
Supplementary Material to “On Differentially Private Graph
Sparsification and Applications"

A Notation and Preliminaries

We let N to denote the set of natural numbers. We use capital letters to denote matrices and small
letters to denote vectors. We denote by 0m⇥n the all-zero m ⇥ n matrix and by I be the identity
matrix. For a matrix A, we let rk(A) denote the rank, �(A) to denote its determinant, and Tr(A)
denote the trace norm of the matrix A. The singular-value decomposition (SVD) of an m⇥ n rank-r
matrix A is a decomposition of A as a product of three matrices, A = U⌃V > such that U 2 Rm⇥r

and V 2 Rn⇥r have orthonormal columns and ⌃ 2 Rr⇥r is a diagonal matrix with singular values
of A on its diagonal. We let 1S 2 {0, 1}n denote the characteristic vector for a subset S ✓ [n]. For a
symmetric matrix, we write A ⌫ 0 to denote a matrix whose singular values are greater than 0 and
A ⌫ B if A�B ⌫ 0. The Moore-Penrose pseudo-inverse of a matrix A = U⌃V > is denoted by A†

and has a SVD A† = V ⌃†U>, where ⌃† consists of inverses of only non-zero singular values of A.
We will use the following fact in our proof.
Fact 8. For any two symmetric matrices A and B, if A ⌫ B, then A†

� B†.

A matrix A has a left-inverse (right-inverse, respectively) if and only if it has full column rank (full
row rank, respectively). If A has a left-inverse, then A† = (A>A)�1A> and if A has right-inverse,
then A† = A>(AA>)�1.

We need the following results for the privacy proof.
Theorem 9 (Lidskii Theorem). Let A,B be n ⇥ n Hermittian matrices. Then for any choice of
indices 1 i1 · · · ik n,

kX

j=1

�ij (A+B)
kX

j=1

�ij (A) +
kX

j=1

�ij (B),

where {�i(A)}n
i=1 are the eigen-values of A in decreasing order.

A.1 Gaussian Distribution

Given a random variable x, we denote by N (µ, ⇢2) the fact that x has a normal Gaussian distribution
with mean µ and variance ⇢2. The Gaussian distribution is invariant under affine transformation, i.e.,
if x ⇠ N (µ1,�1) and y ⇠ N (µ2,�2), then z = ax+by has the distribution z ⇠ N (aµ1+bµ2, a�2

1+
b�2

2). By simple computation, one can verify that the tail of a standard Gaussian variable decays
exponentially. More specifically, for a random variable x ⇠ N (0, 1), we have Pr [|x| > t] 2e�t

2
/2.

The multivariate Gaussian distribution is a generalization of univariate Gaussian distribution. Given
an m-dimensional multivariate random variable, X ⇠ N (µ,⌃) with mean µ 2 Rm and covariance
matrix ⌃ = E[(X � µ)(X � µ)T], the probability density function of a multivariate Gaussian is
given by 1p

2⇡�̃(⌃)
exp

�
�

1
2x

T⌃�1x
�
. It is easy to see from the description of the PDF that, in order

to define the PDF corresponding to a multivariate Gaussian distribution, ⌃ has to have full rank. If
⌃ has a non-trivial kernel space, then the PDF is undefined. However, in this paper, we only need
to compare the probability distribution of two random variables which are defined over the same
subspace. Therefore, in those scenarios, we would restrict our attention to the subspace orthogonal to
the kernel space of ⌃.

Multivariate Gaussian distribution maintains many key properties of univariate Gaussian distribution.
For example, any (non-empty) subset of multivariate normals is multivariate normal. Another key
property that is important in our analysis is that linearly independent linear functions of multivariate
normal random variables are multivariate normal random variables, i.e., if Y = AX + b, where A is
an n⇥n non-singular matrix and b is a (column) n-vector of constants, then Y ⇠ N (Aµ+b, A⌃AT).

13

A.2 Graph Theory

We reserve the symbol G, bG and eG to denote a graph. We denote by G
0 the graph formed by adding an

edge to the graph G. For any S ✓ V (G) , the cut of the set of vertices S, denoted it by �G(S), is the
weight of the edges that are present between S and V \S. Since the vertex set is constant throughout
this paper, we just write V to denote V (G).
Definition 10 (Laplacian of graph). For an undirected graph G, its edge adjacency matrix EG 2

R(
n
2)⇥n is defined as follow: the row corresponding to edge e = (u, v) with weight we contains we

in column u, (�we) in column v, and 0 elsewhere. The Laplacian is then defined as LG = E>

G
EG .

For any graph G with edge-adjacency matrix EG , consider its singular value decomposition U⌃V >.
Then the effective resistance (also known as leverage score) of the edge ei is defined as ⌧i :=
e>
i
(E>

G
EG)†ei = e>

i
L†

G
ei. It is well known that by sampling the edges (rows of EG) of G according

to its leverage score, it is possible to obtain a graph eG such that (1� ")LeG � LG � (1 + ")LeG . Our
analysis critically uses the fact that sampling by leverage scores is robust against overestimate of
leverage scores.

Many interesting properties of the Laplacian of a graph follows from this representation. For example,
Laplacian of a graph is positive semi-definite, i.e., all the eigenvalues are non-negative. For a set S of
vertices, its cut-set is �S(G) = 1T

S
LG1S .

We let �i(G) denote the eigenvalues of LG for 1 i n. Next we present few lemmata that are
useful in our analysis. We analyze multivariate Gaussian distributions that are linear combination of
the Laplacian of two graphs. In order to analyze the two distributions, the corresponding covariance
matrices must span the same subspace. The first lemma allows us to work on the same subspace, that
is, the subspace orthogonal to Span{1}.

Lemma 11. Let 0 = �1(G) �2(G) · · · �n(G) be the n eigenvalues of LG . Then G is connected
iff �2 > 0 and the kernel space of a connected graph is Span{1}. More generally, if a graph has k
components, then the multiplicity of the eigenvalue 0 is k.

The following two lemmata are useful in giving the upper bound while proving the DP of our sanitizer.
Lemma 12. Let G and G

0 be two graphs, where G
0 is obtained from G by adding one edge joining

two distinct vertices of G. Then

�2(G) �2(G
0) �2(G) + 2.

Lemma 13. Let G0 be formed by adding an edge (u, v) to G. For any vector x 2 Rn, we have
Tr(LG0) Tr(LG) + 2.

The following lemma is particularly useful in arguing that the lowest non-zero eigenvalues of all the
graphs is bounded from below by a constant (which is the second smallest eigenvalue of an expander).
Lemma 14 (Eigenvalue Interlacing). Let G and G

0 be two graphs, where G
0 is obtained from G by

adding one edge joining two distinct vertices of G. Then

�i(G) �i(G
0) �i+1(G).

In particular, if H be a subgraph of G, then �i(H) �i(G)81 i n.

A.3 Differential Privacy

It is important to make a note that, unlike the traditional notions of privacy in cryptography, differential
privacy is a measure of privacy loss. This allows one to quantify and compare various techniques
and answer questions like, which is the most accurate mechanism for a given privacy loss, or which
mechanism provides most privacy for a given error in the accuracy.

There are two settings in which a privacy preserving mechanism can be designed: non-interactive and
interactive setting. In the non-interactive setting the curator publishes some sanitized database, and
the database is not used further. The precise answers released by the curator might be affected by the
sanitized database. As the database is never used again, the curator may as well destroy the database
once it has published the sanitized form.

14

On the other hand, in the interactive setting, the curator sits between the analyst and the database, and
queries are posed by the analyst in an adaptive manner. The curator must respond to these queries in
a fashion so as to protect the privacy of database.

In this paper, all our algorithms is non-interactive. Differential privacy satisfies many required
properties of any privacy guarantee. For example, differential privacy is immune to auxiliary
information whether the auxiliary information is current or any side information an adversary can
access in the future. We call this property the robustness of differential privacy. Another key property
that differentially private mechanisms “composes" really well. This allows us to construct complicated
mechanism from basic and simpler private mechanisms. We next cover both these properties in more
details.

