
A Connections to and Disambiguation from Other Models

Here, we describe other models for adversarial examples and how they relate to the model presented
in this paper.

Concentration of measure in high-dimensions. An orthogonal line of work [Gil+18; FFF18;
MDM18; Sha+19a], argues that the high dimensionality of the input space can present fundamental
barriers on classifier robustness. At a high level, one can show that, for certain data distributions,
any decision boundary will be close to a large fraction of inputs and hence no classifier can be
robust against small perturbations. While there might exist such fundamental barriers to robustly
classifying standard datasets, this model cannot fully explain the situation observed in practice,
where one can train (reasonably) robust classifiers on standard datasets [Mad+18; RSL18; WK18;
Xia+19; CRK19].

Insufficient data. Schmidt et al. [Sch+18] propose a theoretical model under which a single sam-
ple is sufficient to learn a good, yet non-robust classifier, whereas learning a good robust classifier
requires O(

√
d) samples. Under this model, adversarial examples arise due to insufficient informa-

tion about the true data distribution. However, unless the adversary is strong enough (in which case
no robust classifier exists), adversarial inputs cannot be utilized as inputs of the opposite class (as
done in our experiments in Section 3.2). We note that our model does not explicitly contradict the
main thesis of Schmidt et al. [Sch+18]. In fact, this thesis can be viewed as a natural consequence of
our conceptual framework. In particular, since training models robustly reduces the effective amount
of information in the training data (as non-robust features are discarded), more samples should be
required to generalize robustly.

Boundary Tilting. Tanay and Griffin [TG16] introduce the “boundary tilting” model for adver-
sarial examples, and suggest that adversarial examples are a product of over-fitting. In particular,
the model conjectures that “adversarial examples are possible because the class boundary extends
beyond the submanifold of sample data and can be—under certain circumstances—lying close to
it.” Consequently, the authors suggest that mitigating adversarial examples may be a matter of reg-
ularization and preventing finite-sample overfitting. In contrast, our empirical results in Section 3.2
suggest that adversarial inputs consist of features inherent to the data distribution, since they can
encode generalizing information about the target class.

Inspired by this hypothesis and concurrently to our work, Kim, Seo, and Jeon [KSJ19] present a
simple classification task comprised of two Gaussian distributions in two dimensions. They exper-
imentally show that the decision boundary tends to better align with the vector between the two
means for robust models. This is a special case of our theoretical results in Section 4. (Note that this
exact statement is not true beyond two dimensions, as discussed in Section 4.)

Test Error in Noise. Fawzi, Moosavi-Dezfooli, and Frossard [FMF16] and Ford et al. [For+19]
argue that the adversarial robustness of a classifier can be directly connected to its robustness under
(appropriately scaled) random noise. While this constitutes a natural explanation of adversarial
vulnerability given the classifier robustness to noise, these works do not attempt to justify the source
of the latter.

At the same time, recent work [Lec+19; CRK19; For+19] utilizes random noise during training or
testing to construct adversarially robust classifiers. In the context of our framework, we can expect
the added noise to disproportionately affect non-robust features and thus hinder the model’s reliance
on them.

Local Linearity. Goodfellow, Shlens, and Szegedy [GSS15] suggest that the local linearity of
DNNs is largely responsible for the existence of small adversarial perturbations. While this con-
jecture is supported by the effectiveness of adversarial attacks exploiting local linearity (e.g.,
FGSM [GSS15]), it is not sufficient to fully characterize the phenomena observed in practice. In
particular, there exist adversarial examples that violate the local linearity of the classifier [Mad+18],
while classifiers that are less linear do not exhibit greater robustness [ACW18].

Piecewise-linear decision boundaries. Shamir et al. [Sha+19b] prove that the geometric structure
of the classifier’s decision boundaries can lead to sparse adversarial perturbations. However, this

13

result does not take into account the distance to the decision boundary along these direction or
feasibility constraints on the input domain. As a result, it cannot meaningfully distinguish between
classifiers that are brittle to small adversarial perturbations and classifiers that are moderately robust.

Theoretical constructions which incidentally exploit non-robust features. Bubeck, Price, and
Razenshteyn [BPR18] and Nakkiran [Nak19b] propose theoretical models where the barrier to learn-
ing robust classifiers is, respectively, due to computational constraints or model complexity. In order
to construct distributions that admit accurate yet non-robust classifiers they (implicitly) utilize the
concept of non-robust features. Namely, they add a low-magnitude signal to each input that encodes
the true label. This allows a classifier to achieve perfect standard accuracy, but cannot be utilized in
an adversarial setting as this signal is susceptible to small adversarial perturbations.

B Additional Related Work

We describe previously proposed models for the existence of adversarial examples in the previous
section. Here we discuss other work that is methodologically or conceptually similar to ours.

Distillation. The experiments performed in Section 3.1 can be seen as a form of distillation. There
is a line of work, known as model distillation [HVD14; Fur+18; BCN06], where the goal is to
train a new model to mimic another already trained model. This is typically achieved by adding
some regularization terms to the loss in order to encourage the two models to be similar, often
replacing training labels with some other target based on the already trained model. While it might
be possible to successfully distill a robust model using these methods, our goal was to achieve it
by only modifying the training set (leaving the training process unchanged), hence demonstrating
that adversarial vulnerability is mainly a property of the dataset. Closer to our work is dataset
distillation [Wan+18] which considers the problem of reconstructing a classifier from an alternate
dataset much smaller than the original training set. This method aims to produce inputs that directly
encode the weights of the already trained model by ensuring that the classifier’s gradient with respect
to these inputs approximates the desired weights. (As a result, the inputs constructed do not resemble
natural inputs.) This approach is orthogonal to our goal since we are not interested in encoding the
particular weights into the dataset but rather in imposing a structure to its features.

Adversarial Transferabiliy. In our work, we posit that a potentially natural consequence of the
existence of non-robust features is adversarial transferability [Pap+17; Liu+17; PMG16]. A recent
line of work has considered this phenomenon from a theoretical perspective, confined to simple
models, or unbounded perturbations [CRP19; Zou+18]. Tramer et al. [Tra+17] study transferability
empirically, by finding adversarial subspaces, (orthogonal vectors whose linear combinations are
adversarial perturbations). The authors find that there is a significant overlap in the adversarial
subspaces between different models, and identify this as a source of transferability. In our work,
we provide a potential reason for this overlap—these directions correspond to non-robust features
utilized by models in a similar manner.

Universal Adversarial Perturbations Moosavi-Dezfooli et al. [Moo+17] construct perturbations
that can cause misclassification when applied to multiple different inputs. More recently, Jetley,
Lord, and Torr [JLT18] discover input patterns that are meaningless to humans and can induce mis-
classification, while at the same time being essential for standard classification. These findings can
be naturally cast into our framework by considering these patterns as non-robust features, providing
further evidence about their pervasiveness.

