mp4.

Delay. This scenario was designed to test the principle of continuity, by showing an object moving
through an occluded area too quickly to be explained without teleportation or an abrupt speeding up
and slowing down. The scene starts with a single, very wide screen standing up. One object moves
out from one side of the screen, then reverses direction and moves back behind the screen. Almost
immediately after, an identical object moves out from the other side of the screen and back. The
screen then rotates down to the floor. In the “surprise” condition, there is a single object near the side
of the screen it was last seen at. In the “control” condition, there are two identical objects, one next to
each side of the wide screen. Please refer to SI_Delay.mp4.

A.2 Dataset Generation

To generate videos of physical stimuli, we use the Bullet rigid-body physics engine [Coumans, 2010],
and the Blender Cycles rendering engine [Blender]. We produce all images and movies at a 480×320
resolution. The dimensions of scenes were 8 units by 3 units (width by depth), and all dimensions
and velocities reported here are in terms of these units, or units per second. The camera was set at a
viewing angle of 20◦. Please refer to SI_Training.mp4 for sample videos from the training set.

We constructed the training set to have up to one occluder, and up to five objects per scene, moving
around for 5 seconds with characteristic motions, but no collisions. Each non-occluder object would
have an 80% chance of entering the screen from either the left or right and moving across (with left
and right being equally likely), and a 20% chance of starting at a visible location in the screen. Each
object would have a 40% chance of reversing motion at a random point in the video. Occluders would
always start within the camera’s view, and could either rotate fully 180◦, rotate up and down 90◦, or
translate back and forth.

Non-occluder objects were scaled to fit within a sphere with a radius uniformly drawn from between
0.2 and 0.4, and moved with a velocity up to 1.5. The width and height of occluders were drawn from
a uniform distribution between 1 and 2.

The test set was designed such that object characteristics remained in the same range as training
data, though the scenes were much more controlled. Non-occluder objects were scaled to fit within a
sphere of radius 0.3, and moved at velocities set depending on their role within the stimulus scenario
(between 0.7 and 1.2 when moving). Occluders did not have a characteristic scale, but instead were
adjusted based on the stimulus scenario as described above.
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A.3 Model Details

A.3.1 Perception

For the instance segmentation network, we employ a Mask R-CNN [He et al., 2017] equipped with a
ResNet-101 backbone [He et al., 2016] (pretrained on ImageNet) and FPN [Lin et al., 2016]. We
train on 125K frames of our 1K training videos, with a batch size of 16, learning rate of 0.008, and
50K total iterations.

For the feature extractor, we use a ResNet-34 [He et al., 2016] (pretrained on ImageNet), in which
the first layer and the last two linear layers are resized. We train the feature extractor using an 80%
training split of 1,000 train videos, with a batch size of 100, learning rate of 0.002 and 5M total
iterations. During training, we evaluate on the other 20% validation split per 5K iterations to choose
the best model for inference.

The object state representation for the beliefs (ot,i) and for the observations (st,i) is a vector of 22
dimensions to represent object type (background, occluder and non-occluder objects), location (3
entries), velocity (3 entries), rotation (3 entries), scale (3 entries) and color (from 7 colors).

A.3.2 Dynamics model p(st+1|st)

To sample from the dynamics model p(st+1|st), we employ a deterministic rigid body physics engine
Bullet [Coumans, 2010]. To create a stochastic physics engine, we perturb the location, velocity, and
scale of objects with small Gaussian noises. This simulates the dynamic uncertainty of plausible
physics, and also helps to mitigate the perceptual uncertainty (i.e., the error of ot). For our experiment,
the noise we use is an additive Gaussian σvel = (0.06, 0.01) on velocity, σloc = (0.06, 0.01) on
location, and a multiplicative Gaussian of λvel = (0.06, 0.01) and λdim = 0.0005.

In addition, the dynamics model should be able to reset its beliefs by resampling object properties
from a scene prior; if this were not possible, all particles would be rejected upon the first implausible
observation, and so the rest of the video could not be parsed. We augment the physics engine with
three types of property resampling: with a small probability p, an object may suddenly disappear
(p1 = 0.02), stop (p2 = 0.02), or speed up in an arbitrary direction (p3 = 0.04). These sampling
probabilities are much larger than expected in the scenarios, so that they can potentially be sampled
when needed. To mitigate the potential chaos caused by state changes, when one of these changes is
sampled, we increase the surprise − log p(ot|s(m)

t ) by a large factor r (r1 = 10, r2 = 1, r3 = 8).∗
Thus, a particle undergoing a state change would be resampled if and only if particles undergoing
typical physical dynamics are all rejected by the observation, which makes our model robust to
physically implausible scenes, but also able to mark them as surprising. This is a form of importance
sampling: oversampling rare events to consider extreme outcomes when using small hypothesis sets.
Importance sampling has been proposed as a way that people consider uncommon events [Lieder
et al., 2018], making it a cognitively plausible sampling hypothesis.

