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Abstract

Boosting is one of the most successful ideas in machine learning. The most well-1

accepted explanations for the low generalization error of boosting algorithms such2

as AdaBoost stem from margin theory. The study of margins in the context of3

boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and4

has inspired numerous boosting algorithms and generalization bounds. To date,5

the strongest known generalization (upper bound) is the kth margin bound of Gao6

and Zhou (2013). Despite the numerous generalization upper bounds that have7

been proved over the last two decades, nothing is known about the tightness of8

these bounds. In this paper, we give the first margin-based lower bounds on the9

generalization error of boosted classifiers. Our lower bounds nearly match the kth10

margin bound and thus almost settle the generalization performance of boosted11

classifiers in terms of margins.12

1 Introduction13

Boosting algorithms produce highly accurate classifiers by combining several less accurate classifiers14

and are amongst the most popular learning algorithms, obtaining state-of-the-art performance on15

several benchmark machine learning tasks [KMF+17, CG16]. The most famous of these boosting16

algorithm is arguably AdaBoost [FS97]. For binary classification, AdaBoost takes a training set17

S = 〈(x1, y1), . . . , (xm, ym)〉 of m labeled samples as input, with xi ∈ X and labels yi ∈ {−1, 1}.18

It then produces a classifier f in iterations: in the jth iteration, a base classifier hj : X → {−1, 1}19

is trained on a reweighed version of S that emphasizes data points that f struggles with and this20

classifier is then added to f . The final classifier is obtained by taking the sign of f(x) =
∑
j αjhj(x),21

where the αj’s are non-negative coefficients carefully chosen by AdaBoost. The base classifiers hj all22

come from a hypothesis setH, e.g. H could be a set of small decision trees or similar. As AdaBoost’s23

training progresses, more and more base classifiers are added to f , which in turn causes the training24

error of f to decrease. IfH is rich enough, AdaBoost will eventually classify all the data points in25

the training set correctly [FS97].26

Early experiments with AdaBoost report a surprising generalization phenomenon [SFB+98]. Even27

after perfectly classifying the entire training set, further iterations keeps improving the test accuracy.28

This is contrary to what one would expect, as f gets more complicated with more iterations, and thus29

prone to overfitting. The most prominent explanation for this phenomena is margin theory, introduced30

by Schapire et al. [SFB+98]. The margin of a training point (xi, yi) is a number in [−1, 1], which31

can be interpreted, loosely speaking, as the classifier’s confidence on that point. Formally, we say that32

f(x) =
∑
j αjhj(x) is a voting classifier if αj ≥ 0 for all j. Note that one can additionally assume33

without loss of generality that
∑
j αj = 1 since normalizing each αi by

∑
j αj leaves the sign of34

f(xi) unchanged. The margin of a point (xi, yi) with respect to a voting classifier f is then defined35

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



as36

margin(xi) := yif(xi) = yi
∑
j

αjhj(xi) .

Thus margin(xi) ∈ [−1, 1], and if margin(xi) > 0, then taking the sign of f(xi) correctly classifies37

(xi, yi). Informally speaking, margin theory guarantees that voting classifiers with large (positive)38

margins have a smaller generalization error. Experimentally AdaBoost has been found to continue39

to improve the margins even when training past the point of perfectly classifying the training set.40

Margin theory may therefore explain the surprising generalization phenomena of AdaBoost. Indeed,41

the original paper by Schapire et al. [SFB+98] that introduced margin theory, proved the following42

margin-based generalization bound. Let D be an unknown distribution over X ×{−1, 1} and assume43

that the training data S is obtained by drawing m i.i.d. samples from D. Then with high probability44

over S it holds that for every margin θ ∈ (0, 1], every voting classifier f satisfies45

Pr
(x,y)∼D

[yf(x) ≤ 0] ≤ Pr
(x,y)∼S

[yf(x) < θ] +O

(√
ln |H| lnm

θ2m

)
. (1)

The left-hand side of the equation is the out-of-sample error of f (since sign(f(x)) 6= y precisely46

when yf(x) < 0). On the right-hand side, we use (x, y) ∼ S to denote a uniform random point from47

S. Hence Pr(x,y)∼S [yf(x) < θ] is the fraction of training points with margin less than θ. The last48

term is increasing in |H| and decreasing in θ and m. Here it is assumedH is finite. A similar bound49

can be proved for infinite H by replacing |H| by d lgm, where d is the VC-dimension of H. This50

holds for all the generalization bounds below as well. The generalization bound thus shows that f51

has low out-of-sample error if it attains large margins on most training points. This fits well with the52

observed behaviour of AdaBoost in practice.53

The generalization bound above holds for every voting classifier f , i.e. regardless of how f was54

obtained. Hence a natural goal is to design boosting algorithms that produce voting classifiers with55

large margins on many points. This has been the focus of a long line of research and has resulted56

in numerous algorithms with various margin guarantees, see e.g. [GS98, Bre99, BDST00, RW02,57