Robustness of Differential Privacy. One of the key features of differential privacy is that it is
preserved under arbitrary post-processing, i.e., an analyst, without additional information about the
private database, cannot compute a function that makes an output less differentially private. In other
words,
Lemma 15 (Post-processing [17]). Let M(D) be an (↵,�)-differential private mechanism for a
database D , and let h be any function, then any mechanism M0 := h(M(D)) is also (↵,�)-
differentially private for the same set of tasks.

Proof. Let M be a differentially private mechanism. Let Range(M) denote the range the of M.Let R
be the range of the function h(·). Without loss of generality, we assume that h(·) : Range(M) ! R

is a deterministic function. This is because any randomized function can be decomposed into a
convex combination of deterministic function, and a convex combination of differentially private
mechanisms is differentially private. Fix any pair of neighbouring data-sets DB and gDB and an
event S ✓ R. Let T = {y 2 Range(M) : f(r) 2 S}. Then

Pr[f(M(DB)) 2 S] = Pr[M(DB) 2 T]

 exp(↵)Pr[M(gDB) 2 T] + �

= exp(↵)Pr[f(M(gDB)) 2 S] + �

as required.

Composition. Before we begin, we discuss what does it mean by the term “composition" of
differentially private mechanism. The composition that we consider covers the following two cases:

1. Repeated use of differentially private mechanism on the same database.
2. Repeated use of differentially private mechanism on different database that might contain

information relating to a particular individual.

The first case covers the case when we wish to use the same mechanism multiple times while the
second case covers the case of cumulative loss of privacy of a single individual whose data might be
spread across many databases.

It is easy to see that the composition of pure differentially private mechanisms yields another pure
differentially private mechanism, i.e., composition of an (↵1, 0)-differentially private and an (↵2, 0)-
differentially private mechanism results in an (↵1 + ↵2, 0)-differentially private mechanism. In
other words, the privacy guarantee depreciates linearly with the number of compositions. In the
case of approximate differential privacy, we can improve on the degradation of ↵ parameter at the
cost of slight depreciation of the � factor. We use this strengthening in our proofs. In our proofs of
differential privacy, we prove that each row of the published matrix preserves (↵0,�0)-differential
privacy for some appropriate ↵0,�0, and then invoke a composition theorem by [17] to prove that
the published matrix preserves (↵,�)-differential privacy. The following theorem is the composition
theorem that we use.
Theorem 16 (Composition theorem [17]). Let ↵0,�0 2 (0, 1), and �0 > 0. If M1, · · · ,M` are
each (↵,�)-differential private mechanism, then the mechanism M(D) := (M1(D), · · · ,M`(D))
releasing the concatenation of each algorithm is (↵0, `� + 0 + �0)-differentially private for ↵0 <p
2` ln(1/�0)↵0 + 2`↵2

0.

A proof of this theorem could be found in [17, Chapter 3].

15

B Missing Proofs of Section 3 and Section 5

Before we give a detail proof of our theorem, we make few important remarks regarding the result.
Our bound (Theorem 3) states that the Laplacian of the graph is perturbed by an additive term,
w

n
Ln, due to privacy considerations. Given the choice of w, the scale of this additive perturbation is

eO(1/
p
n). To better appreciate the bound, let us consider the following simple procedure where we

obfuscate the edges through randomization and then run a non-private sparsification algorithm. This
procedure would incur an approximation of the form (1� ")(Ln + LG) � LeG � (1 + ")(Ln + LG),
i.e., the scale of the additive perturbation matrix (which is still Ln) is O(1). In Appendix E, we show
that a solution based on the exponential mechanism will suffer from a similar problem. In light of this,
our result yields a significant improvement over those alternatives. Finally, we note that returning a
complete graph is not an option because the spectrum of (1� ")Ln might not be a lower bound on
the spectrum of G.

Theorem 3 does not put any restriction on G. In particular, G can be a weighted graph with possibly
very large spectrum compared to Ln/

p
n. Further, larger the weight, larger would be the value of

MAX-CUT or �G(S). In fact, many naturally occurring graphs have large weights. One such graph
arises in the discovery of metabolic pathways in genomic networks [26], where weights indicate
strength between genes [15].

B.1 Utility Proof

We now prove the utility proof. We first prove that eG0 is a graph that spectrally approximates Ḡ. The
complication in the proof arise from the fact that D is not formed by the effective resistances of Ḡ,
but rather the approximation of effective resistances of bG.

We construct matrix random variables corresponding to the graph Ḡ defined in Algorithm 1. Let ei be
the edges in Ḡ defined in Algorithm 1. Recall that pi = ce⌧i"�2 log(n/�). We define the following
random variables corresponding to each edge,

Xi :=

(
eie

>
i

pi
with probability pi

0 with probability 1� pi
.

Then Y =
P

i
Xi = E>

Ḡ
DEḠ . It is easy to see that E[Y] = LḠ , where expectation is over Xi.

Then, we can finish the proof by appealing to the matrix Bernstein inequality if we can bound
Xi � R · E[Y]. When pi = 1, Xi = eie>i with probability 1, which is the same as selecting and
summing c"�2 log(n/�) random variables each equal to eie

>
i

c"�2 log(n/�) , and hence Xi �
LḠ

c"�2 log(n/�) .
When pi < 1, we can bound Xi as follows.

Proposition 17. Let Xi, Ḡ be as defined above. Then with probability 1��, Xi � O
⇣

"
2

c log(n/�)

⌘
LḠ .

Proof. Since Ḡ is a connected graph, the all ones vector, denoted 1, spans the kernel of the column
space of LḠ [20]. Then, for an x 2 Rn, write x = xk + x?, where xk is in the span of column space
of LbG and x? is in the span of 1. In other words,

⌦
xk,1

↵
= 0. Let U⌃2U> be the singular value

decomposition of LḠ . So,

x>LḠx = (xk + x?)
>LḠ(xk + x?) = x>

k
LḠxk

= y>U⌃�1U>LḠU⌃�1U>y

= y>U⌃�1U>U⌃2U>U⌃�1U>y = kyk22

16

for some y in the column space of LḠ . Now with probability at least 1� �,

x>eie
>

i
x = (xk + x?)

>eie
>

i
(xk + x?)

= x?

k
eie

>

i
xk

= y>U⌃�1U>eie
>

i
U⌃�1U>y

 Tr(U⌃�1U>eie
>

i
U⌃�1U>)kyk22

= e>
i
L†

Ḡ
eikyk

2
2

 Ce>
i
L†

bG
eikyk

2
2

= Ce⌧ix>LḠx

for C > 2. Here the inequality follows from the subadditivity of trace norm, Fact 8, equation (2), and
the final equality follows from the definition of e⌧i. Since pi = ce⌧i"�2 log(n/�), we have

Xi �
eie>i
pi

�
eie>i

ce⌧i"�2 log(n/�)
�

LḠ

c"�2 log(n/�)

as required.

Using matrix Bernstein inequality [53], we have

Pr [(1� ")Y � LḠ � (1 + ")Y] � 1� ne�c"
�2 log(n/�)/3

for large enough c. Now E>

Ḡ
DEḠ = Y implies

(1� ")E>

Ḡ
DEḠ � LḠ � (1 + ")E>

Ḡ
DEḠ .

with probability 1 � �. That is, E>

Ḡ
DEḠ is a private spectral approximation of Ḡ with Laplacian�

w

n
Ln +

�
1� w

n

�
LG

�
. E>

Ḡ
DEḠ can be the Laplacian of a dense graph. Using the result of [35], we

have (1� ")LeG � E>

Ḡ
DEḠ � (1 + ")LeG and that LeG has O(n/"2) edges. In total, this implies that

Pr
⇥
(1� ")2LeG � LḠ � (1 + ")2LeG

⇤
� 1� 2�.

Since the solution of SDP-1 is � = c
q

logn log(1/�)
n↵2 , we have

LeG0 � c

r
log n log(1/�)

n↵2
Ln � LḠ � LeG0 + c

r
log n log(1/�)

n↵2
Ln.

Another application of matrix Bernstein inequality gives us

Pr

"
LbG � ⇢

r
log n log(1/�)

n↵2
Ln � LeG0 � LbG + ⇢

r
log n log(1/�)

n↵2
Ln

#
� 1� �. (2)

for some small constant ⇢ > 0. Now by construction,

LbG :=
w

n
Ln +

⇣
1�

w

n

⌘
LG

for w = O(
q

logn log(1/�)
n↵2). Combining all these partial orderings gives us the accuracy bound.