Manipulating dataset features Ding et al. [Din+19] perform synthetic transformations on the
dataset (e.g., image saturation) and study the performance of models on the transformed dataset
under standard and robust training. While this can be seen as a method of restricting the features
available to the model during training, it is unclear how well these models would perform on the
standard test set. Geirhos et al. [Gei+19] aim to quantify the relative dependence of standard models
on shape and texture information of the input. They introduce a version of ImageNet where texture
information has been removed and observe an improvement to certain corruptions.

14

C Experimental Setup

C.1 Datasets

For our experimental analysis, we use the CIFAR-10 [Kri09] and (restricted) ImageNet [Rus+15]
datasets. Attaining robust models for the complete ImageNet dataset is known to be a challenging
problem, both due to the hardness of the learning problem itself, as well as the computational com-
plexity. We thus restrict our focus to a subset of the dataset which we denote as restricted ImageNet.
To this end, we group together semantically similar classes from ImageNet into 9 super-classes
shown in Table 2. We train and evaluate only on examples corresponding to these classes.

Class Corresponding ImageNet Classes
“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

Table 2: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

C.2 Models

We use the ResNet-50 architecture for our baseline standard and adversarially trained classifiers on
CIFAR-10 and restricted ImageNet. For each model, we grid search over three learning rates (0.1,
0.01, 0.05), two batch sizes (128, 256) including/not including a learning rate drop (a single order
of magnitude) and data augmentation. We use the standard training parameters for the remaining
parameters. The hyperparameters used for each model are given in Table 3.

Dataset LR Batch Size LR Drop Data Aug. Momentum Weight Decay

D̂R (CIFAR) 0.1 128 Yes Yes 0.9 5 · 10−4

D̂R (Restricted ImageNet) 0.01 128 No Yes 0.9 5 · 10−4

D̂NR (CIFAR) 0.1 128 Yes Yes 0.9 5 · 10−4

D̂rand (CIFAR) 0.01 128 Yes Yes 0.9 5 · 10−4

D̂rand (Restricted ImageNet) 0.01 256 No No 0.9 5 · 10−4

D̂det (CIFAR) 0.1 128 Yes No 0.9 5 · 10−4

D̂det (Restricted ImageNet) 0.05 256 No No 0.9 5 · 10−4

Table 3: Hyperparameters for the models trained in the main paper. All hyperparameters were
obtained through a grid search.

15

C.3 Adversarial training

To obtain robust classifiers, we employ the adversarial training methodology proposed in [Mad+18].
Specifically, we train against a projected gradient descent (PGD) adversary constrained in `2-norm
starting from the original image. Following Madry et al. [Mad+18] we normalize the gradient at
each step of PGD to ensure that we move a fixed distance in `2-norm per step. Unless otherwise
specified, we use the values of ε provided in Table 4 to train/evaluate our models. We used 7 steps
of PGD with a step size of ε/5.

Adversary CIFAR-10 Restricted Imagenet
`2 0.5 3

Table 4: Value of ε used for `2 adversarial training/evaluation of each dataset.

C.4 Constructing a Robust Dataset

In Section 3.1, we describe a procedure to construct a dataset that contains features relevant only to a
given (standard/robust) model. To do so, we optimize the training objective in (5). Unless otherwise
specified, we initialize xr as a different randomly chosen sample from the training set. (For the sake
of completeness, we also try initializing with a Gaussian noise instead as shown in Table 7.) We then
perform normalized gradient descent (`2-norm of gradient is fixed to be constant at each step). At
each step we clip the input xr to in the [0, 1] range so as to ensure that it is a valid image. Details on
the optimization procedure are shown in Table 5. We provide the pseudocode for the construction in
Figure 5.

GETROBUSTDATASET(D)

1. CR ← ADVERSARIALTRAINING(D)
gR ← mapping learned by CR from the input to the representation layer

2. DR ← {}
3. For (x, y) ∈ D

x′ ∼ D
xR ← arg minz∈[0,1]d ‖gR(z) − gR(x)‖2

Solved using `2-PGD starting from x′

DR ← DR

⋃ {(xR, y)}
4. Return DR

Figure 5: Algorithm to construct a “robust” dataset, by restricting to features used by a robust model.

CIFAR-10 Restricted Imagenet
step size 0.1 1
iterations 1000 2000

Table 5: Parameters used for optimization procedure to construct dataset in Section 3.1.

16

C.5 Non-robust features suffice for standard classification

To construct the dataset as described in Section 3.2, we use the standard projected gradient descent
(PGD) procedure described in [Mad+18] to construct an adversarial example for a given input from
the dataset (6). Perturbations are constrained in `2-norm while each PGD step is normalized to a
fixed step size. The details for our PGD setup are described in Table 6. We provide pseudocode in
Figure 6.

GETNONROBUSTDATASET(D, ε)

1. DNR ← {}
2. C ← STANDARDTRAINING(D)
3. For (x, y) ∈ D

t
uar∼ [C] # or t← (y + 1) mod C

xNR ← min||x′−x||≤ε LC(x′, t) # Solved using `2 PGD
DNR ← DNR

⋃ {(xNR, t)}
4. Return DNR

Figure 6: Algorithm to construct a dataset where input-label association is based entirely on non-
robust features.

Attack Parameters CIFAR-10 Restricted Imagenet
ε 0.5 3

step size 0.1 0.1
iterations 100 100

Table 6: Projected gradient descent parameters used to construct constrained adversarial examples
in Section 3.2.

17

D Omitted Experiments and Figures

D.1 Detailed evaluation of models trained on “robust” dataset

In Section 3.1, we generate a “robust” training set by restricting the dataset to only contain fea-
tures relevant to a robust model (robust dataset) or a standard model (non-robust dataset). This is
performed by choosing either a random input from the training set or random noise7 and then per-
forming the optimization procedure described in (5). The performance of these classifiers along
with various baselines is shown in Table 7. We observe that while the robust dataset constructed
from noise resembles the original, the corresponding non-robust does not (Figure 7). This also
leads to suboptimal performance of classifiers trained on this dataset (only 46% standard accuracy)
potentially due to a distributional shift.

Robust Accuracy
Model Accuracy ε = 0.25 ε = 0.5

Standard Training 95.25 % 4.49% 0.0%
Robust Training 90.83% 82.48% 70.90%

Trained on non-robust dataset (constructed from images) 87.68% 0.82% 0.0%
Trained on non-robust dataset (constructed from noise) 45.60% 1.50% 0.0%
Trained on robust dataset (constructed from images) 85.40% 48.20 % 21.85%
Trained on robust dataset (constructed from noise) 84.10% 48.27 % 29.40%

Table 7: Standard and robust classification performance on the CIFAR-10 test set of: an (i) ERM
classifier; (ii) ERM classifier trained on a dataset obtained by distilling features relevant to ERM
classifier in (i); (iii) adversarially trained classifier (ε = 0.5); (iv) ERM classifier trained on dataset
obtained by distilling features used by robust classifier in (iii). Simply restricting the set of available
features during ERM to features used by a standard model yields non-trivial robust accuracy.