RW05, GLM19]. One of the most well-known of these is Breimann’s ArcGV [Bre99]. ArcGV58

produces a voting classifier maximizing the minimal margin, i.e. it produces a classifier f for which59

min(x,y)∈S yf(x) is as large as possible. Breimann complemented the algorithm with a generalization60

bound stating that with high probability over the sample S, it holds that every voting classifier f61

satisfies:62

Pr
(x,y)∼D

[yf(x) ≤ 0] ≤ O
(

ln |H| lnm
θ̂2m

)
, (2)

where θ̂ = min(x,y)∈S yf(x) is the minimal margin over all training examples. Notice that if one63

chooses θ as the minimal margin in the generalization bound (1) of Schapire et al. [SFB+98], then64

the term Pr(x,y)∼S [yf(x) < θ] becomes 0 and one obtains the bound65

Pr
(x,y)∼D

[yf(x) ≤ 0] ≤ O

√ ln |H| lnm
θ̂2m

 ,

which is weaker than Breimann’s bound and motivated his focus on maximizing the minimal margin.66

Minimal margin is however quite sensitive to outliers and work by Gao and Zhou [GZ13] proved a67

generalization bound which provides an interpolation between (1) and (2). Their bound is known68

as the kth margin bound, and states that with high probability over the sample S, it holds for every69

margin θ ∈ (0, 1] and every voting classifier f that:70

Pr
(x,y)∼D

[yf(x) < 0] ≤ Pr
(x,y)∼S

[yf(x) < θ]+O

(
ln |H| lnm

θ2m
+

√
Pr

(x,y)∼S
[yf(x) < θ]

ln |H| lnm
θ2m

)
.

The kth margin bound remains the strongest margin-based generalization bound to date (see Sec-71

tion 1.2 for further details). The kth margin bound recovers Breimann’s minimal margin bound by72

choosing θ as the minimal margin (making Pr(x,y)∼S [yf(x) < θ] = 0), and it is always at most the73

same as the bound (1) by Schapire et al. As with previous generalization bounds, it suggests that74

boosting algorithms should focus on obtaining a large margin on as large a fraction of training points75

as possible.76
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Despite the decades of progress on generalization upper bounds, we still do not know how tight these77

bounds are. That is, we do not have any margin-based generalization lower bounds. Generalization78

lower bounds are not only interesting from a theoretical point of view, but also from an algorithmic79

point of view: If one has a provably tight generalization bound, then a natural goal is to design80

a boosting algorithm minimizing a loss function that is equal to this generalization bound. This81

approach makes most sense with a matching lower bound as the algorithm might otherwise minimize82

a sub-optimal loss function. Furthermore, a lower bound may also inspire researchers to look for other83

parameters than margins when explaining the generalization performance of voting classifiers. Such84

new parameters may even prove useful in designing new algorithms, with even better generalization85

performance in practice.86

1.1 Our Results87

In this paper we prove the first margin-based generalization lower bounds for voting classifiers. Our88

lower bounds almost match the kth margin bound and thus essentially settles the generalization89

performance of voting classifiers in terms of margins.90

To present our main theorems, we first introduce some notation. For a ground set X and hypothesis91

setH, let C(H) denote the family of all voting classifiers overH, i.e. C(H) contains all functions92

f : X → [−1, 1] that can be written as f(x) =
∑
h∈H αhh(x) such that αh ≥ 0 for all h and93 ∑

h αh = 1. For a (randomized) learning algorithm A and a sample S of m points, let fA,S denote94

the (possibly random) voting classifier produced by A when given the sample S as input. With this95

notation, our first main theorem is the following:96

Theorem 1. For every large enough integer N , every θ ∈ (1/N, 1/40) and every τ ∈ [0, 49/100]97

there exist a set X and a hypothesis set H over X , such that ln |H| = Θ(lnN) and for every98

m = Ω
(
θ−2 ln |H|

)
and for every (randomized) learning algorithm A, there exist a distribution D99

over X × {−1, 1} and a voting classifier f ∈ C(H) such that with probability at least 1/100 over100

the choice of samples S ∼ Dm and the random choices of A101

1. Pr
(x,y)∼S

[yf(x) < θ] ≤ τ ; and102

2. Pr
(x,y)∼D

[yfA,S(x) < 0] ≥ τ + Ω

(
lg |H|
mθ2 +

√
τ · lg |H|

mθ2

)
.103

Theorem 1 states that for any algorithm A, there is a distribution D for which the out-of-sample error104

of the voting classifier produced by A is at least that in the second point of the theorem. At the same105

time, one can find a voting classifier f obtaining a margin of at least θ on at least a 1− τ fraction106

of the sample points. Notice that we cannot hope to prove that the algorithm A constructs a voting107

classifier that has a margin of at least θ on a 1− τ fraction, since we make no assumptions on the108

algorithm. For example, if the constant hypothesis h1 that always outputs 1 is inH, then A could be109

the algorithm that simply outputs h1. The interpretation is thus: It is always possible for an algorithm110