B.2 Privacy Proof of Algorithm 1

In this section, we give a detail proof of the privacy guarantee of Algorithm 1. First note that
computing LeG0 and R is (↵/3,�/3)-differentially private due to Gaussian mechanism [17] and
Johnson-Lindenstrauss mechanism [9].
Lemma 18. Let M 2 R(m+n)⇥t be a random Gaussian matrix with every entries sampled i.i.d. from
N (0, 1/t). Let EbG be a graph formed by overlaying the input graph with a complete graph with

weights w/n, where w =
p

t log(1/�)

↵
log(1/�). Then

B :=
�
EbG wI

�
M

is (↵,�)-differentially private.

17

Proof. We spot a subtle mistake in the previous analysis of privacy by [9, 54]. As in their proof,
we also prove that each row of the published matrix preserves (↵0,�0)-differential privacy for
some appropriate ↵0,�0, and then invoke Theorem 16 to prove that the published matrix preserves
(↵,�)-differential privacy. Denote by bA =

�
EbG wIm

�
and by bA0 =

�
E0

bG
wIm

�
, where bG and

bG0 differ in one edge of weight 1. Note that both bA and bA0 are full rank matrix because of the
construction. This implies that the affine transformation of the multi-variate Gaussian is well-defined
(both the covariance (bA bA>)�1 has a full rank and the �(bA bA>) is non-zero). That is, the PDF of the
distributions of the columns, corresponding to bA and bA0, is just a linear transformation of N (0, I).
Let y ⇠ N (0, I) be a column vector. Let x is sampled either from bAy or bA0y. Then the corresponding
PDFs are as follows:

PDF bAy
(x) =

e(�
1
2x(

bA bA>)�1
x
>)

q
(2⇡)d�(bA bA>)

, PDF bA0y(x) =
e(�

1
2x(

bA0 bA0>)�1
x
>)

q
(2⇡)d�(bA0 bA0>)

Let
↵0 =

↵p
4t ln(1/�) log(1/�)

, �0 =
�

2t
,

where t = n in the case of PRIVATE-SPARSIFY. We prove that every row of the published matrix
is (↵0,�0)-differentially private; the theorem follows from Theorem 16. Let x be sampled either
from N (0, bA bA>) or N (0, bA0 bA0>). It is straightforward to see that the combination of Claim 19 and
Claim 20 below proves differential privacy for a row of published matrix. The lemma then follows
by an application of Theorem 16 and our choice of ↵0 and �0. We prove a stronger guarantee than
what is required, i.e., we prove privacy when bA0

� bA = uv> for unit vectors u, v. Privacy for various
theorems in this paper can be realized by setting u to be a standard basis vector.

Claim 19. Let bA, bA0 and ↵0 be as defined above. Then

e�↵0

s
�(bA bA>)

�(bA0 bA0>)
 e↵0 .

Proof. The claim follows simply as in [9]. More concretely, we have �(bA bA>) =
Q

i
�2
i
, where

�1 � · · · � �m � �min(bA) are the singular values of bA. Let e�1 � · · · � e�m � �min(bA0) be its
singular value for bA0. The matrix E = bA0

� bA has only one singular value.

Since the singular values of bA� bA0 and bA0
� bA are the same, Lidskii’s theorem (Theorem 9) givesP

i
(�i � e�i) 1. Therefore, with probability 1� �0,

vuut
Y

i:e�i��i

e�2
i

�2
i

=
Y

i:e�i��i

✓
1 +

e�i � �i

�i

◆
 exp

0

@ "

32
p

t log(2/�) log(t/�)

X

i:e�i��i

(e�i � �i)

1

A e↵0/2,

where the first inequality follows from the fact that 1 + x ex for x � 0 and the fact that �i � �min.

The case for all i 2 [m] when e�i �i follows similarly as the singular values of E and �E are the
same. This completes the proof of Claim 19.

Claim 20. Let bA,↵0, and �0 be as defined earlier. Let y ⇠ N (0, I). If x is sampled either from bAy
or bA0y, then we have

Pr

h���x>(bA bA>)�1x� x>(bA0 bA0>)�1x
��� ↵0

i
� 1� �0.

Proof. Without any loss of generality, we can assume x = bAy. The case for x = bA0y is analogous.
Let bA0

� bA = uv>. Then
x>(bA bA>)�1x� x>(bA0 bA0>)�1x = x>(bA bA>)�1(bA0 bA0>)(bA0 bA0>)�1x� x>(bA0 bA0>)�1x

= x>(bA bA>)�1(bA+ uv>)(bA> + vu>)(bA0 bA0)�1x� x>(bA0 bA0)�1x

= x>

h
(bA bA>)�1(bAuv> + vu> bA0> + uu>)(bA0 bA0>)�1

i
x.

18

Previous analysis failed to bound the last term due to uu>. Using the singular value decomposition
of bA = UA⌃AV >

A
and bA0 = eUA

e⌃A
eV >

A
, we have

�
x>(UA⌃

�1
A

V >

A
)u
� ⇣

v>(eUA
e⌃�2
A

eU>

A
)x
⌘
+
�
x>(UA⌃

�2
A

U>

A
)v
� ⇣

u>(eVA
e⌃�1
A

eU>

A
)x
⌘

+
�
x>(UA⌃

�2
A

U>

A
)u
� ⇣

u>(eUA
e⌃�2
A

eU>

A
)x
⌘

Since x ⇠ bAy, where y ⇠ N (0, I), we can write the above expression as ⌧1⌧2 + ⌧3⌧4, where

⌧1 =
⇣
y> bA>(UA⌃

�1
A

V >

A
)u
⌘
, ⌧2 =

⇣
v>(eUA

e⌃�2
A

eU>

A
) bAy

⌘
, ⌧3 =

⇣
y> bA>(UA⌃

�2
A

U>

A
)v
⌘

⌧4 =
⇣
u>(eVA

e⌃�1
A

eU>

A
) bAy

⌘
, ⌧5 =

⇣
y> bA>(UA⌃

�2
A

U>

A
)u
⌘
, ⌧6 =

⇣
u>(eUA

e⌃�2
A

eU>

A
) bAy

⌘
.

From the construction, we have ke⌃Ak2, k⌃Ak2 � w. Using the SVD of bA and bA� bA0 = vu>, and
that every term ⌧i in the above expression is a linear combination of a Gaussian, i.e., each term is
distributed as per N (0, k⌧ik2), we calculate k⌧ik as below.

k⌧1k2 = k(VA⌃AU
>

A
)(UA⌃

�1
A

V >

A
)uk2 kuk2 1,

k⌧2k2 = kv>(eUA
e⌃�2
A

eU>

A
)(eUA

e⌃A
eV >

A
� vu>)k2

 kv>(eUA
e⌃�2
A

eU>

A
)eUA

e⌃A
eU>

A
k2 + kv>(eUA

e⌃�2
A

eU>

A
)vu>

k2
1

w
+

1

w2
,

k⌧3k2 = k(VA⌃AU
>

A
)(UA⌃

�2
A

U>

A
)vk2 k⌃�1

A
k2

1

w
,

k⌧4k2 = ku>(eVA
e⌃�1
A

eU>

A
)(eUA

e⌃A
eV >

A
� vu>)k2

 ku>(eVA
e⌃�1
A

eU>

A
)(eUA

e⌃A
eV >

A
k2 + ku>(eVA

e⌃�1
A

eU>

A
)vk2 1 +

1

w

k⌧5k2 = k(VA⌃AU
>

A
)(UA⌃

�2
A

U>

A
)uk2 k⌃�1

A
k2

1

w
,

k⌧6k2 = ku>(eUA
e⌃�2
A

eU>

A
)(eUA

e⌃A
eV >

A
� vu>)k2

 ku>(eUA
e⌃�2
A

eU>

A
)eUA

e⌃A
eU>

A
k2 + ku>(eUA

e⌃�2
A

eU>

A
)vu>

k2
1

w
+

1

w2
.