“deer’’ “truck’’ “cat’’ “ship’’“bird’’

D
D̂ N

R
D̂ R

Figure 7: Robust and non-robust datasets for CIFAR-10 when the process starts from noise (as
opposed to random images as in Figure 2a).

7We use 10k steps to construct the dataset from noise, instead to using 1k steps done when the input is a
different training set image (cf. Table 5).

18

D.2 Adversarial evaluation

To verify the robustness of our classifiers trained on the ‘robust” dataset, we evaluate them with
strong attacks [Car+19]. In particular, we try up to 2500 steps of projected gradient descent (PGD),
increasing steps until the accuracy plateaus, and also try the CW-`2 loss function [CW17b] with
1000 steps. For each attack we search over step size. We find that over all attacks and step sizes, the
accuracy of the model does not drop by more than 2%, and plateaus at 48.27% for both PGD and
CW-`2 (the value given in Figure 2). We show a plot of accuracy in terms of the number of PGD
steps used in Figure 8.

0 100 101 102 103

Number of PGD steps
0

20

40

60

80

100

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

to

=
0.

25
 (%

)

Figure 8: Robust accuracy as a function of the number of PGD steps used to generate the attack.
The accuracy plateaus at 48.27%.

D.3 Performance of “robust” training and test set

In Section 3.1, we observe that an ERM classifier trained on a “robust” training dataset D̂R (obtained
by restricting features to those relevant to a robust model) attains non-trivial robustness (cf. Figure 1
and Table 7). In Table 8, we evaluate the adversarial accuracy of the model on the corresponding
robust training set (the samples which the classifier was trained on) and test set (unseen samples
from D̂R, based on the test set). We find that the drop in robustness comes from a combination of
generalization gap (the robustness on the D̂R test set is worse than it is on the robust training set)
and distributional shift (the model performs better on the robust test set consisting of unseen samples
from D̂R than on the standard test set containing unseen samples from D).

Dataset Robust Accuracy

Robust training set 77.33%
Robust test set 62.49%
Standard test set 48.27%

Table 8: Performance of model trained on the robust dataset on the robust training and test sets as
well as the standard CIFAR-10 test set. We observe that the drop in robust accuracy stems from a
combination of generalization gap and distributional shift. The adversary is constrained to ε = 0.25
in `2-norm.

D.4 Classification based on non-robust features

Figure 9 shows sample images from D, D̂rand and D̂det constructed using a standard (non-robust)
ERM classifier, and an adversarially trained (robust) classifier.

In Table 9, we repeat the experiments in Table 1 based on datasets constructed using a robust model.
Note that using a robust model to generate the D̂det and D̂rand datasets will not result in non-robust

19

D
U

si
ng

no

n-
ro

bu
st

U
si

ng

ro
bu

st

(a) D̂rand

D
U

si
ng

no

n-
ro

bu
st

U
si

ng

ro
bu

st

(b) D̂det

Figure 9: Random samples from datasets where the input-label correlation is entirely based on non-
robust features. Samples are generated by performing small adversarial perturbations using either
random (D̂rand) or deterministic (D̂det) label-target mappings for every sample in the training set.
Each image shows: top: original; middle: adversarial perturbations using a standard ERM-trained
classifier; bottom: adversarial perturbations using a robust classifier (adversarially trained against
ε = 0.5).

features that are strongly predictive of t (since the prediction of the classifier will not change). Thus,
training a model on these datasets leads to poor accuracy on the standard test set from D.

Observe from Figure 10 that models trained on datasets derived from the robust model show a
decline in test accuracy as training progresses. In Table 9, the accuracy numbers reported correspond
to the last iteration, and not the best performance. This is because we have no way to cross-validate
in a meaningful way as the validation set itself comes from D̂rand or D̂det, and not from the true
data distribution D. Thus, validation accuracy will not be predictive of the true test accuracy, and
thus will not help determine when to early stop.

Model used
to construct dataset

Dataset used in training

D D̂rand D̂det
Robust 95.3% 25.2 % 5.8%

Standard 95.3% 63.3 % 43.7%

Table 9: Repeating the experiments of Table 1 using a robust model to construct the datasets D,
D̂rand and D̂det. Results in Table 1 are reiterated for comparison.

20

D.5 Accuracy curves

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Using ERM-trained Model

Train
Test

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using Robust Model
Train
Test

(a) Trained using D̂rand training set

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using ERM-trained Model

Train
Test

20 40 60 80 100 120 140 160 180
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using Robust Model
Train
Test

(b) Trained using D̂det training set

Figure 10: Test accuracy on D of standard classifiers trained on datasets where input-label corre-
lation is based solely on non-robust features as in Section 3.2. The datasets are constructed using
either a non-robust/standard model (left column) or a robust model (right column). The labels used
are either random (D̂rand; top row) or correspond to a deterministic permutation (D̂det; bottom row).

21

D.6 Performance of ERM classifiers on relabeled test set

In Table 10), we evaluate the performance of classifiers trained on D̂det on both the original test set
drawn from D, and the test set relabelled using t(y) = (y + 1) mod C. Observe that the classifier
trained on D̂det constructed using a robust model actually ends up learning permuted labels based
on robust features (indicated by high test accuracy on the relabelled test set).

Model used to construct
training dataset for D̂det

Dataset used in testing
D relabelled-D

Standard 43.7% 16.2%
Robust 5.8% 65.5%

Table 10: Performance of classifiers trained using D̂det training set constructed using either standard
or robust models. The classifiers are evaluated both on the standard test set from D and the test set
relabeled using t(y) = (y + 1) mod C. We observe that using a robust model for the construction
results in a model that largely predicts the permutation of labels, indicating that the dataset does not
have strongly predictive non-robust features.

D.7 Generalization to CIFAR-10.1

Recht et al. [Rec+19] have constructed an unseen but distribution-shifted test set for CIFAR-10.
They show that for many previously proposed models, accuracy on the CIFAR-10.1 test set can be
predicted as a linear function of performance on the CIFAR-10 test set.

As a sanity check (and a safeguard against any potential adaptive overfitting to the test set via hy-
perparameters, historical test set reuse, etc.) we note that the classifiers trained on D̂det and D̂rand
achieve 44% and 55% generalization on the CIFAR-10.1 test set, respectively. This demonstrates
non-trivial generalization, and actually perform better than the linear fit would predict (given their
accuracies on the CIFAR-10 test set).

22

D.8 Omitted Results for Restricted ImageNet

“dog’’ “primate’’ “insect’’ “crab’’ “bird’’

D
D̂ R

Figure 11: Repeating the experiments shown in Figure 2 for the Restricted ImageNet dataset. Sam-
ple images from the resulting dataset.

Std Training
 using

Adv Training
 using

Std Training
 using R

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
on

 (%

)

Std accuracy Adv accuracy (= 0.5)

Figure 12: Repeating the experiments shown in Figure 2 for the Restricted ImageNet dataset. Stan-
dard and robust accuracy of models trained on these datasets.

