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APPENDIX A: Detailed Parameter Settings

As mentioned, our GVGAN model consists of an encoder, a decoder, and a discriminator.

In the encoder, we use a spectral embedding layer to extract the node features solely based on graph
structures. The output of the spectral embedding layer is a n× d, where d is set to 5 on DBLP and
10 on TCGA. We select d as such small values because there are some small graphs especially in
the DBLP dataset and the Laplacian eigenvectors corresponding to the first few smallest eigenvalues
usually capture the most important graph properties such as number of disconnected components,
clustering structures, etc. A graph convolution layer follows afterwards with the output size of 16.
We notice that simply using graph convolution layers tends to give unstable outputs, so we add two
linear layers with a one-dimensional batch normalization layer and a ReLU activation layer before
obtaining the mean and variance variables. Both mean and variance vectors have a dimension of 6.

In the decoder, we use a graph convolution layer followed by linear layers. We follow the same
design of GVAE to reconstruct graphs, i.e., using the encoded vectors generated from the linear layers
multiplied by their transpose vectors. Interestingly, we notice that if the dimension of the encoded
vectors is large, the output graphs tend be very dense, while a small dimension may lead the graphs
having many disconnected components. Thus the selection of 6 is done through vast cross-validation.
However, since the set of candidate values is relatively small (we conduct cross-validation on values
of 2-10), the hyperparameter selection process is easy to complete.

The discriminator has similar settings as the encoder, i.e., they share the exact same GCN module
followed by FNNs with the same design, except that the output here is a single value, differentiating
generated graphs from real graphs.

We use Adam optimizers for the training of all modules in the GVGAN with a learning rate of 0.001.

APPENDIX B: Qualitative Visual Inspections

To interpret the results and different performances of compared algorithms, we conduct careful visual
inspections on between the real graphs and generated graphs from different algorithms. We mainly
focus on the analysis of DBLP networks, since they are generally smaller, sparser and semantically
meaningful (e.g., networks constructed over popular venues like ML conferences, highly productive
authors and more recent years tend to be larger and denser, etc). To provide a clear view, within
the DBLP networks, we further selected graphs with smaller sizes, sparser links, fewer connected
components and less triangles, so that visualization with NetworkX1 does not tend to yield cluttered
layouts. Besides graph structures, we also attempted to select graphs with diverse conditions to give
a comprehensive analysis on the ability of compared algorithms in capturing graphs with different
semantic properties and the correspondence between semantics and structures.

Particularly, we pick out 10 real graphs from the DBLP dataset, 5 with seen conditions during
training, and 5 with conditions not seen during training. For generated graphs, since all compared
algorithms are not deterministic and tend to generate similar but slightly different graphs given the
same condition, we draw three generated graphs by each compared algorithm given each condition.

1https://networkx.github.io/
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As we can observe in Figure 1-10 and contemplate:

1. In general, the graphs generated by GVGAN are the most similar to the real graphs, which
concretely corroborates our model design.

2. Our adaptions of baselines into the conditional structure generation scenario are effective,
because all baselines also managed to capture the various graph structures and the semantic-
structure correspondence to some extent and are able to generate different graphs based on
given conditions, while each baseline algorithm fails in certain cases.

3. GVAE tends to generate graphs with highly skewed degree distributions. We conjecture
this is mainly due to its simple mechanism of generating links based on cosine similarity
between pairs of nodes which lacks representation capacity, eventually leading to decoder
underfitting. Another possible reason lies in its lack of permutation-invariant loss function,
which further wastes the decoder capacity in fitting the particular ordering of adjacency
matrices rather than the underlying graph structures.

4. NetGAN mostly fails when the graphs become more complex, probably due to the deficiency
of random walks in precisely capturing complex graph structures with large sizes. On the
contrary, GraphRNN mostly fails when the graphs are simple, where it tends to generate
graphs with small scattered components, probably due to its less justified mechanism of
terminating the growth of single graph components by predicting EOF with RNN.

APPENDIX C: In-depth Model Analyses

To understand how our proposed GVGAN model learns to capture the key properties of graphs, we
closely evaluate it along training. Since the results are averaged among all networks in the dataset,
which exhibits various graph structures, the variances are pretty large and often do not cancel with
each other. Interestingly, we find that most graph properties tend to have larger values on real graphs
than random graphs, and thus an untrained model often gives lower values on them compared with a
well trained model. Nonetheless, GVGAN manages to approach the values of real graphs rapidly
after around one hundred of epochs on most graphs.

Figure 11 shows the in-depth model analyses results on the DBLP dataset, while the results on the
TCGA dataset follow the similar trends and are thus omitted. Interested readers are encouraged to
run our models which are submitted together in the supplementary materials and see how different
models behave during training on the novel task of conditional structure generation. Meanwhile, in
order to better demonstrate how the generated graphs can be useful in downstream applications, we
are conducting more experiments with advanced graph classification and regression tasks, hoping to
see that the graphs generated by GVGAN can successfully ‘fool’ the classification and regression
models, providing unlimited structural data under particular conditions of interest that are close to
hardly observed or unobservable real graphs.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 1: Visual inspection on DBLP author network 1.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 2: Visual inspection on DBLP author network 2.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 3: Visual inspection on DBLP author network 3.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 4: Visual inspection on DBLP author network 4.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 5: Visual inspection on DBLP author network 5.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 6: Visual inspection on DBLP author network 6.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 7: Visual inspection on DBLP author network 7.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 8: Visual inspection on DBLP author network 8.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 9: Visual inspection on DBLP author network 9.
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(a) Real graph

(b) Generated graphs by GVAE

(c) Generated graphs by NetGAN

(d) Generated graphs by GraphRNN

(e) Generated graphs by GVGAN

Figure 10: Visual inspection on DBLP author network 10.
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(a) (b)

(c) (d)

(e)

Figure 11: Different graph statistics evaluated along the training of GVGAN on DBLP (av-
eraged between seen and unseen conditions). GVGAN efficiently learns to capture the key
properties of graphs and converges to the values of real graphs with only around 100 epochs
of training.
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