Using the concentration bound on the Gaussian distribution, each term, ⌧1, ⌧2, ⌧3, ⌧4, ⌧5, and ⌧6, is
less than k⌧ik ln(4/�0) with probability 1 � �0/2. The second claim follows from the following
inequality:

Pr

���x>(bA bA>)�1x� x>(bA0> bA0)�1x
��� 2

✓
1

w
+

1

w2
+

1

w3

◆
ln(4/�0) ↵0

�
� 1� �0,

where the second inequality follows from the choice of w.

Combining the two claims proves the lemma.

B.3 Finishing the Proof of Theorem 3

In Lemma 21, we prove the algorithm is (↵,�)-differentially private. We prove that the effective
resistance computed in PRIVATE-SPARSIFY is an overestimate in Lemma 22.
Lemma 21. LeG outputted by PRIVATE-SPARSIFY is (↵,�)-differentially private with respect to the
edge-level privacy.

Proof. We first prove the privacy guarantee. There are two times when the graph is used in the
algorithm PRIVATE-SPARSIFY in Step 3. We produce a sketch of the form B = AM , where M is a
random Gaussian matrix and A =

�
EbG wI

�
. B is (↵/3,�/3)-differentially private for the choice

of w due to Lemma 18. The second place where we use the graph is NEbG . Again, here by the
choice of w, we have (↵/3,�/3)-differentially private due to [9, 54]. Finally, we use the graph to
compute eG0. This is private due to Gaussian mechanism [17]. Using the composition theorem [18]
and post-processing property (Lemma 15) of differential privacy, the result follows.

19

We next prove that e⌧i is an overestimate of the original ⌧i corresponding to the edges in bG.
Lemma 22. Let ⌧i be the true leverage score of the i-th row of EḠ . Then with probability 1 � �,

e⌧i � ⌧i, where e⌧i is as computed in PRIVATE-SPARSIFY. Furthermore,
P(n2)

i=1 e⌧i = O(n2).

Proof. We first prove the second part of the lemma. Let M =

✓
M1

M2

◆
, where M1 2 Rn⇥n and

M2 2 Rm⇥n. Then
X

i

e⌧i = Tr

✓�
EbG wI

�✓M1

M2

◆
L†

G

�
M>

1 M>

2

�✓E>

bG
wI

◆◆

 Tr

✓✓
LbG 0
0 w2I

◆✓
M1

M2

◆
L†

bG

�
M>

1 M>

2

�◆

= Tr

 ✓
LbG 0
0 w2I

◆
M1L

†

bG
M>

1 0

0 M2L
†

G
M>

2

!!

= Tr

LbGM1L

†

bG
M>

1 0

0 w2M2L
†

G
M>

2

!!

= Tr

⇣
M>

1 LbGM1L
†

bG

⌘
+ w2

Tr

⇣
M>

2 M2L
†

bG

⌘

= O(n2).

The last equality holds because Tr(M>

1 LbGM1L
†

bG
) can be written as Tr(UbGM

>

1 U>

bG
⌃bGUbGM1U>

bG
⌃†

bG
),

where LbG = U>

bG
⌃bGUbG . Using the symmetric property of Gaussian distribution, this is identically

distributed as Tr(M>

1 ⌃bGM1⌃
†

bG
). Using the concentration of Gaussian vector, we have that with

probability at least 1� �, Tr(M>

1 ⌃bGM1⌃
†

bG
) = O(n). Similarly, for the second term, we know that

LbG ⌫ w2I, which in turn implies that L†

bG
� w�2I. Let R ⇠ N (0, 1)(

n
2)⇥n. We

w2
Tr

⇣
M>

2 M2L
†

bG

⌘
= w2

Tr(
1

n
R>RL†

bG
) w2 1

n
⇥

✓
n

2

◆
⇥ n⇥

1

w2
=

✓
n

2

◆
.

Note that this defines the number of edges in E>

Ḡ
DEḠ ; however, crucially, as we show later, we

achieve multiplicative spectral approximation while preserving differential privacy. Both these points
are crucial in achieving our final bounds as we use the fact that differential privacy is preserved under
arbitrary post-processing by running the spectral sparsification algorithm on the private Laplacian
E>

Ḡ
DEḠ to reduce the number of edges to O(n/"2) as claimed.

Let ei be the i-th row of EḠ . Then

e⌧i = BiLbG
†B>

i

= eiM1LbG
†M>

1 ei + w2M2LbG
†M>

2

�
1

c
eiLḠ

†ei =
1

c
⌧i,

where the last inequality follows using the same argument as above. This completes the proof.

B.4 Proof of Theorem 7

Proof. We first prove cut sparsification. Fix a set of nodes S ✓ [n]. We have

E[1>

S
LbG1S] = ↵1>

S
LG1, Var(1>

S
LbG1S) = ⇥(n(n� s)),

where s = |S|. Using Chernoff bound,

Pr

h��1>

S
LbG1S � ↵ · 1>

S
LG1S

��
p
s(n� s) log(2n/�)

i
� 1� �/2n.

20

Using union bound over all 2n possible choices of S, we have with probability 1� �,

1>

S
LbG1S �

q
n1>

S
Ln1S log(1/�) ↵ · 1>

S
LG1S 1>

S
LbG1S +

q
n1>

S
Ln1S log(1/�). (3)

Using [35], we have (1 � ")LeG � LbG � (1 + ")LeG and eG has O(n/"2) edges. Combining this
with equation (3), cut sparsification follows. The privacy proof follows by simple case analysis. This
completes the proof of Theorem 7.

C Applications of Our Results

We presented differentially private algorithms for cut sparsifier and spectral sparsifier. In practice,
cut sparsifier and spectral sparsifier are used as black-box to improve run-time efficiency by solving
various graph related algorithms on sparse graphs instead of the original dense graph. For example,
cut sparsifier can be used to compute approximations for maximum cut, sparsest cut, and maximum
flow, etc. Since spectral sparsification also preserve spectral properties of the Laplacian of the graph,
on top of cut related problems, they can be used to approximately solve linear systems over the
Laplacian of G, and to approximate spectral clusterings, random walk properties, etc.

Our results can be applied to all these settings. This is because differential privacy is preserved under
post-processing. Therefore, once we publish a differentially private representation of a graph, it can
be used as black-box in any graph algorithm.

C.1 Applications of Private Spectral Sparsification

Spectral sparsification is used as a first step for solving many graph related problems when the graph
is dense and the complexity of the graph problems depends on the number of edges, such as cut
queries. In many cases, it also allows one to approximately and efficiently infer many structural
information about the graph that could be inferred using the spectral properties of the graph, for
example, connectivity.

In what follows, we enumerate the implications of our results for answering all possible cut-queries,
privately computing the set of vertices contributing in the approximate solution to MAX-CUT and
SPARSE-CUT. All these results can also be achieved using cut-sparsification albeit with larger
accuracy loss (see Appendix 5). We show the strength of private spectral sparsification over private
cut sparsification by also privately computing Laplacian eigenmap, a popular approach used in
manifold learning.

In addition to constructing private algorithms for many problems that have no prior such algorithms,
our approach also leads to an efficient construction. This is because most of these applications runs
in time dependent on the number of edges.

Cut Queries. Spectral sparsifier also preserves all cuts in the graph. Consequently, the first
application of spectral sparsifier is that we can compute all possible cut queries with error that scales
linearly with n.

Theorem 23. Given an n vertices m edges graph G, there is an efficient (↵,�)-differentially private
algorithm that preprocess the graph to output another graph eG. Given a cut query in the form of set

of vertices S, one can use eG to output the size of the cut with additive error ⌧ eO
✓q

s(n�s)
↵2

◆
with

probability at least 9/10. Furthermore, answering a cut query, S, takes O(|S|) amortized time.

Proof. We first present the algorithm and then prove that it achieves the bound claimed in the theorem.
The algorithm is as follows:

Algorithm. Given a graph G, compute a sparse graph eG using Theorem 39. Then given a vector 1S ,
compute 1

1�w
n

⇣
1>

S
L eG1S �

ws(n�s)
n

⌘
.

21

We now argue the correctness of our algorithm. Using Theorem 39, we have

1>

S
L eG1S (1 + ")

⇣⇣
1�

w

n

⌘
�S(G) +

w

n
1>

S
Ln1S

⌘

= (1 + ")
⇣
1�

w

n

⌘
�S(G) + (1 + ")

ws(n� s)

n

Therefore,
1

1� w

n

✓
1>

S
L eG1S �

ws(n� s)

n

◆
 (1 + ")�S(G) +

"ws

1� w

n

This completes the proof of Theorem 4.