23

D.9 Targeted Transferability

25 30 35 40 45
Test accuracy (%; trained on Dy + 1)

0
10
20
30
40
50
60
70
80

Tr
an

sf
er

 su
cc

es
s r

at
e

(%
)

VGG-16
Inception-v3

ResNet-18DenseNet

ResNet-50

Figure 13: Transfer rate of targeted adversarial examples (measured in terms of attack success rate,
not just misclassification) from a ResNet-50 to different architectures alongside test set performance
of these architecture when trained on the dataset generated in Section 3.2. Architectures more sus-
ceptible to transfer attacks also performed better on the standard test set supporting our hypothesis
that adversarial transferability arises from utilizing similar non-robust features.

D.10 Robustness vs. Accuracy

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

>

/2

ERM Classifier
Robust + Accurate Classifier

Figure 14: An example where adversarial vulnerability can arise from ERM training on any standard
loss function due to non-robust features (the green line shows the ERM-learned decision boundary).
There exists, however, a classifier that is both perfectly robust and accurate, resulting from robust
training, which forces the classifier to ignore the x2 feature despite its predictiveness.

24

E Gaussian MLE under Adversarial Perturbation

In this section, we develop a framework for studying non-robust features by studying the problem of
maximum likelihood classification between two Gaussian distributions. We first recall the setup of
the problem, then present the main theorems from Section 4. First we build the techniques necessary
for their proofs.

E.1 Setup

We consider the setup where a learner receives labeled samples from two distributions,N (µ∗,Σ∗),
and N (−µ∗,Σ∗). The learner’s goal is to be able to classify new samples as being drawn from D1

or D2 according to a maximum likelihood (MLE) rule.

A simple coupling argument demonstrates that this problem can actually be reduced to learning the
parameters µ̂, Σ̂ of a single Gaussian N (−µ∗,Σ∗), and then employing a linear classifier with
weight Σ̂−1µ̂. In the standard setting, maximum likelihoods estimation learns the true parameters,
µ∗ and Σ∗, and thus the learned classification rule is C(x) = 1{x>Σ−1µ > 0}.
In this work, we consider the problem of adversarially robust maximum likelihood estimation. In
particular, rather than simply being asked to classify samples, the learner will be asked to classify
adversarially perturbed samples x + δ, where δ ∈ ∆ is chosen to maximize the loss of the learner.
Our goal is to derive the parameters µ,Σ corresponding to an adversarially robust maximum likeli-
hood estimate of the parameters of N (µ∗,Σ∗). Note that since we have access to Σ∗ (indeed, the
learner can just run non-robust MLE to get access), we work in the space where Σ∗ is a diagonal
matrix, and we restrict the learned covariance Σ to the set of diagonal matrices.

Notation. We denote the parameters of the sampled Gaussian by µ∗ ∈ Rd, and Σ∗ ∈
{diag(u)|u ∈ Rd}. We use σmin(X) to represent the smallest eigenvalue of a square matrixX , and
`(·;x) to represent the Gaussian negative log-likelihood for a single sample x. For convenience, we
often use v = x − µ, and R = ‖µ∗‖. We also define the � operator to represent the vectorization
of the diagonal of a matrix. In particular, for a matrix X ∈ Rd×d, we have that X� = v ∈ Rd if
vi = Xii.

E.2 Outline and Key Results

We focus on the case where ∆ = B2(ε) for some ε > 0, i.e. the `2 ball, corresponding to the
following minimax problem:

min
µ,Σ

Ex∼N (µ∗,Σ∗)

[
max
δ:‖δ‖=ε

`(µ,Σ;x+ δ)

]
(12)

We first derive the optimal adversarial perturbation for this setting (Section E.3.1), and prove The-
orem 1 (Section E.3.2). We then propose an alternate problem, in which the adversary picks a
linear operator to be applied to a fixed vector, rather than picking a specific perturbation vector
(Section E.3.3). We argue via Gaussian concentration that the alternate problem is indeed reflective
of the original model (and in particular, the two become equivalent as d → ∞). In particular, we
propose studying the following in place of (12):

min
µ,Σ

max
M∈M

Ex∼N (µ∗,Σ∗) [`(µ,Σ;x+M(x− µ))] (13)

whereM =
{
M ∈ Rd×d : Mij = 0 ∀ i 6= j, Ex∼N (µ∗,Σ∗)

[
‖Mv‖22

]
= ε2

}
.

Our goal is to characterize the behavior of the robustly learned covariance Σ in terms of the true
covariance matrix Σ∗ and the perturbation budget ε. The proof is through Danskin’s Theorem,
which allows us to use any maximizer of the inner problem M∗ in computing the subgradient of the
inner minimization. After showing the applicability of Danskin’s Theorem (Section E.3.4) and then
applying it (Section E.3.5) to prove our main results (Section E.3.7). Our three main results, which
we prove in the following section, are presented below.

First, we consider a simplified version of (12), in which the adversary solves a maximization with a
fixed Lagrangian penalty, rather than a hard `2 constraint. In this setting, we show that the loss con-
tributed by the adversary corresponds to a misalignment between the data metric (the Mahalanobis
distance, induced by Σ−1), and the `2 metric:

25

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary whose pertur-
bation is determined by the “Lagrangian penalty” form of (11), i.e.

max
δ
`(x+ δ; y · µ,Σ)− C · ‖δ‖2,

where C ≥ 1
σmin(Σ∗)

is a constant trading off NLL minimization and the adversarial constraint (the
bound on C ensures the problem is concave). Then, the adversarial loss Ladv incurred by (µ,Σ) is

Ladv(Θ)− L(Θ) = tr
[(
I + (C ·Σ∗ − I)

−1
)2
]
− d,

and, for a fixed tr(Σ∗) = k the above is minimized by Σ∗ = k
dI .

We then return to studying (13), where we provide upper and lower bounds on the learned robust
covariance matrix Σ:
Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ∗, i.e. the true
mean is learned. For the robust covariance Σr, there exists an ε0 > 0, such that for any ε ∈ [0, ε0),

Σr =
1

2
Σ∗+

1

λ
·I+

√
1

λ
·Σ∗ +

1

4
Σ2
∗, where Ω

(
1 + ε1/2

ε1/2 + ε3/2

)
≤ λ ≤ O

(
1 + ε1/2

ε1/2

)
.

Finally, we show that in the worst case over mean vectors µ∗, the gradient of the adversarial robust
classifier aligns more with the inter-class vector:
Theorem 3 (Gradient alignment). Let f(x) and fr(x) be monotonic classifiers based on the linear
separator induced by standard and `2-robust maximum likelihood classification, respectively. The
maximum angle formed between the gradient of the classifier (wrt input) and the vector connecting
the classes can be smaller for the robust model:

min
µ

〈µ,∇xfr(x)〉
‖µ‖ · ‖∇xfr(x)‖ > min

µ

〈µ,∇xf(x)〉
‖µ‖ · ‖∇xf(x)‖ .