A.3.3 Observation model p(ot|st)

To estimate p(ot|st), we first match the objects in our belief {st,i}n(st)i=1 with the objects in current
observation {ot,i}n(ot)i=1 based on extrinsic attributes (color, shape, and location). Each st,i and ot,i
can be matched or unmatched, and there are three possible scenarios.

st,i matched to ot,i for some i. If the mask produced by belief and the observation has an intersec-
tion over union (IoU) above a threshold threshiou, then we consider that these are the same object
for sure. Otherwise, the NLL of p(ot|st) is measured by a combined loss between the belief and
observation in terms of location, velocity and scale. The loss metric L we use is a combined L2 and
L 1

2
loss. And the observation model is

− log p [ot,i|st,i] =
∑

attr∈{loc,vel,dim}

L((ot,i,attr − st,i,attr)/σattr), if IoU > tiou,

where σattr is a constant. We use σloc = 0.2, σvel = 0.2, and σdim = 0.05.
∗The model was insensitive to the exact settings of these parameters, so long as this resampling penalty was

greater than moderate amounts of perceptual uncertainty.
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st,i unmatched for some i. We place st,i in the current observations ot to see whether the object is
hidden by acquiring an estimated visible area A = A(st,i, ot). If A is bigger than a visible threshold
of A0, we measure the NLL of p(ot|st) based on a quadratic form of A. Here, the observation model
is

− log p [∅|st,i] = αbase + αhiddenA
2,

where ∅ indicates the event that the object belief is unmatched, αbase = 1, αhidden = 2.5 × 10−5,
A0 = 200.

ot,i unmatched for some i. We retrospectively reaffirm if ot,i obeys in the previous history by
feeding it through the physics simulation reversely: Θ−j(ot, i) = o′t−j,i. We then determine its
likelihood through the aggregated visible mask area. The reverse physics simulation only permits the
’stop’ state change, which allows an object to start moving behind an occluder. Here the observation
model is

− log p [ot,i|∅] = −αnew

t∑
j=t0

Aj , where Aj = A(o′t−j,i, ot−j),

where αnew = 0.02 and t0 = 15.

We take the average across all these results of p (ot,i|st,i) as an estimate for p (ot|st).

A.4 Experiment Details

A.4.1 Details of baseline models

CNN encoder-decoder. We use a ResNet-18 [He et al., 2016] pretrained on ImageNet [Deng et al.,
2009] to encode features from xt−5, a deconvolution network to decode m̂t, and ||m̂t −mt||22 as the
training loss. We also train a semantic mask predictor xt → m̂MP

t with the same architecture. Then
during testing, c(x, t) , ||m̂t − m̂MP

t ||22 is used as the level of surprise at time t.

GAN. We first turn input xt−40 into m̂MP
t−40 via the semantic mask predictor. Conditional on these

predicted masks, the generator G is trained to generate m̂t, and the discriminator D is trained to
distinguish between m̂MP

t (real) and m̂t (fake). During testing, c(x, t) , 1−D(m̂t|m̂MP
t−40) is used

as the level of surprise at time t.

LSTM. We use the encoder head of the mask predictor as a feature extractor xt → zMP
t . The

LSTM is trained to predict ẑt given zMP
1···t−5. c(x, t) , ||ẑt, zMP

t ||22 is used as training loss, as well as
the level of surprise during testing.

All baselines are trained for five epochs using a batch size of 64 and an Adam optimizer. The learning
rate is 8×10−4 for the generator, 2×10−4 for the discriminator, and 1×10−4 for all other networks.

A.4.2 Qualitative visualization of baseline models

We compare ADEPT’s surprise signals over time to those produced by the baseline models. Fig. A1
shows these comparisons for the same scenarios displayed in Fig. 4 of the main paper. ADEPT’s
surprise score is calculated as the negative log-likelihood of an observation, making it unbounded,
but is capped here at a value of 12 (representing more than a very surprising resampling event).
All baseline model surprises are calculated as normalized L2 divergences between predictions and
observations, and so are naturally scaled between 0 and 1.

The ADEPT model surprise differences between the violation and control videos are much larger
that the differences produced by the baseline models. Furthermore, ADEPT’s surprise spikes at time
points that are intuitively surprising to people: when the object is crushed by the screen (Fig. A1B)
or a new object appears from behind the occluder (Fig. A1D). In contrast, at the time of intuitive
surprise the baseline models often produce very similar surprise signals in the control and violation
videos.

A.4.3 Ablation study on the number of particles

We conduct an ablation study by reducing the number of particles in the reasoning module of ADEPT.
We evaluate our model on the human stimuli set with 128 (default), 32, 16, 8, and 4 particles. As
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Figure A1: ADEPT vs. all baseline performance on four trials (see Fig. 4 in the main paper for trial details).
Each line represents the surprise signal produced by that model at each point in time, up until the frame above it.
The ADEPT model surprise spikes at time points that people find intuitively surprising: when the box is crushed
(B) or a new object appears (D). Conversely, the baseline models to not substantially differentiate the control
from violation videos at these time points.

shown in Fig. A2, relative accuracy improves as we run on more particles, which suggests a decent
level of stochasticity is required to model the noisy (or even implausible) dynamics with coarse
perception results.
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