A to produce a voting classifier f with margin at least θ on a 1− τ fraction of samples, and regardless111

of which voting classifier A produces, it still has large out-of-sample error. Comparing Theorem 1112

to the kth margin bound, we see that the parameter τ corresponds to Pr(x,y)∼S [yf(x) < θ]. The113

magnitude of the out-of-sample error in the second point in the theorem thus matches that of the114

kth margin bound, except for a factor lgm in the first term inside the Ω(·) and a
√

lgm factor in the115

second term. If we consider the range of parameters θ, τ, ln |H| and m for which the lower bound116

applies, then these ranges are almost as tight as possible. For τ , note that the theorem cannot generally117

be true for τ > 1/2, as the algorithm A that outputs a uniform random choice of hypothesis among118

h1 and h−1 (the constant hypothesis outputting −1), gives a (random) voting classifier fA,S with an119

out-of-sample error of 1/2. This is less than the second point of the theorem would state if it was true120

for τ > 1/2. For ln |H|, observe that our theorem holds for arbitrarily large values of |H|. That is,121

the integer N can be as large as desired, making ln |H| = Θ(lnN) as large as desired. Finally, for122

the constraint on m, notice again that the theorem simply cannot be true for smaller values of m as123

then the term lg |H|/(mθ2) exceeds 1.124

Our second main result gets even closer to the kth margin bound:125

Theorem 2. For every large enough integer N , every θ ∈ (1/N, 1/40), τ ∈ [0, 49/100] and every126

m =
(
θ−2 lnN

)1+Ω(1)
, there exist a set X , a hypothesis set H over X and a distribution D over127
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X × {−1, 1} such that ln |H| = Θ(lnN) and with probability at least 1/100 over the choice of128

samples S ∼ Dm there exists a voting classifier fS ∈ C(H) such that129

1. Pr
(x,y)∼S

[yfS(x) < θ] ≤ τ ; and130

2. Pr
(x,y)∼D

[yfS(x) < 0] ≥ τ + Ω

(
lg |H| lgm
mθ2 +

√
τ · lg |H|

mθ2

)
.131

Observe that the second point of Theorem 2 has an additional lgm factor on the first term in Ω(·)132

compared to Theorem 1. It is thus only off from the kth margin bound by a
√

lgm factor in the133

second term and hence completely matches the kth margin bound for small values of τ . To obtain134

this strengthening, we replaced the guarantee in Theorem 1 saying that all algorithms A have such a135

large out-of-sample error. Instead, Theorem 2 demonstrates only the existence of a voting classifier136

fS (that is chosen as a function of the sample S) that simultaneously achieves a margin of at least θ137

on a 1− τ fraction of the sample points, and yet has out-of-sample error at least that in point 2. Since138

the kth margin bound holds with high probability for all voting classifiers, Theorem 2 rules out any139

strengthening of the kth margin bound, except for possibly a
√

lgm factor on the second additive140

term. Again, our lower bound holds for almost the full range of parameters of interest.141

Finally, we mention that both our lower bounds are proved for a finite hypothesis setH. This only142

makes the lower bounds stronger than if we proved it for an infiniteH with bounded VC-dimension,143

since the VC-dimension of a finiteH, is no more than lg |H|.144

1.2 Related Work145

We mentioned above that the kth margin bound is the strongest margin-based generalization bound146

to date. Technically speaking, it is incomparable to the so-called emargin bound by Wang et al.147

[WSJ+11]. The kth margin bound by Gao and Zhou [GZ13], the minimum margin bound by148

Breimann [Bre99] and the bound by Schapire et al. [SFB+98] all have the form Pr(x,y)∼D[yf(x) <149

0] ≤ Pr(x,y)∼S [yf(x) < θ]+Γ(θ,m, |H|,Pr(x,y)∼S [yf(x) < θ]) for some function Γ. The emargin150

bound has a different (and quite involved) form, making it harder to interpret and compute. We151

will not discuss it in further detail here and just remark that our results show that for generalization152

bounds of the form studied in most previous work [SFB+98, Bre99, GZ13], one cannot hope for153

much stronger upper bounds than the kth margin bound.154

2 Proof Overview155

The main argument that lies in the heart of both proofs is a probabilistic method argument. With every156

labeling ` ∈ {−1, 1}u we associate a distribution D` over X × {−1, 1}. We then show that with157

some positive probability if we sample ` ∈ {−1, 1}u, D` satisfies the requirements of Theorem 1158