E.3 Proofs

In the first section, we have shown that the classification between two Gaussian distributions with
identical covariance matrices centered at µ∗ and −µ∗ can in fact be reduced to learning the param-
eters of a single one of these distributions.

Thus, in the standard setting, our goal is to solve the following problem:

min
µ,Σ

Ex∼N (µ∗,Σ∗) [`(µ,Σ;x)] := min
µ,Σ

Ex∼N (µ∗,Σ∗) [− log (N (µ,Σ;x))] .

Note that in this setting, one can simply find differentiate ` with respect to both µ and Σ, and
obtain closed forms for both (indeed, these closed forms are, unsurprisingly, µ∗ and Σ∗). Here, we
consider the existence of a malicious adversary who is allowed to perturb each sample point x by
some δ. The goal of the adversary is to maximize the same loss that the learner is minimizing.

E.3.1 Motivating example: `2-constrained adversary

We first consider, as a motivating example, an `2-constrained adversary. That is, the adversary is
allowed to perturb each sampled point by δ : ‖δ‖2 = ε. In this case, the minimax problem being
solved is the following:

min
µ,Σ

Ex∼N (µ∗,Σ∗)

[
max
‖δ‖=ε

`(µ,Σ;x+ δ)

]
. (14)

The following Lemma captures the optimal behaviour of the adversary:
Lemma 1. In the minimax problem captured in (14) (and earlier in (12)), the optimal adversarial
perturbation δ∗ is given by

δ∗ =
(
λI −Σ−1

)−1
Σ−1v = (λΣ− I)

−1
v, (15)

where v = x− µ, and λ is set such that ‖δ∗‖2 = ε.

26

Proof. In this context, we can solve the inner maximization problem with Lagrange multipliers. In
the following we write ∆ = B2(ε) for brevity, and discard terms not containing δ as well as constant
factors freely:

arg max
δ∈∆

`(µ,Σ;x+ δ)− = arg max
δ∈∆

(x+ δ − µ)
>

Σ−1 (x+ δ − µ)

= arg max
δ∈∆

(x− µ)>Σ−1(x− µ) + 2δ>Σ−1(x− µ) + δ>Σ−1δ

= arg max
δ∈∆

δ>Σ−1(x− µ) +
1

2
δ>Σ−1δ. (16)

Now we can solve (16) using the aforementioned Lagrange multipliers. In particular, note that the
maximum of (16) is attained at the boundary of the `2 ball ∆. Thus, we can solve the following
system of two equations to find δ, rewriting the norm constraint as 1

2‖δ‖22 = 1
2ε

2:

{∇δ
(
δ>Σ−1(x− µ) + 1

2δ
>Σ−1δ

)
= λ∇δ

(
‖δ‖22 − ε2

)
=⇒ Σ−1(x− µ) + Σ−1δ = λδ

‖δ‖22 = ε2.
(17)

For clarity, we write v = x− µ: then, combining the above, we have that

δ∗ =
(
λI −Σ−1

)−1
Σ−1v = (λΣ− I)

−1
v, (18)

our final result for the maximizer of the inner problem, where λ is set according to the norm con-
straint.

E.3.2 Variant with Fixed Lagrangian (Theorem 1)

To simplify the analysis of Theorem 1, we consider a version of (14) with a fixed Lagrangian penalty,
rather than a norm constraint:

max `(x+ δ; y · µ,Σ)− C · ‖δ‖2.

Note then, that by Lemma 1, the optimal perturbation δ∗ is given by

δ∗ = (CΣ− I)
−1
.

We now proceed to the proof of Theorem 1.

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary whose pertur-
bation is determined by the “Lagrangian penalty” form of (11), i.e.

max
δ
`(x+ δ; y · µ,Σ)− C · ‖δ‖2,

where C ≥ 1
σmin(Σ∗)

is a constant trading off NLL minimization and the adversarial constraint (the
bound on C ensures the problem is concave). Then, the adversarial loss Ladv incurred by (µ,Σ) is

Ladv(Θ)− L(Θ) = tr
[(
I + (C ·Σ∗ − I)

−1
)2
]
− d,

and, for a fixed tr(Σ∗) = k the above is minimized by Σ∗ = k
dI .

Proof. We begin by expanding the Gaussian negative log-likelihood for the relaxed problem:

Ladv(Θ)− L(Θ) = Ex∼N (µ∗,Σ∗)

[
2 · v> (C ·Σ− I)

−>
Σ−1v + v> (C ·Σ− I)

−>
Σ−1 (C ·Σ− I)

−1
v
]

= Ex∼N (µ∗,Σ∗)

[
2 · v> (C ·ΣΣ−Σ)

−1
v + v> (C ·Σ− I)

−>
Σ−1 (C ·Σ− I)

−1
v
]

27

Recall that we are considering the vulnerability at the MLE parameters µ∗ and Σ∗:

Ladv(Θ)− L(Θ) = Ev∼N (0,I)

[
2 · v>Σ

1/2
∗
(
C ·Σ2

∗ −Σ∗
)−1

Σ
1/2
∗ v

+ v>Σ
1/2
∗ (C ·Σ∗ − I)

−>
Σ−1
∗ (C ·Σ∗ − I)

−1
Σ

1/2
∗ v

]

= Ev∼N (0,I)

[
2 · v> (C ·Σ∗ − I)

−1
v + v>Σ

1/2
∗
(
C2Σ3

∗ − 2C ·Σ2
∗ + Σ∗

)−1
Σ

1/2
∗ v

]

= Ev∼N (0,I)

[
2 · v> (C ·Σ∗ − I)

−1
v + v> (C ·Σ∗ − I)

−2
v
]

= Ev∼N (0,I)

[
−‖v‖22 + v>Iv + 2 · v> (C ·Σ∗ − I)

−1
v + v> (C ·Σ∗ − I)

−2
v
]

= Ev∼N (0,I)

[
−‖v‖22 + v>

(
I + (C ·Σ∗ − I)

−1
)2

v

]

= tr
[(
I + (C ·Σ∗ − I)

−1
)2
]
− d

This shows the first part of the theorem. It remains to show that for a fixed k = tr(Σ∗), the adver-
sarial risk is minimized by Σ∗ = k

dI:

min
Σ∗
Ladv(Θ)− L(Θ) = min

Σ∗
tr
[(
I + (C ·Σ∗ − I)

−1
)2
]

= min
{σi}

d∑

i=1

(
1 +

1

C · σi − 1

)2

,

where {σi} are the eigenvalues of Σ∗. Now, we have that
∑
σi = k by assumption, so by optimality

conditions, we have that Σ∗ minimizes the above if ∇{σi} ∝ ~1, i.e. if ∇σi
= ∇σj

for all i, j. Now,

∇σi = −2 ·
(

1 +
1

C · σi − 1

)
· C

(C · σi − 1)
2

= −2 · C2 · σi
(C · σi − 1)3

.