Our algorithm answers a cut query, S, in O(|S|) amortized time. This is a vast improvement over
the previous best algorithm for answering cut queries [9, 54], which takes O(n|S|) amortized cost.
This improvement is especially significant when the graph is large, a more common phenomenon in
practice. For example, social graphs like Facebook can have as many as 109 vertices.

MAX-CUT. Another problem one can solve using our spectral sparsifier is that of MAX-CUT.
Here, given a graph G = (V,E) on a vertex set V , the goal is to output a set of vertices S ✓ V that
maximizes the value of �S(G). It is well known that MAX-CUT is NP-hard. However, Goemans and
Williamson gave an elegant polynomial time algorithm for computing ⇣GW � ⌘ approximation to
MAX-CUT for an arbitrary constant ⌘ > 0, where

⇣GW := min
0<✓<⇡

✓/⇡

(1� cos ✓)/2
⇡ 0.87856. (4)

It is known that even approximation within a factor of ⇣GW + ⇢, for all ⇢ > 0 is NP-hard [31] under
the unique games conjecture. [21] showed the following:
Theorem 24 ([21]). Let ⌘ > 0 be an arbitrary small constant. For an n-vertex graph G, there is a
polynomial-time algorithm that produces a set of nodes S satisfying �S(G) = (⇣GW � ⌘)OPTmax,
where OPTmax is the optimal max-cut.

We show the following:
Theorem 25. For an n-vertex graph G = (V,E), there is a polynomial-time algorithm that is
(↵,�)-differentially private with respect to the edge level privacy and produces a set of nodes S ✓ V
satisfying

�S(G) � (⇣GW � ⌘)

✓
1� "

1 + "

◆
OPTmax �O

✓
|S|

p
n

↵

◆

with probability at least 9/10. Here ⇣GW is as defined in equation (4), OPTmax is the optimal value
of MAX-CUT and �S(G) is the size of cut for vertex set in S ✓ V .

Proof. We first present the algorithm and then prove that it achieves the bound claimed in the theorem.
The algorithm is as follows:

Algorithm. The algorithm first computes a private sparse graph using Algorithm 1, then runs the
SDP based algorithm of [21] on the private sparse graph, and output the set of vertices S outputted
by that algorithm.

We next argue the correctness of our algorithm. Let eSOPT be the solution of MAX-CUT on graph eG
and SOPT be the solution of MAX-CUT on the graph G. In other words,

eSOPT = argmax
S✓V

1>

S
LeG1S and SOPT = argmax

S✓V

1>

S
LG1S .

From Theorem 24, we know that

�S(eG) � (0.87856� ⌘)max
S✓V

1>

S
LeG1S .

22

Further, since eG is a spectral sparsification, Theorem 3 implies that

(1� ")x>

✓
1
p
n
Ln +

✓
1�

1
p
n

◆
LG

◆
x x>LeGx (1 + ")x>

✓
1
p
n
Ln +

✓
1�

1
p
n

◆
LG

◆
x.

holds simultaneously for 8x 2 Rn with probability 9/10. Applying Theorem 3 twice, once with
eSOPT and SOPT, we have the desired claim.

SPARSEST-CUT. Another problem that is considered in graph theory is the problem of sparsest cut,
SPARSE-CUT. Here, given a graph G = (V,E) on a vertex set V , the goal is to output a set of vertices
S that minimizes the value �S(G)

|S|(n�|S|) . For sparsest cut, [5] showed an O(
p
log n) approximation.

Theorem 26 ([5]). For an n-vertex graph G, there is a polynomial-time algorithm that produces a
set of nodes S satisfying �S(G) = O(

p
log n)OPTsparsest, where OPTsparsest is the optimal sparsest

cut.

Combining Theorem 26 result with Theorem 3, we immediately get the following:
Theorem 27. For an n-vertex graph G = (V,E), there is a polynomial-time algorithm that is
(↵,�)-differentially private with respect to the edge level privacy and produces a set of nodes S ✓ V
satisfying

�S(G) O(
p
log n)

✓
1 + "

1� "

◆
OPTsparsest +O

✓
log2 n

"
p
n

◆
,

with probability at least 9/10. Here OPTsparsest is the optimal value of SPARSE-CUT and �S(G) is
the size of cut for vertex set in S ✓ V .

Proof. The algorithm is as follows:

Algorithm. The algorithm first computes a private sparse graph using Algorithm 1, then runs the
SDP based algorithm of [5] on the private sparse graph, and output the set of vertices S outputted by
that algorithm.

We next argue the correctness of our algorithm. Let eSOPT be the solution of SPARSEST-CUT on graph
eG and SOPT be the solution of SPARSEST-CUT on the graph G. In other words,

eSOPT = argmin
S✓V

1>

S
LeG1S

|S|(n� |S|)

!
and SOPT = argmin

S✓V

✓
1>

S
LG1S

|S|(n� |S|)

◆
.

From Theorem 26, we know that

�S(eG) O(
p
log n) min

S✓V

1>

S
LeG1S

|S|(n� |S|)

!
.

Since eG is a spectral sparsification, Theorem 3 implies that

(1� ")x>

✓
1
p
n
Ln +

✓
1�

1
p
n

◆
LG

◆
x x>LeGx (1 + ")x>

✓
1
p
n
Ln +

✓
1�

1
p
n

◆
LG

◆
x.

holds simultaneously for 8x 2 Rn. Applying Theorem 3 twice, once with eSOPT and SOPT, we have
the desired claim.

Edge Expansion. The EDGE-EXPANSION ratio of a cut is the ratio of the weight of edges across
the cut to the total weighted degree of edges incident to the side that is smaller with respect to total
weighted degree. The edge expansion ratio of a graph is the minimum edge expansion ratio of any
cut. [5] showed the following approximation result for edge expansion.
Lemma 28 ([5]). For any constant c > 0 there is a polynomial-time algorithm that, given any
regular weighted graph and a number � > 0 behaves as follows. If the graphs has a c-balanced cut
of edge expansion ratio less than � then the algorithm outputs a c/2-balanced cut of edge expansion
ratio 2

p
�. If the graph does not have such a cut, the algorithm finds a set of at least (1 � c/2)n

nodes such that the induced subgraph (with deleted edges replaced by self-loops) on them has edge
expansion ratio at least 2�.

23

Using the fact that, up to a factor 2, computing the sparsest cut is the same as computing the edge
expansion of the graph, we have the following corollary.

Theorem 29. For an n-vertex graph G = (V,E), there is a polynomial-time algorithm that is
(↵,�)-differentially private with respect to the edge level privacy and produces a set of nodes S ✓ V
satisfying

OUT O(
p
log n)

✓
1 + "

1� "

◆
OPTedge +O

✓
log2 n

"
p
n

◆
,

with probability at least 9/10. Here OPTedge is the optimal value of EDGE-EXPANSION.

C.2 Laplacian Eigenmap

Recently, there has been renewed interest in the problem of developing low-dimensional represen-
tations when data arise from sampling a probability distribution on a manifold. This problem is
referred to as manifold learning. There have been many approaches to manifold learning, such as
Isomap embedding, LLE embedding, and Laplacian eigenmap. The locality-preserving character of
the Laplacian eigenmap makes it relatively insensitive to outliers and noise, and hence the focus of
this paper 5.

In the approach of Laplacian eigenmap, given n data samples {x1, · · · , xn} 2 Rd, we construct a
weighted graph G with n nodes and set of edges connecting neighboring points. The embedding map
is now provided by computing the top k eigenvectors of the graph Laplacian. There are multiple
ways in which we assign an edge e = (u, v) and edge weight between nodes u and v. In this section,
we consider an edge e = (u, v) if kxu � xvk2 ⇢ for some parameter ⇢. If there is an edge, then
that edge is given a weight, known as heat kernel, e�kxu�xvk

2
2/t for some parameter t 2 R. The goal

here is to find an embedding mapping, i.e., an orthonormal projection matrix, UU>, which is close to
the optimal projection matrix UkU>

k
(here columns of Uk is formed by the top-k eigenvectors of LG).