(respectively Theorem 2). We thus conclude the existence of a suitable distribution. We next give a159

more detailed high-level description of the proof for Theorem 1. The proof of Theorem 2 follows160

similar lines.161

Constructing a Family of Distributions. We start by first describing the construction of D` for162

` ∈ {−1, 1}u. Our construction combines previously studied distribution patterns in a subtle manner.163

Ehrenfeucht et al. [EHKV89] observed that if a distribution D assigns each point in X a fixed (yet164

unknown) label, then, loosely speaking, every classifier f , that is constructed using only information165

supplied by a sample S, cannot do better than random guessing the labels for the points in X \ S.166

Intuitively, consider a distribution D` that assigns very small probability, say 1
10m , to each element167

x ∈ X . With very high probability over a sample S of m points, many elements of X are not in S.168

Moreover, assume that D` associates every x ∈ X with a unique “correct” label `(x). Consider some169

(perhaps random) learning algorithm A, and let fA,S be the classifier it produces given a sample170

S as input. If ` is chosen randomly, then, loosely speaking, for every point x not in the sample,171

fA,S(x) and `(x) are independent, and thus A returns the wrong label with probability 1/2. In turn,172

this implies that there exists a labeling ` such that A is wrong on a constant fraction of X when173

receiving a sample S ∼ Dm` . We remark that the argument above can in fact be used to prove an174

arbitrarily large generalization error. However, assigning every point in X a probability of 1/10m175
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requires |X | ≥ 10m. This conflicts with the first point in Theorem 1, that is, we have to argue that176

a voting classifier f with good margins exist for the sample S. If S consists of m distinct points,177

and each point in X can have an arbitrary label, then intuitivelyH needs to be very large to ensure178

the existence of f . In order to overcome this difficulty, we set D` to assign very high probability to179

one designated point in X , and the rest of the probability mass is then equally distributed between180

all other points. The argument above still applies for the subset of small-probability points. More181

precisely, if D` assigns all but one point in X probability 1
10m , then the expected generalization error182

(over the choice of `) is still Ω
(

1
10m |X |

)
. Therefore there exists a labeling ` such that A is wrong183

on a constant fraction of X when receiving a sample S ∼ Dm` . In the notations of the theorem, in184

order for a hypothesis set H to satisfy ln |H| = Θ(lnN), and at the same time, have an f ∈ C(H)185

obtaining margins of θ on most points in a sample, our proof (and specifically Lemma 3, described186

hereafter) requires X to be not significantly larger than lnN
θ2 , and therefore the generalization error187

we get is Ω
(

ln |H|
θ2m

)
. This accounts for the first term inside the Ω-notation in the second point of188

Theorem 1.189

Anthony and Bartlett [AB09, Chapter 5] additionally observed that for a distribution D that assigns190

each point in X a random label, if S does not sample a point x enough times, any classifier f , that is191

constructed using only information supplied by S, cannot determine with good probability the Bayes192

label of x, that is, the label of x that minimizes the error probability. Intuitively, consider once more193

a distribution D` that is uniform over X . However, instead of associating every point x ∈ X with194

one correct label `(x), D` is now only slightly biased towards `. That is, given that x is sampled, the195

label in the sample point is `(x) with probability that is a little larger than 1/2, say (1 + α)/2 for196

some small α ∈ (0, 1). Note that every classifier f has an error probability of at least (1− α)/2 on197

every given point in X . Consider once again a learning algorithm A and the voting classifier fA,S it198

constructs. Loosely speaking, if S does not sample a point x enough times, then with good probability199

fA,S(x) 6= `(x). More formally, in order to correctly assign the Bayes label of x, an algorithm200

must see Ω(α−2) samples of x. Therefore if we set the bias α to be
√
|X |/(10m), then with high201

probability the algorithm does not see a constant fraction of X enough times to correctly assign their202

label. In turn, this implies an expected generalization error of (1− α)/2 + Ω(
√
|X |/m), where the203

expectation is over the choice of `. By once again letting |X | = lnN
θ2 we conclude that there exists a204

labeling ` such that for S ∼ Dm` , the expected generalization error of fA,S is 1−α
2 + Ω

(√
ln |H|
θ2m

)
.205

This expression is almost the second term inside the Ω-notation in the theorem statement, though206

slightly larger. We note, however, for large values of m, the in-sample error is arbitrarily close to207