Then, by solving analytically, we find that

−2 · C2 · σi
(C · σi − 1)3

= −2 · C2 · σj
(C · σj − 1)3

admits only one real solution, σi = σj . Thus, Σ∗ ∝ I . Scaling to satisfy the trace constraint yields
Σ∗ = k

dI , which concludes the proof.

E.3.3 Real objective

Our motivating example (Section E.3.1) demonstrates that the optimal perturbation for the adver-
sary in the `2-constrained case is actually a linear function of v, and in particular, that the optimal
perturbation can be expressed as Dv for a diagonal matrix D. Note, however, that the problem
posed in (14) is not actually a minimax problem, due to the presence of the expectation between the
outer minimization and the inner maximization. Motivated by this and (18), we define the following
robust problem:

min
µ,Σ

max
M∈M

Ex∼N (µ∗,Σ∗) [`(µ,Σ;x+Mv)] , (19)

whereM =
{
M ∈ Rd×d : Mij = 0 ∀ i 6= j, Ex∼N (µ∗,Σ∗)

[
‖Mv‖22

]
= ε2

}
.

First, note that this objective is slightly different from that of (14). In the motivating example, δ
is constrained to always have ε-norm, and thus is normalizer on a per-sample basis inside of the
expectation. In contrast, here the classifier is concerned with being robust to perturbations that are
linear in v, and of ε2 squared norm in expectation.

28

Note, however, that via the result of Laurent and Massart [LM00] showing strong concentration
for the norms of Gaussian random variables, in high dimensions this bound on expectation has a
corresponding high-probability bound on the norm. In particular, this implies that as d → ∞,
‖Mv‖2 = ε almost surely, and thus the problem becomes identical to that of (14). We now derive
the optimal M for a given (µ,Σ):

Lemma 2. Consider the minimax problem described by (19), i.e.

min
µ,Σ

max
M∈M

Ex∼N (µ∗,Σ∗) [`(µ,Σ;x+Mv)] .

Then, the optimal action M∗ of the inner maximization problem is given by

M = (λΣ− I)
−1
, (20)

where again λ is set so that M ∈M.

Proof. We accomplish this in a similar fashion to what was done for δ∗, using Lagrange multipliers:

∇MEx∼N (µ∗,Σ∗)

[
v>MΣ−1v +

1

2
v>MΣ−1Mv

]
= λ∇MEx∼N (µ∗,Σ∗)

[
‖Mv‖22 − ε2

]

Ex∼N (µ∗,Σ∗)

[
Σ−1vv> + Σ−1Mvv>

]
= Ex∼N (µ∗,Σ∗)

[
λMvv>

]

Σ−1Σ∗ + Σ−1MΣ∗ = λMΣ∗

M = (λΣ− I)
−1
,

where λ is a constant depending on Σ and µ enforcing the expected squared-norm constraint.

Indeed, note that the optimal M for the adversary takes a near-identical form to the optimal δ (18),
with the exception that λ is not sample-dependent but rather varies only with the parameters.

E.3.4 Danskin’s Theorem

The main tool in proving our key results is Danskin’s Theorem [Dan67], a powerful theorem from
minimax optimization which contains the following key result:

Theorem 4 (Danskin’s Theorem). Suppose φ(x, z) : R × Z → R is a continuous function of two
arguments, where Z ⊂ Rm is compact. Define f(x) = maxz∈Z φ(x, z). Then, if for every z ∈ Z,
φ(x, z) is convex and differentiable in x, and ∂φ

∂x is continuous:

The subdifferential of f(x) is given by

∂f(x) = conv

{
∂φ(x, z)

∂x
: z ∈ Z0(x)

}
,

where conv(·) represents the convex hull operation, and Z0 is the set of maximizers defined as

Z0(x) =

{
z : φ(x, z) = max

z∈Z
φ(x, z)

}
.

In short, given a minimax problem of the form minx maxy∈C f(x, y) where C is a compact
set, if f(·, y) is convex for all values of y, then rather than compute the gradient of g(x) :=
maxy∈C f(x, y), we can simply find a maximizer y∗ for the current parameter x; Theorem 4 ensures
that∇xf(x, y∗) ∈ ∂xg(x). Note thatM is trivially compact (by the Heine-Borel theorem), and dif-
ferentiability/continuity follow rather straightforwardly from our reparameterization (c.f. (21)), and
so it remains to show that the outer minimization is convex for any fixed M .

Convexity of the outer minimization. Note that even in the standard case (i.e. non-adversarial),
the Gaussian negative log-likelihood is not convex with respect to (µ,Σ). Thus, rather than proving
convexity of this function directly, we employ the parameterization used by [Das+19]: in particular,
we write the problem in terms of T = Σ−1 andm = Σ−1µ. Under this parameterization, we show
that the robust problem is convex for any fixed M .

29

Lemma 3. Under the aforementioned parameterization of T = Σ−1 and m = Σ−1µ, the follow-
ing “Gaussian robust negative log-likelihood” is convex:

Ex∼N (µ∗,Σ∗) [`(m,T ;x+Mv)] .

Proof. To prove this, we show that the likelihood is convex even with respect to a single sample x;
the result follows, since a convex combination of convex functions remains convex. We begin by
looking at the likelihood of a single sample x ∼ N (µ∗,Σ∗):

L(µ,Σ;x+M(x− µ)) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)>(I +M)2Σ−1(x− µ)

)

=

1√
(2π)k|Σ|

exp
(
− 1

2 (x− µ)>(I +M)2Σ−1(x− µ)
)

∫
1√

(2π)k|(I+M)−2Σ|
exp

(
− 1

2 (x− µ)>(I +M)2Σ−1(x− µ)
)

=
|I +M |−1 exp

(
− 1

2x
>(I +M)2Σ−1x+ µ>(I +M)2Σ−1x

)
∫

exp
(
− 1

2x
>(I +M)2Σ−1x+ µ>(I +M)2Σ−1x

)

In terms of the aforementioned T andm, and for convenience defining A = (I +M)2:

`(x) = |A|−1/2 +

(
1

2
x>ATx−m>Ax

)
− log

(∫
exp

(
1

2
x>ATx−m>Ax

))

∇`(x) =

[
1
2 (Axx>)�
−Ax

]
−

∫ [
1
2 (Axx>)�
−Ax

]
exp

(
1
2x
>ATx−m>Ax

)

∫
exp

(
1
2x
>ATx−m>Ax

)

=

[
1
2 (Axx>)�
−Ax

]
− Ez∼N (T−1m,(AT)−1)

[
1
2 (Azz>)�
−Az

]
. (21)

From here, following an identical argument to [Das+19] Equation (3.7), we find that

H` = Covz∼N (T−1m,(AT)−1)

[((
− 1

2Azz
T
)
�

z

)
,

((
− 1

2Azz
T
)
�

z

)]
< 0,

i.e. that the log-likelihood is indeed convex with respect to
[
T
m

]
, as desired.