Theorem 30. There is an efficient learning algorithm that (↵,�)-differentially privately output a
rank-k subspace bP such that

���(I� bP)LG

���
2
 kLG � LG,kk2 +O

 r
n log(1/�)

↵2"2
log

✓
1

�

◆!
.

Here LG,k = argminX kLG �Xk2 is the optimal subspace of LG .

Proof. The algorithm is as follows:

Algorithm. Run the algorithm PRIVATE-SPARSIFY to output a Laplacian Lpriv. Compute the top-k
singular vectors of Lpriv and output it.

We next argue the correctness of our algorithm to compute Laplacian eigenmap. We first fix some
notations. Let bP be the top-k singular vectors of Lpriv and eP be the top-k singular vectors of LbG . We
use the notation �(A) to denote the spectral norm of the matrix A. Denote by bQ = I� bP , eQ = I� eP .
Let ex be the witness vector for eP and bx be a witness vector for bP . Further, let

exLpriv
= argmax

x,kxk2=1
x> eQ>Lpriv

eQx, bxL bG
= argmax

x,kxk2=1
x> bQ>LbG

bQx
2
.

Using the definition of bx, exLpriv
, and eQ, we have

bx> bQ>Lpriv
bQbx = �

⇣
bQLpriv

bQ
⌘
 �

⇣
eQLpriv

eQ
⌘
= ex>

Lpriv

eQ>Lpriv
eQexLpriv

, (5)

where the inequality is due to the fact that bQ mininimizes the quantity on the left.

5A related problem is that of privately learning a robust subspace which was recently studied by [4].

24

Then we have the following:

�
⇣
eQLbG

eQ
⌘
= ex> eQ>LbG

eQex

� ex>

Lpriv

eQ>LbG
eQexLpriv

(Maximality)

� (1� ")ex>

Lpriv

eQ>Lpriv
eQexLpriv

(Spectral guarantee)

� (1� ")bx> bQ>Lpriv
bQbx (equation (5))

= (1� ")�
⇣
bQLpriv

bQ
⌘
.

Similarly, we have the following:

�
⇣
bQLpriv

bQ
⌘
= bx> bQ>Lpriv

bQbx

� bx>

L bG
bQ>Lpriv

bQbxL bG
(Maximality)

�
1

(1 + ")
bx>

L bG
bQ>LbG

bQbxL bG
(Spectral guarantee)

=
1

(1 + ")
�
⇣
bQLbG

bQ
⌘
. (By definition of bxL bG

)

In other words,

�
⇣
bQLbG

bQ
⌘

1 + "

1� "
�
⇣
eQLbG

eQ
⌘

Since LbG =
�
1� w

n

�
LG + w

n
Ln, subadditivity of spectral norms implies

�
⇣
bQLbG

bQ
⌘
� �(bQLG

bQ)� �
⇣w
n
Ln

⌘
= �(bQLG

bQ)� w and

�
⇣
eQLbG

eQ
⌘
= �

⇣
LbG � LbG,k

⌘
 �

⇣
LG � LbG,k

⌘
+ �

⇣w
n
Ln

⌘
= �

⇣
LG � LbG,k

⌘
+ w.

Using Aclioptas and McSherry [1], we know that
���LG � LbG,k

���
2
 kLG � LG,kk2 +O(

p
n).

This implies that ���(I� bP)LG

���
2

1 + "

1� "
kLG � LG,kk2 +O(w)

The theorem follows after rescaling the value of ".

C.3 Applications of Cut Sparsification: Achieving Differential Privacy

Cut sparsifiers were introduced by [8] to compute approximations for maximum cut, sparsest cut,
and maximum flow, etc. Our results can be applied to all these settings. The main benefit of using
cut-sparsifier is that we get (↵, 0)-differential privacy with a comparatively more efficient algorithm.

Cut Queries. The first application of cut sparsifier is that we can efficiently compute all possible
cut queries with error that scales linearly with n.
Theorem 31. Given an n vertices m edges graph G, there is an efficient ↵-differentially private
algorithm that preprocess the graph in polynomial time to output another graph eG. Further, given a cut

query in the form of set of vertices S, one can output the cut with additive error ⌧ eO
✓q

sn(n�s)
↵2

◆

with probability at least 99/100. Further, computing a cut query takes O(s) time.

Proof. The algorithm is as follows:

25

Algorithm. Given a graph G, compute a sparse graph eG using Theorem 7. Then given a vector 1S ,
compute ↵�11>

S
L eG1S .

We next argue the correctness of the algorithm. Using Theorem 7, we have

1

↵
1>

S
L eG1S (1 + ")�S(G) +

q
n1>

S
Ln1S

↵

= (1 + ")�S(G) +O

 r
sn(n� s)

↵2

!

with probability at least 99/100. Similarly, for the lower bound, we have

1

↵
1>

S
L eG1S � (1� ")�S(G)�

q
n1>

S
Ln1S

↵

= (1� ")�S(G)�O

 r
sn(n� s)

↵2

!

This completes the proof of Theorem 31.

MAX-CUT. Another problem one can solve using our cut sparsifier is that of MAX-CUT. Here,
given a graph G = (V,E) on vertex set V , the goal is to output a set of vertices S ✓ V that maximizes
the value of �S(G). It is well known that MAX-CUT is NP-hard. However, Goemans and Williamson
gave an elegant polynomial time algorithm for computing ⇣GW � ⌘ approximation to MAX-CUT—it
is known that even approximation within a factor of ⇣GW + ⇢, for all ⇢ > 0 is NP-hard [31] under
the unique games conjecture [30], where ⇣GW is as defined in equation (4).

Theorem 32. For an n-vertex graph G := (V,E), there is a polynomial-time algorithm that is
(↵, 0)-differentially private with respect to the edge level privacy and produces a set of nodes S ✓ V
satisfying

�S(G) � (⇣GW � ⌘)

✓
1� "

1 + "

◆
OPTmax �O

⇣sn
↵

⌘
,

with probability at least 9/10. Here ⇣GW is as defined in equation (4), OPTmax is the optimal value
of MAX-CUT and �S(G) is the size of cut for vertex set in S ✓ V .

Proof. The idea is to first compute a private sparse graph using Algorithm 2, then run the SDP based
algorithm of [21] on the private sparse graph, and output the set of vertices S outputted by that
algorithm. Let eSOPT be the solution of MAX-CUT on graph eG and SOPT be the solution of MAX-CUT
on the graph G. In other words,

eSOPT = argmax
S✓V

1>

S
LeG1S and SOPT = argmax

S✓V

1>

S
LG1S .

From Theorem 24, we know that

�S(eG) � (⇣GW � ⌘)max
S✓V

1>

S
LeG1S

with probability at least 99/100. Further, since eG is a cut-sparsification, Theorem 7 implies that

(1� ")1>

S
LeG1S �O

✓q
n1>

S
Ln1S

◆
 ↵1>

S
LG1S (1 + ")1>

S
LeG1S +O

✓q
n1>

S
Ln1S

◆

holds simultaneously for 8S ✓ [n] with probability 99/100. Applying Theorem 7 twice, once with
eSOPT and SOPT, we have the desired claim.

26

SPARSEST-CUT. Another problem that is considered in graph theory is the problem of sparsest
cut, SPARSE-CUT. Here, given a graph G = (V,E) on vertex set V , the goal is to output a set of
vertices S that minimizes the value �S(G)

|S|(n�|S|) .

Combining Theorem 26 result with Theorem 7, we immediately get the following:
Theorem 33. For an n-vertex graph G := (V,E), there is a polynomial-time algorithm that is
(↵, 0)-differentially private with respect to the edge level privacy and produces a set of nodes S
satisfying

�S(G) O(
p
log n)

✓
1 + "

1� "

◆
OPTsparsest +O

log2 n

"
p

|S|

!
,

with probability at least 9/10. Here OPTsparsest is the optimal value of SPARSE-CUT and �S(G) is
the size of cut for vertex set in S ✓ V .