1/2. One challenge is therefore to reduce the in-sample-error, and moreover guarantee that we can208

find a voting classifier f where the (mτ)’th smallest margin for f is at least θ, where τ, θ are the209

parameters provided by the theorem statement.210

To this end, our proof subtly weaves the two ideas described above and constructs a family of211

distributions {D`}`∈{−1,1}u . Informally, we partition X into two disjoint sets, and conditioned on212

the sample point x ∈ X belonging to each of the subsets, D` is defined similarly to be one of the two213

distribution patterns defined above. The main difficulty lies in delicately balancing all ingredients and214

ensuring that we can find an f with margins of at least θ on all but τm of the sample points, while215

still enforcing a large generalization error. Our proof refines the proof given by Ehrenfeucht et al.216

and Anthony and Bartlett and shows that not only does there exists a labeling ` such that fA,S has217

large generalization error with respect to D` (with probability at least 1/100 over the randomness of218

A, S), but rather that a large (constant) fraction of labelings ` share this property. This distinction219

becomes crucial in the proof.220

Small yet Rich Hypothesis Sets. The technical crux in our proofs is the construction of an ap-221

propriate hypothesis set. Loosely speaking, the size of H has to be small, and most importantly,222

independent of the size m of the sample set. On the other hand, the set of voting classifiers C(H)223

is required to be rich enough to, intuitively, contain a classifier that with good probability has good224

in-sample margins for a sample S ∼ Dm` with a large fraction of labelings ` ∈ {−1, 1}u. Our main225

technical lemma presents a distribution µ over small hypothesis sets H ⊂ X → {−1, 1} such that226

for every sparse ` ∈ {−1, 1}u, that is `i = −1 for a small number of entries i ∈ [u], with high227

probability overH ∼ µ, there exists some voting classifier f ∈ C(H) that has minimum margin θ228
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with ` over the entire set X . In fact, the size of the hypothesis set does not depend on the size of X ,229

but only on the sparsity parameter d. More formally, we show the following.230

Lemma 3. For every θ ∈ (0, 1/40), δ ∈ (0, 1) and integers d ≤ u, there exists a distribution231

µ = µ(u, d, θ, δ) over hypothesis setsH ⊂ X → {−1, 1}, where X is a set of size u, such that the232

following holds.233

1. For allH ∈ supp(µ), we have |H| = N ; and234

2. For every labeling ` ∈ {−1,+1}u, if no more than d points x ∈ X satisfy `(x) = −1, then

Pr
H∼µ

[∃f ∈ C(H) : ∀x ∈ X . `(x)f(x) ≥ θ] ≥ 1− δ ,

where N = Θ
(
θ−2 ln d ln(θ−2dδ−1)eΘ(θ2d)

)
235

In fact, we prove that ifH is a random hypothesis set that also contains the hypothesis mapping all236

points to 1, then with good probabilityH satisfies the second requirement in the theorem.237

To show the existence of a good voting classifier in C(H) our proof actually employs a slight variant238

of the celebrated AdaBoost algorithm, and shows that with high probability (over the choice of the239

random hypothesis setH), the voting classifier constructed by this algorithm attains minimum margin240

at least θ over the entire set X .241

Note that Lemma 3 speaks of a distribution over hypothesis sets. When using Lemma 3 in our proofs,242

we will invoke Yao’s principle to conclude the existence of a suitable fixed hypothesis setH.243

Existential Lower Bound. Our proof of Theorem 2 uses many of the same ideas as the proof of244

Theorem 1. The difference between the generalization lower bound (second point) in Theorem 1 and245

2 is an lnm factor in the first term inside the Ω(·) notation. That is, Theorem 2 has an Ω( ln |H| lnm
θ2m )246

where Theorem 1 has an Ω( ln |H|
θ2m ). This term originated from having ln |H|/θ2 points with a247

probability mass of 1/10m in D` and one point having the remaining probability mass. In the proof248

of Theorem 2, we first exploit that we are proving an existential lower bound by assigning all points249

the same label 1. That is, our hard distribution D assigns all points the label 1 (ignoring the second250

half of the distribution with the random and slightly biased labels). Since we are not proving a lower251

bound for every algorithm, this will not cause problems. We then change |X | to about m/ lnm and252

assign each point the same probability mass lnm/m in distribution D. The key observation is that on253

a random sample S of m points, by a coupon-collector argument, there will still be mΩ(1) points from254

X that were not sampled. From Lemma 3, we can now find a voting classifier f , such that sign(f(x))255

is 1 on all points in x ∈ S, and −1 on a set of d = ln |H|/θ2 points in X \ S. This means that f has256

out-of-sample error Ω(d lnm/m) = Ω( ln |H| lnm
θ2m ) under distribution D and obtains a margin of θ on257

all points in the sample S.258

As in the proof Theorem 1, we can combine the above distribution D with the ideas of Anthony and259