E.3.5 Applying Danskin’s Theorem

The previous two parts show that we can indeed apply Danskin’s theorem to the outer minimization,
and in particular that the gradient of f atM = M∗ is in the subdifferential of the outer minimization
problem. We proceed by writing out this gradient explicitly, and then setting it to zero (note that
since we have shown f is convex for all choices of perturbation, we can use the fact that a convex
function is globally minimized ⇐⇒ its subgradient contains zero). We continue from above,

30

plugging in (20) for M and using (21) to write the gradients of ` with respect to T andm.

0 = ∇[
T
m

]` = Ex∼N (µ∗,Σ∗)

[[
1
2 (Axx>)�
−Ax

]
− Ez∼N (T−1m,(AT)−1)

[
1
2 (Azz>)�
−Az

]]

= Ex∼N (µ∗,Σ∗)

[
1
2 (Axx>)�
−Ax

]
− Ez∼N (T−1m,(AT)−1)

[
1
2 (Azz>)�
−Az

]

=

[
1
2 (AΣ∗)�
−Aµ∗

]
− Ez∼N (T−1m,(AT)−1)

[
1
2 (A(AT)−1)�
−AT−1m

]

=

[
1
2AΣ∗
−Aµ∗

]
−
[

1
2A(AT)−1

−AT−1m

]

=

[
1
2AΣ∗ − 1

2T
−1

AT−1m−Aµ∗

]
(22)

Using this fact, we derive an implicit expression for the robust covariance matrix Σ. Note that for
the sake of brevity, we now useM to denote the optimal adversarial perturbation (previously defined
as M∗ in (20)). This implicit formulation forms the foundation of the bounds given by our main
results.
Lemma 4. The minimax problem discussed throughout this work admits the following (implicit)
form of solution:

Σ =
1

λ
I +

1

2
Σ∗ +

√
1

λ
Σ∗ +

1

4
Σ2
∗,

where λ is such that M ∈M, and is thus dependent on Σ.

Proof. Rewriting (22) in the standard parameterization (with respect to µ,Σ) and re-expanding
A = (I +M)2 yields:

0 = ∇[
T
m

]` =

[
1
2 (I +M)2Σ∗ − 1

2Σ
(I +M)2µ− (I +M)2µ∗

]

Now, note that the equations involving µ and Σ are completely independent, and thus can be solved
separately. In terms of µ, the relevant system of equations is Aµ−Aµ∗ = 0, where multiplying by
the inverse A gives that

µ = µ∗. (23)
This tells us that the mean learned via `2-robust maximum likelihood estimation is precisely the true
mean of the distribution.

Now, in the same way, we set out to find Σ by solving the relevant system of equations:

Σ−1
∗ = Σ−1(M + I)2. (24)

Now, we make use of the Woodbury Matrix Identity in order to write (I +M) as

I + (λΣ− I)−1 = I +

(
−I −

(
1

λ
Σ−1 − I

)−1
)

= −
(

1

λ
Σ−1 − I

)−1

.

Thus, we can revisit (24) as follows:

Σ−1
∗ = Σ−1

(
1

λ
Σ−1 − I

)−2

1

λ2
Σ−1
∗ Σ−2 −

(
2

λ
Σ−1
∗ + I

)
Σ−1 + Σ−1

∗ = 0

1

λ2
Σ−1
∗ −

(
2

λ
Σ−1
∗ + I

)
Σ + Σ−1

∗ Σ2 = 0

31

We now apply the quadratic formula to get an implicit expression for Σ (implicit since technically
λ depends on Σ):

Σ =

(
2

λ
Σ−1
∗ + I ±

√
4

λ
Σ−1
∗ + I

)
1

2
Σ∗

=
1

λ
I +

1

2
Σ∗ +

√
1

λ
Σ∗ +

1

4
Σ2
∗. (25)

This concludes the proof.

E.3.6 Bounding λ

We now attempt to characterize the shape of λ as a function of ε. First, we use the fact that
E[‖Xv‖2] = tr(X2) for standard normally-drawn v. Thus, λ is set such that tr(Σ∗M2) = ε,
i.e:

∑

i=0

Σ∗ii
(λΣii − 1)2

= ε (26)

Now, consider ε2 as a function of λ. Observe that for λ ≥ 1
σmin(Σ) , we have thatM must be positive

semi-definite, and thus ε2 decays smoothly from∞ (at λ = 1
σmin

) to zero (at λ = ∞). Similarly,
for λ ≤ 1

σmax(Σ) , ε decays smoothly as λ decreases. Note, however, that such values of λ would
necessarily make M negative semi-definite, which would actually help the log-likelihood. Thus, we
can exclude this case; in particular, for the remainder of the proofs, we can assume λ ≥ 1

σmax(Σ) .

Also observe that the zeros of ε in terms of λ are only at λ = ±∞. Using this, we can show that
there exists some ε0 for which, for all ε < ε0, the only corresponding possible valid value of λ is
where λ ≥ 1

σmin
. This idea is formalized in the following Lemma.

Lemma 5. For every Σ∗, there exists some ε0 > 0 for which, for all ε ∈ [0, ε0) the only admissible
value of λ is such that λ ≥ 1

σmin(Σ) , and thus such that M is positive semi-definite.

Proof. We prove the existence of such an ε0 by lower bounding ε (in terms of λ) for any finite
λ > 0 that does not make M PSD. Providing such a lower bound shows that for small enough ε
(in particular, less than this lower bound), the only corresponding values of λ are as desired in the
statement8.

In particular, if M is not PSD, then there must exist at least one index k such that λΣkk < 1, and
thus (λΣkk − 1)2 ≤ 1 for all λ > 0. We can thus lower bound (26) as:

ε =
∑

i=0

Σ∗ii
(λΣii − 1)2

≥ Σ∗kk
(λΣkk − 1)2

≥ Σ∗kk ≥ σmin(Σ∗) > 0 (27)

By contradiction, it follows that for any ε < σmin(Σ∗)
2, the only admissible λ is such that M is

PSD, i.e. according to the statement of the Lemma.

In the regime ε ∈ [0, ε0), note that λ is inversely proportional to ε (i.e. as ε grows, λ decreases).
This allows us to get a qualitative view of (25): as the allowed perturbation value increases, the
robust covariance Σ resembles the identity matrix more and more, and thus assigns more and more
variance on initially low-variance features. The

√
Σ∗ term indicates that the robust model also adds

uncertainty proportional to the square root of the initial variance—thus, low-variance features will
have (relatively) more uncertainty in the robust case. Indeed, our main result actually follows as a
(somewhat loose) formalization of this intuition.

8Since our only goal is existence, we lose many factors from the analysis that would give a tighter bound
on ε0.