Proof. The idea is to first compute a private sparse graph using Algorithm 2, then run the SDP
based algorithm of [5] on the private sparse graph, and output the set of vertices S outputted by that
algorithm. Let eSOPT be the solution of SPARSEST-CUT on graph eG and SOPT be the solution of
SPARSEST-CUT on the graph G. In other words,

eSOPT = argmin
S✓V

1>

S
LeG1S

|S|(n� |S|)

!
and SOPT = argmin

S✓V

✓
1>

S
LG1S

|S|(n� |S|)

◆
.

From Theorem 26, we know that

�S(eG) O(
p

log n) min
S✓V

1>

S
LeG1S

|S|(n� |S|)

!

with probability at least 99/100. Further, since eG is a cut-sparsification, Theorem 7 implies that

(1� ")1>

S
LeG1S �O

✓q
n1>

S
Ln1S

◆
 ↵1>

S
LG1S (1 + ")1>

S
LeG1S +O

✓q
n1>

S
Ln1S

◆

holds simultaneously for 8S ✓ V with probability at least 99/100. Applying Theorem 7 twice, once
with eSOPT and SOPT, we have the desired claim.

EDGE-EXPANSION. Using the fact that, up to a factor 2, computing the sparsest cut is the same as
computing the edge expansion of the graph, we have the following corollary.
Theorem 34. For an n-vertex graph G = (V,E), there is a polynomial-time algorithm that is
(↵,�)-differentially private with respect to the edge level privacy and produces a set of nodes S ✓ V
satisfying

OUT O(
p
log n)

✓
1 + "

1� "

◆
OPTedge +O

log2 n

"
p

|S|

!
,

with probability at least 9/10. Here OPTedge is the optimal value of EDGE-EXPANSION.

D Flexibility of Our Approach

In this section, we illustrate the flexibility of our approach. For the ease of presentation, we first
assume that the graph is unweighted. Later, in Section D.1, we show how to remove this assumption.
We prove Theorem 35 through a series of lemmata. We first show in Lemma 36 that we can privately
compute an overestimate of the leverage scores and still the vector of leverage scores has a small `0
norm. This implies that the number of edges in our sparsified graph is of order eO(n/"2).
Theorem 35. Let G be a graph on n vertices. Given an approximation parameter 0 < " < 1,

confidence parameter �, and privacy parameters ↵,�, let w = O

✓q
n log(1/�)

↵2"2
log(1/�)

◆
. Then

PRIVATE-SPARSIFY-ADD-MULT, described in Algorithm 3, is (↵,�)-differentially private algorithm,

27

Algorithm 3 PRIVATE-SPARSIFY-ADD-MULT (G, ", (↵,�))

Input: An n vertex graph G = (V,E), privacy parameters (↵,�), approximation parameter ".
Output: A Laplacian LeG .

1: Initialization. Sample a random Gaussian matrix M 2 Rn/"
2
⇥m such that Mij ⇠ N (0, "2/n).

2: Privatize. Compute a graph bG with Laplacian LbG =
�
1� w

n

�
LG + w

n
Ln, where w =

O

✓q
n log(1/�)

↵2"2
log

⇣
1
�

⌘◆
. Let EbG be the corresponding edge-adjacency matrix and EKn

be the edge-adjacency matrix of weighted complete graph,
p

w/nKn. Compute H = MEbG .

3: Compute effective resistance. e⌧i = ei(H>H)
†

e>
i

, where ei is i-th the row of EKn .
4: Construct diagonal matrix D 2 Rm⇥m whose diagonal entries are Dii := p�1

i
with probability

pi, where pi = min
�
ce⌧i"�2 log(n/�), 1

, and 0 otherwise.

5: Output. LeG := E>

Kn
DEKn .

and outputs a Laplacian LeG of eO(n/"2) edges graph, such that, with probability at least 99/100, we
have

eO
✓
1� "
p
n

◆
Ln � "

⇣
1�

w

n

⌘
LG � LeG � "

⇣
1�

w

n

⌘
LG + eO

✓
1 + "
p
n

◆
Ln,

where LG is the Laplacian of the input graph G and Ln is the Laplacian of complete graph Kn.

We first give a proof sketch. The privacy proof follows from [9, 54]. To complete the proof, we prove
the following: ⌧i e⌧i, where ⌧i are the true effective resistance,

P
i
e⌧i = O(n), and the spectral

guarantee. Since M is a random Gaussian matrix, we can show that (1� ")LbG � E>

bG
M>MEbG �

(1 + ")LbG . Intuitively, our sampling is equivalent to sampling by the standard effective resistance of
LbG . We use the matrix Bernstein to show that sampling by these effective resistance will yield LeG
satisfying (1� ")LbG � LeG � (1 + ")LbG . However, we actually sample the edges of complete graph
Kn. Subtracting off the effect of

�
1� w

n

�
LG yields the mixed additive-multiplicative bound. We

now give a detailed proof.

Lemma 36. Let M be an O
⇣

n log(1/�)
"2

⌘
⇥
�
n

2

�
random Gaussian matrix with entries sampled iid

from N (0, 2"/n log(1/�)). Let EbG be the edge-adjacency matrix of the graph bG formed by overlaying
a weighted complete graph w

n
Ln on top of the input graph, i.e., LbG =

�
1� w

n

�
LG + w

n
Kn. Let

ei be the i-th row for edge-adjacency matrix of complete graph Kn. Define a diagonal matrix
e⌧ 2 R(

n
2)⇥(

n
2)

e⌧i = ei
⇣
E>

bG M>MEbG

⌘†

e>
i
.

Then ke⌧k0 eO(n(1 + ")/"2).

Proof. Let E>

bG
EbG = U⇤2U>. Since LbG has rank n � 1 and M is a random Gaussian matrix of

dimensions O
⇣

n log(1/�)
"2

⌘
⇥
�
n

2

�
, [48] gives us that with probability 1� �,

(1� ")LbG � E>

bG M>MEbG � (1 + ")LbG

In other words, (1 � ")L†

bG
� (E>

bG
M>MEbG)

†
� (1 + ")L†

bG
. This in particular implies that e⌧i

(1 + ")⌧i, where ⌧i is the true effective resistance for i-th edge.

Set pi = min
n
e⌧i,i c log(n/�)"2

, 1
o

for 1 i n. Let D is a diagonal matrix whose diagonal entries are

p�1
i

with probability pi. The expected number of edges in the resulting graph is
P

i
e⌧i. So Chernoff

28

bound will give that with probability 1� �, the number of edges in the graph eG is
X

i

pi
c log(n/�)

"2

X

i

e⌧i

c(1 + ") log(n/�)

"2
Tr

⇣
EKnL

†

bG
E>

n

⌘

=
c(1 + ") log(n/�)

"2
Tr

⇣
E>

n
EKnL

†

bG

⌘

c(1 + ") log(n/�)

"2

⇣
Tr

⇣
E>

n
EKnL

†

bG

⌘
+ Tr

⇣
E>

G
EGL

†

G

⌘⌘

=
c(1 + ") log(n/�)

"2
Tr

⇣
EbGL

†

bG
E>

bG

⌘

cn(1 + ") log(n/�)

"2
.

This completes the proof of Lemma 36.

Equipped with Lemma 36, we can now prove the spectral sparsification guarantee of our output.
Lemma 37. With probability at least 1� �, we have

eO
✓
1� "
p
n

◆
Ln � "

⇣
1�

w

n

⌘
LG � "

⇣
1�

w

n

⌘
LG + LeG � eO

✓
1 + "
p
n

◆
Ln

Proof. We consider the graph G overlaid with a weighted complete graph with weights w/n, i.e.,

LbG =
w

n
Ln +

⇣
1�

w

n

⌘
LG

In other words, we have E>

Kn
DEKn . More precisely, ⌧i = w

n
eiL

†

bG
e>
i

= w

n
eiU bG⌃

�2
bG
U>

bG
e>
i
. We

borrow the idea from [14]. Let define Qi =
p

w

n
eiU bG⌃

�1
bG

. Next define the following matrix valued
random variable:

Xi :=

(⇣
1
pi

� 1
⌘
Q>

i
Qi with probability pi

�Q>

i
Qi with probability 1� pi

.

Now Y =
P

i
Xi. Then we have

E[Y] =
nX

i=1

✓
pi

✓
1

pi
� 1

◆
Q>

i
Qi � (1� pi)Q

>

i
Qi

◆
= 0.

