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A A bound on V

We show that if each arm is positively correlated with at mostQ other arms, then V in Assumption 2.2
can be set to 1 + 2Q. For a set of arms A ⊆ [K] and i ∈ A, let P (i) denote the set of arms in A that
are different from i and positively correlated with it. Assume w.l.o.g. that j < i⇒ wj ≤ wi. Then,
using Assumption 2.1,
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Thus, in this case Assumption 2.2 holds with V = 1 + 2Q.

B Median-of-means estimation

In Section 2, we defined the median-of-means as the median of empirical means of several batches
of i.i.d. samples. More generally, one can consider the (q, `)-p-of-means estimate, for p ∈ (0, 1), in
which instead of the median, the estimator is set to a number such that a p fraction of the q empirical
means are no larger than it and 1− p fraction are no smaller than it. The (q, `)-MoM estimate is thus
also the (q, `)- 1

2 -of-means estimate. Lemma B.1 and its proof are similar to those provided in [2, 16],
and are brought here for completeness. Lemma 2.3 is obtained from Lemma B.1 by setting p = 1

2
and a = 6. Lemma B.1 is used also in the proof of Lemma 5.7 in Appendix C.
Lemma B.1 (Median-of-Means). Let p ∈ (0, 1

2 ). Let X be a random variable with mean w and
variance σ2 <∞. Let q, ` be integers, and let ŵ be the (q, `)-p-of-means estimate of w from a sample
of q` i.i.d. draws of copies of X . Let a > 1/p. With a probability at least 1− exp(−q · 2(p− 1/a)2),
|w − ŵ| ≤

√
aσ2/`.

Proof. For j ∈ [q], let ŵj be the j’th empirical mean used for the estimator. By Chebychev’s
inequality, P[|w − ŵ| ≤

√
aσ2/`] ≥ 1− 1/a. For j ∈ [q], let bj = I[|w − ŵj | ≤

√
aσ2/`]. Then

E[bj ] ≥ 1− 1/a, and b1, . . . , bq are independent random variables. By Hoeffding’s inequality,
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If 1
q

∑q
i=1 bi > 1−p then more than 1−p fraction of the empirical means satisfy |w−ŵj | ≤

√
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We now show that this holds also for w which is the p-of-means estimate. Assume for contradiction
that it does not hold for w. If w ≤ ŵ, it follows that all the p-fraction smaller estimates also do not
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satisfy the inequality, which is a contrdacition. If w ≥ ŵ and does not satisfy the inequality, then
w is larger than at least 1 − p fraction of the estimates. But this would imply p ≥ 1 − p, which is
impossible since p ≤ 1

2 . Thus, the p-of-means satisfies the inequality, which concludes the proof.

C Proof of Lemma 5.7

Proof of Lemma 5.7. For i ∈ [z], let {Y j,li }j∈[q],l∈[`] be the set of i.i.d. samples of copies of Yi used
to get the MoM estimate µ̂i. Denote µ̂ji := 1

`

∑`
l=1 Y

j,l
i , so that µ̂i is the median of {µ̂ji}j∈[q]. Let
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i . Then {Ȳ j,l}j∈[q],l∈[`] is a set of i.i.d. samples of copies of Ȳ . Let µ̂ be the

(q, `)-1/3-of-means estimate of µ̄ = E[Ȳ ] based on these samples. Each mean in this estimator is
equal to 1
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By Lemma B.1 with p = 1/3 and a = 6, with a probability at least 1− exp(−q · 2(1/3− 1/6)2) =
1− exp(−q/18),
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√
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Now, let I := {i ∈ [z] | µ̂i ≥ γµ}, and T := |I|. We have ∀i ∈ I,
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i ≥ γµ] ≤ T . Letting J be an integer random variable drawn uniformly from

[q], we conclude that E[NJ ] ≥ T/2, so E[T −Nj ] < T/2. By Markov’s inequality,

P[T −NJ ≥ 3T/4] < (T/2)/(3T/4) = 2/3,

so P[NJ > T/4] ≥ 1/3. It follows that for at least a third of the indices j ∈ [q], {µ̂ji}i∈[z] includes at
least T/4 values larger than γµ, hence for these indices,
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Combined with Eq. (5), we have that with a probability at least 1− exp(−q/18),
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Therefore, T ≤ 4
γ (1 +

√
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µ2` ), which concludes the proof.
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