Bartlett to add the terms depending on τ to the lower bound.260

3 Margin-Based Generalization Lower Bounds261

In this section we prove Theorems 1 and 2 assuming Lemma 3, whose proof is deferred to Section 4,262

and we start by describing the outlines of the proofs. To this end fix some integer N , and fix263

θ ∈ (1/N, 1/40). Let u be an integer, and let X = {ξ1, . . . , ξu} be some set with u elements. With264

every ` ∈ {−1, 1}u we associate a distribution D` over X × {−1, 1}, and show that with some265

constant probability over a random choice of `, a voting classifier of interest has a high generalization266

probability with respect to D`. By a voting classifier of interest we mean one constructed by a267

learning algorithm in the proof of Theorem 1 and an adversarial classifier in the proof of Theorem 2.268

We additionally show existence of a hypothesis set Ĥ such that with very high (constant) probability269

over a random choice of ` ∈ {−1, 1}u, C(Ĥ) contains a voting classifier that attains high margins270

with ` over the entire set X . Finally, we conclude that with positive probability over a random choice271

of ` ∈ {−1, 1}u both properties are satisfied, and therefore there exists at least one labeling ` that272

satisfies both properties.273
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We start by constructing the family {D`}`∈{−1,1}u of distributions over X × {−1, 1}. To this end,274

let d ≤ u be some constant to be fixed later, and let ` ∈ {−1, 1}u. We define D` separately for the275

first u− d points and the last d points of X . Intuitively, every point in {ξi}i∈[u−d] has a fixed label276

determined by `, however all points but one have a very small probability of being sampled according277

to D`. Every point in {ξi}i∈[u−d,u], on the other hand, has an equal probability of being sampled,278

however its label is not fixed by ` rather than slightly biased towards `. Formally, let α, β, ε ∈ [0, 1]279

be constants to be fixed later. We construct D` using the ideas described earlier in Section 2, by280

sewing them together over two parts of the set X . We assign probability 1− β to {ξi}i∈[u−d] and281

β to {ξi}i∈[u−d+1,u]. That is, for (x, y) ∼ D`, the probability that x ∈ {ξi}i∈[u−d] is 1− β. Next,282

conditioned on x ∈ {ξi}i∈[u−d], (ξ1, `1) is assigned high probability (1 − ε) and the rest of the283

measure is distributed uniformly over {(ξi, `i)}i∈[2,u−d]. That is284

Pr
D`

[(ξ1, `1)] = (1− β)(1− ε) , and ∀j ∈ [2, u− d]. Pr
D`

[(ξj , `j)] =
(1− β)ε

u− d− 1
.

Finally, conditioned on x ∈ {ξi}i∈[u−d+1,u], x distributes uniformly over {ξi}i∈[u−d+1,u], and285

conditioned on x = ξi, we have y = `i with probability 1+α
2 . That is286

∀j ∈ [u− d+ 1, u]. Pr
D`

[(ξj , `j)] =
(1 + α)β

2d
, and Pr

D`

[(ξj ,−`j)] =
(1− α)β

2d
.

In order to give a lower bound on the generalization error for some classifier f of interest, we define287

new random variables such that their sum is upper bounded by Pr(x,y)∼D`
[yf(x) < 0], and give a288

lower bound on that sum. To this end, for every ` ∈ {−1, 1}u and f : X → R, denote289

Ψ1(`, f) =
(1− ε)β
u− d− 1

∑
i∈[2,u−d]

1`if(ξi)<0 ; Ψ2(`, f) =
αβ

d

∑
i∈[u−d+1,u]

1`if(ξi)<0 . (3)

When f, ` are clear from the context we shall simply denote Ψ1,Ψ2. We show next that indeed290

proving a lower bound on Ψ1 + Ψ2 implies a lower bound on the generalization error.291

Claim 4. For every `, f we have Pr
(x,y)∼D`

[yf(x) < 0] ≥ β(1−α)
2 + Ψ1 + Ψ2.292

Before getting proving the claim, we explain why focusing on Ψ1 + Ψ2, rather than bounding the293

generalization error directly is essential for the proof. The reason lies in the fact that we need a lower294

bound to hold with constant probability over the choice of ` and S (and in the case of Theorem 1295

also the random choices made by the algorithm) and not only in expectation. While lower bounding296