32

E.3.7 Proof of main theorems

First, we give a proof of Theorem 2, providing lower and upper bounds on the learned robust covari-
ance Σ in the regime ε ∈ [0, ε0).
Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ∗, i.e. the true
mean is learned. For the robust covariance Σr, there exists an ε0 > 0, such that for any ε ∈ [0, ε0),

Σr =
1

2
Σ∗+

1

λ
·I+

√
1

λ
·Σ∗ +

1

4
Σ2
∗, where Ω

(
1 + ε1/2

ε1/2 + ε3/2

)
≤ λ ≤ O

(
1 + ε1/2

ε1/2

)
.

Proof. We have already shown that µ = µ∗ in the robust case (c.f. (23)). We choose ε0 to be as
described, i.e. the largest ε for which the set {λ : tr(Σ2

∗M) = ε, λ ≥ 1/σmax(Σ)} has only one
element λ (which, as we argued, must not be less than 1/σmin(Σ)). We have argued that such an ε0

must exist.

We prove the result by combining our early derivation (in particular, (24) and (25)) with upper and
lower bound on λ, which we can compute based on properties of the trace operator. We begin by
deriving a lower bound on λ. By linear algebraic manipulation (given in Appendix E.3.8), we get
the following bound:

λ ≥ d

tr(Σ)

(
1 +

√
d · σmin(Σ∗)

ε

)
(28)

Now, we can use (24) in order to remove the dependency of λ on Σ:
Σ = Σ∗(M + I)2

tr(Σ) = tr
[
(Σ

1/2
∗ M + Σ

1/2
∗)2

]

≤ 2 · tr
[
(Σ

1/2
∗ M)2 + (Σ

1/2
∗)2

]

≤ 2 · (ε+ tr(Σ∗)) .
Applying this to (28) yields:

λ ≥ d/2

ε+ tr(Σ∗)

(
1 +

√
d · σmin(Σ∗)

ε

)
.

Note that we can simplify this bound significantly by writing ε = d ·σmin(Σ∗)ε
′ ≤ tr(Σ∗)ε′, which

does not affect the result (beyond rescaling the valid regime (0, ε0)), and gives:

λ ≥ d/2

(1 + ε′)tr(Σ∗)

(
1 +

1√
ε′

)
≥ d · (1 +

√
ε′)

2
√
ε′(1 + ε′)tr(Σ∗)

Next, we follow a similar methodology (Appendix E.3.8) in order to upper bound λ:

λ ≤ 1

σmin(Σ)

(√
‖Σ∗‖F · d

ε
+ 1

)
.

Note that by (24) and positive semi-definiteness of M , it must be that σmin(Σ) ≥ σmin(Σ∗). Thus,
we can simplify the previous expression, also substituting ε = d · σmin(Σ∗)ε

′:

λ ≤ 1

σmin(Σ∗)

(√
‖Σ∗‖F

σmin(Σ∗)ε′
+ 1

)
=
‖Σ∗‖F +

√
ε · σmin(Σ∗)

σmin(Σ∗)3/2
√
ε

These bounds can be straightforwardly combined with Lemma 4, which concludes the proof.

Using this theorem, we can now show Theorem 3:
Theorem 3 (Gradient alignment). Let f(x) and fr(x) be monotonic classifiers based on the linear
separator induced by standard and `2-robust maximum likelihood classification, respectively. The
maximum angle formed between the gradient of the classifier (wrt input) and the vector connecting
the classes can be smaller for the robust model:

min
µ

〈µ,∇xfr(x)〉
‖µ‖ · ‖∇xfr(x)‖ > min

µ

〈µ,∇xf(x)〉
‖µ‖ · ‖∇xf(x)‖ .

33

Proof. To prove this, we make use of the following Lemmas:

Lemma 6. For two positive definite matricesA andB with κ(A) > κ(B), we have that κ(A+B) ≤
max{κ(A), κ(B)}.

Proof. We proceed by contradiction:

κ(A+B) =
λmax(A) + λmax(B)

λmin(A) + λmin(B)

κ(A) =
λmax(A)

λmin(A)

κ(A) ≥ κ(A+B)

⇐⇒ λmax(A) (λmin(A) + λmin(B)) ≥ λmin(A) (λmax(A) + λmax(B))

⇐⇒ λmax(A)λmin(B) ≥ λmin(A)λmax(B)

⇐⇒ λmax(A)

λmin(A)
≥ λmin(A)

λmax(B)
,

which is false by assumption. This concludes the proof.

Lemma 7 (Straightforward). For a positive definite matrix A and k > 0, we have that

κ(A+ k · I) < κ(A) κ(A+ k ·
√
A) ≤ κ(A).

Lemma 8 (Angle induced by positive definite matrix; folklore). 9 For a positive definite matrix
A � 0 with condition number κ, we have that

min
x

x>Ax

‖Ax‖2 · ‖x‖2
=

2
√
κ

1 + κ
. (29)

These two results can be combined to prove the theorem. First, we show that κ(Σ) ≤ κ(Σ∗):

κ(Σ) = κ

(
1

λ
I +

1

2
Σ∗ +

√
1

λ
Σ∗ +

1

4
Σ2
∗

)

< max

{
κ

(
1

λ
I +

1

2
Σ∗

)
, κ

(√
1

λ
Σ∗ +

1

4
Σ2
∗

)}

< max

{
κ (Σ∗) ,

√
κ

(
1

λ
Σ∗ +

1

4
Σ2
∗

)}

= max



κ (Σ∗) ,

√√√√κ

(
2

λ

√
1

4
Σ2
∗ +

1

4
Σ2
∗

)


≤ κ (Σ∗) .

Finally, note that (29) is a strictly decreasing function in κ, and as such, we have shown the theorem.

9A proof can be found in https://bit.ly/2L6jdAT

34

https://bit.ly/2L6jdAT

E.3.8 Bounds for λ

Lower bound.

ε = tr(Σ∗M2)

≥ σmin(Σ∗) · tr(M2) by the definition of tr(·)

≥ σmin(Σ∗)

d
· tr(M)2 by Cauchy-Schwarz

≥ σmin(Σ∗)

d
·
[
tr
(
(λΣ− I)−1

)]2
Expanding M (20)

≥ σmin(Σ∗)

d
·
[
tr (λΣ− I)

−1 · d2
]2

AM-HM inequality

≥ d3 · σmin(Σ∗) · [λ · tr(Σ)− d]
−2

[λ · tr(Σ)− d]
2 ≥ d3 · σmin(Σ∗)

ε

λ · tr(Σ)− d ≥ d3/2 ·
√
σmin(Σ∗)√
ε

since M is PSD

λ ≥ d

tr(Σ)

(
1 +

√
d · σmin(Σ∗)

ε

)

Upper bound

ε = tr(Σ∗M2)

≤ ‖Σ∗‖F · d · σmax(M)2

≤ ‖Σ∗‖F · d · σmin(M)−2

λ · σmin(Σ)− 1 ≤
√
‖Σ∗‖F · d

ε

λ ≤ 1

σmin(Σ)

(√
‖Σ∗‖F · d

ε
+ 1

)
.

35