By the definition of pi, kXik2 = 1. We have to bound �2 =
��E

⇥
Y 2

⇤��
2
. For this note that

E[Y 2] =
X

i

"
pi

✓
1

pi
� 1

◆2

+ (1� pi)

#
w2

n2
(eiU bG⌃

�1
bG
)>eiU bG⌃

�2
bG
U>

bG e>
i
eiU bG⌃

�1
bG

�

X

i

O

✓
⌧i
pi

◆
w

n
⌃�1

bG
U>

bG e>
i
eiU bG⌃

�1
bG

� O

✓
"2

log(n/�)

◆
⌃�1

bG
U>

bG

⇣w
n
Ln

⌘
U bG⌃

�1
bG

� O

✓
"2

log(n/�)

◆
I.

This is because w

n
Ln � U bG⌃

2
bG
U>

bG
. In other words, �2

 O
⇣

"
2

log(n/�)

⌘
. Further, we can compute

the intrinsic dimension as
Tr(I)
kIk2

= n� 1.

29

Using Matrix Bernstein inequality for intrinsic dimension [53] now gives us the following:

Pr [kY k2 � "] 4ne�c ln(n/�)/2
 �/2

for large enough c. Noting that LeG = U bG⌃ bGY ⌃ bGU
>

bG
+ w

n
Ln gives us that

eO
✓
1� "
p
n

◆
Ln � "

⇣
1�

w

n

⌘
LG � LeG � "

⇣
1�

w

n

⌘
LG + eO

✓
1 + "
p
n

◆
Ln

This completes the proof of Lemma 37.

Lemma 38. LeG outputted by PRIVATE-SPARSIFY-ADD-MULT is (↵,�)-differentially private with
respect to the edge-level privacy.

Proof. We first prove the privacy guarantee. The only time the graph is used in the algorithm
PRIVATE-SPARSIFY-ADD-MULT is when we compute H := MEbG . This is differentially private due
to [9, 54] by our choice of w. Using the post-processing property (Lemma 15) of differential privacy,
the result follows.

D.1 Extension to Weighted Graph

We can use a standard technique to extend our result for Theorem 35 to weighted graphs in which
an edge’s weight is specified. We assume that the weights on the graph are integers in the range
[1, poly n]. We consider different levels (1 + ")i for i 2 [c log n] for some constant c. Then we
consider input graphs being partitioned in form

LG =
c lognX

i=1

LG,i,

where LG,i has edges with weights
�
0, (1 + ")i

. In other words, we use the (1+")-ary representation

of weights on the edges and partition the graph accordingly. Again since there are at most poly log n
levels, the number of edges in eG is eO(n/"2). Since eG is (↵,�)-differentially private, we can run
another instance of [35] to get O(n/"2) edge graph bG. Using Lemma 22, we therefore have
Theorem 39. Given the privacy parameter (↵,�), the accuracy parameter " and confidence param-

eter �, let w = eO
✓q

n log(1/�)
↵2"2

log
⇣

1
�

⌘◆
. Given a weighted graph G, PRIVATE-SPARSIFY-ADD-

MULT outputs a Laplacian of a graph LeG with the following guarantees:

1. LeG is (↵,�)-differentially private with respect to the edge-level privacy.

2. With probability at least 1� �, we have

O

✓
w(1� ")

n
log n

◆
Ln � "LG � LeG � O

✓
w(1 + ")

n
log n

◆
Ln + "LG .

3. The number of edges in LeG is O(n/"2).

E Why Traditional Approaches Do Not Work?

We argued briefly in the introduction that traditional approaches for spectral sparsification do not
work. We also argued that traditional privacy mechanisms also fails to either give good spectral
sparsification guarantees. In this section, we give the technical reasons why all these approaches do
not work for privacy.

E.1 Using Known Privacy Techniques

Construction. Compute the leverage score and then add noise scaled to its sensitivity. This would
incur an error proportional to O(`Lipn2) if effective resistance has Lipschitz constant `Lip as the
vector of effective resistance has dimension O(n2). Unfortunately, we show that effective resistance
is not Lipschitz continuous. In other words,

30

Lemma 40. Effective resistance of edges is not a Lipschitz smooth function.

Proof. Let ei be an edge in the graph G with weight 1. Let G0 be a neighboring graph with all edges
same as in G except for the edge i that has weight 2. We can consider this action as a diagonal
matrix C acting on EG where Cii = 2 for i 2 [

�
n

2

�
] and Cjj = 1 for all j 6= i. In this notation

EG0 = CEG . Let denote by ⌧i the effective resistance for an edge i = (u, v) between nodes u and v,
i.e., ⌧i := (EG)i(LG)†(EG)>i . Using [38, Corollary 3], we have

⌧ 0
i
:= ⌧ 0

i
(EG0) = 2(EG)i

�
LG + 2(EG)i(EG)

>

i

�†
(EG)

>

i

= 2(EG)i

L†

G
� 2

L†

G
(EG)>i (EG)iL

†

G

1 + 2(EG)iL
†

G
(EG)>i

!
(EG)

>

i

= 2

✓
⌧i � 2⇥

⌧2
i

1 + 2⌧i

◆

=
2⌧i

1 + 2⌧i
�

2

3
⌧i

On the other hand, using [38, Corollary 3] again, we have for j 6= i,

⌧ 0
j
:= ⌧ 0

j
(EG0) = (EG)j

�
LG + 2(EG)j(EG)

>

j

�†
(EG)

>

j

= (EG)j

L†

G
� 2⇥

L†

G
(EG)>j (EG)jL

†

G

1 + 2(EG)jL
†

G
(EG)>j

!
(EG)

>

j

= ⌧j �
2⌧2

j

1 + 2⌧j
= ⌧j

In other words, effective resistances are not Lipschitz smooth.

Objective Perturbation and Resampling. Another option to preserve privacy is performing output
perturbation. If we compute a sparse graph and then perform output perturbation, we need to perturb
every possible edges. We can still sparsify this graph since differential privacy is preserved under
post-processing; however, this procedure leads to an error term that scales proportional to O(n2). So
any hope of using output perturbation seems to hit a road block.

Recursive Sampling. Another approach that one can try is to use recursive sampling, i.e., iterate
the following few number of times: form a coarse sparsifier, add noise, and then sparsify again. This
approach has seen success in the context of k-rank approximation where the general technique used
is Krylov subspace iteration: compute a QR decomposition, then add noise, and then compute the
QR decomposition again. Unfortunately, while in the case of low-rank approximation, the noise only
scales proportional to k, in this case, the added noise would aggregate leading to an error term that
scales proportional to n and the number of iterations.

Exponential Mechanism. Note that the set of all sparsifiers is bounded above by
exp(O(n log(n))). Even though we managed to find a range of size 2O(n log(n)), it is possible
to show that the range of the mechanism has to be 2⌦(n). (Fix ⌘ < 1/2 and think of a set of inputs
G where each graph has n/2 vertices with degree n⌘ and n/2 vertices with degree n2⌘. Preserving
all cuts of size 1 up to (1± ") requires our output to have vertices of degree at least (1� ")n2⌘ and
vertices of degree less than (1 + ")n⌘. Therefore, by representing vertices of high- and low-degree
using a binary vector, there exists an injective mapping of balanced {0, 1}n-vectors onto the set of
potential outputs.) Thus, unless one can devise a scoring function of lower sensitivity, the exponential
mechanism is bounded to have additive error proportional to n/↵.

31

	Introduction
	Preliminaries and Notations
	Differentially Private Graph Sparsification
	A High-level Overview of Our Algorithm
	Main Result

	Applications of Theorem 3
	Differentially Private Cut Sparsification
	Discussion
	Notation and Preliminaries
	Gaussian Distribution
	Graph Theory
	Differential Privacy

	Missing Proofs of Section 3 and Section 5
	Utility Proof
	Privacy Proof of Algorithm 1
	Finishing the Proof of Theorem 3
	Proof of Theorem 7

	Applications of Our Results
	Applications of Private Spectral Sparsification
	Laplacian Eigenmap
	Applications of Cut Sparsification: Achieving Differential Privacy

	Flexibility of Our Approach
	Extension to Weighted Graph

	Why Traditional Approaches Do Not Work?
	Using Known Privacy Techniques