E[Pr(x,y)∼D`
[yf(x) < 0]] is clearly not harder than lower bounding E[Ψ1 + Ψ2], showing that a297

lower bound holds with some constant probability is slightly more delicate. Our proof uses the fact298

that with probability 1, Ψ1 + Ψ2 is not larger than a constant from its expectation, and therefore we299

can use Markov’s inequality to lower bound Ψ1 + Ψ2 with constant probability. We next turn to300

prove the claim.301

Proof. We first observe that302

Pr
(x,y)∼D`

[yf(x) < 0] = E(x,y)∼D`
[1yf(x)<0]

=
∑

i∈[u−d],y∈{−1,1}

1yf(ξi)<0 Pr
D`

[(ξi, y)] +
∑

i∈[u−d+1,u],y∈{−1,1}

1yf(ξi)<0 Pr
D`

[(ξi, y)]
(4)

For every i ∈ [u − d] and y ∈ {−1, 1}, if y 6= `i then PrDy [(ξj , y)] = 0. Moreover, if i ≥ 2 and303

y = `i then PrDy
[(ξi, y)] = (1−β)ε

u−d−1 . Therefore304 ∑
j∈[u−d],y∈{−1,1}

1yf(ξj)<0 Pr
Dy

[(ξj , y)] ≥ (1− β)ε

u− d− 1

∑
j∈[2,u−d]

1yf(ξj)<0 = Ψ1 . (5)

Next, for every i ∈ [u− d+ 1, u] we have that305 ∑
y∈{−1,1}

1yf(ξi)<0 Pr
D`

[(ξi, y)] = 1`if(ξi)<0 Pr
D`

[(ξi, `i)] + 1`if(ξi)>0 Pr
D`

[(ξi,−`i)]

=
(1− α)β

2d
+ 1`if(ξi)<0

αβ

d
,
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and therefore306 ∑
i∈[u−d+1,u],y∈{−1,1}

1yf(ξi)<0 Pr
D`

[(ξi, y)] =
(1− α)β

2
+
αβ

d

∑
i∈[u−d+1,u]

1`if(ξi)<0 . (6)

Plugging (5) and (6) into (4) we conclude the claim.307

To prove existence of a “rich” yet small enough hypothesis set Ĥ we apply Lemma 3 together with308

Yao’s minimax principle. In order to ensure that the hypothesis sets constructed using Lemma 3 is309

small enough, and specifically has size NO(1), we need to focus our attention on sparse labelings310

` ∈ {−1, 1}u only. That is, the labelings cannot contain more than Θ
(

lnN
θ2

)
. To this end we will311

focus on 2d-sparse vectors, and more specifically, a designated set of 2d-sparse labelings. More312

formally, we define a set of labelings of interest L(u, d) as the set of all labelings ` ∈ {−1, 1}u such313

that the restriction to the first u− d entries is d-sparse. That is314

L(u, d) := {` ∈ {−1, 1}u : |{i ∈ [u− d] : `i = −1}| ≤ d} . (7)

We next show that there exists a small enough (with respect to N ) hypothesis set Ĥ that is rich315

enough. That is, with high probability over ` ∈ L(u, d), there exists a voting classifier f ∈ C(Ĥ) that316

attains high minimum margin with ` over the entire set X . Note that the following result, similarly to317

Lemma 3 does not depend on the size of X , but only on the sparsity of the labelings in question.318

Claim 5. If d ≤ lnN
θ2 then there exists a hypothesis set Ĥ such that ln |Ĥ| = Θ (lnN) and

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(ξi) ≥ θ] ≥ 1− 1/N .

Proof. Let µ = µ(u, d, θ, 1/N), be the distribution whose existence is guaranteed in Lemma 3. Then319

for every labeling ` ∈ L(u, d), with probability at least 99/100 over H ∼ µ, there exists a voting320

classifier f ∈ C(H) that has minimal margin of θ. That is, for every i ∈ [u], `if(ξi) ≥ θ. By Yao’s321

minimax principle, there exists a hypothesis set Ĥ ∈ supp(µ) such that322

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(xi) ≥ θ] ≥ 1− 1/N .

Moreover, since Ĥ ∈ supp(µ), then |Ĥ| = Θ
(
θ−2 ln d · ln(Nθ−2 ln d) · eΘ(θ2d)

)
. Since θ ≥ 1/N323

and since d = lnN
θ2 and thus eθ

2d = N we get that there exists some univeral constant C > 0 such324

that |Ĥ| = Θ(NC), and thus ln |Ĥ| = Θ(lnN).325

3.1 Proof Algorithmic Lower Bound326

This section is devoted to the proof of Theorem 1. That is, we show that for every algorithm A, there327

exist some distribution D ∈ {D`}`∈{−1,1}u and some classifier f̂ ∈ C(Ĥ) such that with constant328

probability over S ∼ Dm, f̂ has large margins on points in S, yet fA,S has large generalization329

error. To this end we now fix u to be 2 lnN
θ2 and d = u

2 = lnN
θ2 . For these values of u, d we get330

that L(u, d) is, in fact, the set of all possible labelings, i.e. L(u, d) = {−1, 1}u. Next, fix A be a331

