
Model DCGAN WGAN WGAN-GP
Input dimension 5 10 20 5 10 20 5 10 20

% successful Regular Adam 48.3 68.7 80.0 56.0 84.3 90.3 47.0 64.7 64.7
Surfing 78.3 98.7 96.3 81.7 97.3 99.3 83.7 95.7 97.3

iterations Regular Adam 618 4560 18937 464 1227 3702 463 1915 15445
Surfing 741 6514 33294 547 1450 4986 564 2394 25991

Table 1: Surfing compared against direct gradient descent over the final trained network. Shown are percentages of
“successful” solutions x̂T satisfying ‖x̂T − x∗‖ < 0.01, and 75th-percentiles of the total number of gradient descent
steps used (across all networks G0, . . . , GT for surfing) until ‖x̂T − x∗‖ < 0.01 was reached.

We thank the reviewers for carefully reading our paper and providing insightful and constructive comments. We will1

respond to each of the concerns that were raised.2

Reviewers 1 and 2 both comment on the computational cost of the procedure, compared with running vanilla Adam with3

multiple random initial points. We thank the reviewers for raising this important point, which led us to further explore4

the computational cost of surfing. In fact, surfing can be performed such that its runtime is close to that of a single5

initialization of vanilla Adam—the reason is that for the intermediate networks, gradient descent (GD) does not need to6

be run until full convergence; the number of GD steps can be quite small and surfing will still succeed.7

The updated Table 1 illustrates this: Briefly, we re-ran both vanilla Adam and surfing on the DCGAN, WGAN, and8

WGAN-GP examples, using the same step size in both methods. We recorded the 75th-percentile of the number of GD9

steps N needed in vanilla Adam to achieve ‖x̂T − x∗‖ < 0.01. We then constrained surfing to use N total iterations10

across networks G0, . . . , G99, followed by GD until convergence for the final trained network G100. The N steps in11

surfing were split across networks G0, . . . , G99 proportional to a common deterministic schedule, which alloted more12

steps to the earlier networks Gt where the landscape changes more rapidly, and fewer steps to later networks where13

this landscape stabilizes. Shown are the success rates and the 75th-percentiles of the total number of GD iterations for14

both methods. We see that surfing still has a much higher success rate, at a comparable computational cost to a single15

initialization for vanilla Adam. We will update Table 1 of the original manuscript to display this new comparison.16

R1: I only have a problem with the way the set S(x, θ, τ) is defined in line 177, since the authors do not require the17

signs to strictly differ on this set. S(x, θ, τ) is just the set of neurons that are close to zero before ReLU thresholding.18

These are the neurons for which the signs could change after a small change of the network input x.19

R1: Although Algorithm 2 and the empirical algorithm are similar in spirit, lines 1 and 3 in algorithm 2 are crucial for20

proof of correctness. Theorem 2 mainly illustrates that the procedure can be formalized, although in its current form the21

projected gradient algorithm is not easily implemented.22

R1: For the case where y = G(z) + noise, where noise has sufficiently low energy, you would expect a local minimum23

close to z. Would this not contradict the result of Theorem 3.1? This case is not covered by Theorem 3.1, because y is24

then correlated with the network parameters. Please see our comment starting on line 157.25

R2: I find the paper quite interesting already. To make it even more interesting would involve having a complete26

theoretical argument establishing the time complexity without the current heuristic. We agree that a full theoretical27

analysis would be preferred. Ultimately we think that something between the simple surfing and projected gradient28

surfing methods will be more attractive in both theory and practice.29

R3: From my understanding, the first theorem is mainly built on (Hand and Voroninski, 2017), and the second theorem30

is mainly built on (Bora et al.) Our analysis builds primarily on Hand and Voroninski. The type of result in Bora et al.31

is different, and pertains to properties of near-global minimizers rather than computational procedures for finding them.32

R3: For the second theorem, the result implies the deeper the network is, the smaller the delta should be. It would be33

better to discuss how tight is the analysis, and whether this dependency is necessary in practice. The dependence of34

δ on network depth comes from upper-bounding the Lipschitz constant of the network G(x) by
∏d

i=1 ‖Wi‖. We do35

expect the true Lipschitz constant to increase with network depth in practice. The upper-bound is likely not tight, but it36

may be difficult to theoretically improve. The same type of bound was used in Szegedy et al. (2014); Virmaux and37

Scaman (2018) which discussed this question in more detail—we will add a discussion of this point to the manuscript.38

References39

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014). Intriguing40

properties of neural networks. In International Conference on Learning Representations.41

Virmaux, A. and Scaman, K. (2018). Lipschitz regularity of deep neural networks: Analysis and efficient estimation. In42

Advances in Neural Information Processing Systems, pages 3835–3844.43