(perhaps randomized) learning algorithm. For every m-point sample S and recall that fA,S denotes332

the classifier returned by A when running on sample S.333

The main challenge is to show that there exists a labeling ˆ̀∈ {−1, 1}u such that C(Ĥ) contains a334

good voting classifier for ˆ̀and, in addition, fA,S has a large generalization error with respect to Dˆ̀.335

We will show that if α is small enough, then indeed such a labeling exists. Formally, we show the336

following.337

Lemma 6. If α ≤
√

u
40βm , then there exists ˆ̀∈ {−1, 1}u such that338

1. There exists f̂ = f̂ˆ̀ ∈ C(Ĥ) such that for every i ∈ [u], ˆ̀
if̂(ξi) ≥ θ ; and339

2. with probability at least 1/25 over S ∼ Dmˆ̀ and the randomness of A we have

Pr
(x,y)∼Dˆ̀

[yfA,S(x) < 0] ≥ (1− α)β

2
+

(1− β)ε

24
+
αβ

24
.
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Before proving the lemma, we first show how it implies Theorem 1340

Proof of Theorem 1. Fix some τ ∈ [0, 49/100]. Assume first that τ ≤ u
300m , and let ε = u

10m and341

β = α = 0. Let ˆ̀, f̂ be as in Lemma 6, then for every sample S ∼ Dmˆ̀ , Pr(x,y)∼S [yf̂(x) < θ] =342

0 ≤ τ , and moreover with probability at least 1/25 over S and the randomness of A343

Pr
(x,y)∼Dˆ̀

[yfA,S(x) < 0] ≥ (1− β)ε

24
≥ τ + Ω

( u
m

)
= τ + Ω

 ln |Ĥ|
mθ2

+

√
τ ln |Ĥ|
mθ2

 .

where the last transition is due to the fact that u = 2θ−2 lnN = Θ(θ−2 lg |Ĥ|) and τ = O(u/m).344

Otherwise, assume τ > u
300m , and let ε = u

10m , α =
√

u
2560τm and β = 64τ

32−31α . Since τ ≥ u
300m ,345

then α ∈ [0, 1]. Moreover, if m > Cu for large enough but universal constant C > 0, then346

32 − 31α ≥ 64 · 49
100 ≥ 64τ , and hence β ∈ [0, 1]. Moreover, since α ≤ 1 then β ≤ 64τ , and347

therefore α =
√

u
2560τm ≤

√
u

40βm . Let therefore ˆ̀, f̂ be a labeling and a classifier in C(Ĥ)348

whose existence is guaranteed in Lemma 6. Let 〈(x1, y1), . . . , (xm, ym)〉 ∼ Dmŷ be a sample of m349

points drawn independently according to Dˆ̀. For every j ∈ [m], we have E[1yj f̂(xj)<θ] = (1−α)β
2 .350

Therefore by Chernoff we get that for large enough N ,351

Pr
S∼Dm

ˆ̀

[
Pr

(x,y)∼S

[
yf̂(x) < θ

]
≥ τ

]
= Pr
S∼Dm

ˆ̀

 1

m

∑
j∈[m]

1ŷj f̂(xj)<θ ≥
(1− 31α/32)β

2


≤ e−Θ(α2βm) ≤ e−Θ(u) ≤ 10−3 ,

where the inequality before last is due to the fact that α2βm = uβ
2560τ = Ω(u), since β ≥ 2τ .352

Moreover, by Lemma 6 we get that with probability at least 1/25 over S and A we get that353

Pr
(x,y)∼Dˆ̀

[yfA,S(x) < 0] ≥ (1− α)β

2
+
αβ

32
=

(1− 31α/32)β

2
+
αβ

64
= τ + Ω

(√
τu

m

)

≥ τ + Ω

 ln |Ĥ|
mθ2

+

√
τ ln |Ĥ|
mθ2

 ,

where the last transition is due to the fact that τ = Ω(u/m). This completes the proof of Theorem 1.354

355

For the rest of the section we therefore prove Lemma 6. We start by lower bounding the expected356

value of Ψ1 + Ψ2, where the expectation is over the choice of labeling ` ∈ {−1, 1}u, S ∼ Dm`357

and the random choices made by A. Intuitively, as points in {ξ2, . . . , ξu} are sampled with very358

small probability, it is very likely that the sample S does not contain many of them, and therefore359

the algorithm cannot do better than randomly guessing many of the labels. Moreover, if α is small360

enough, and S does not sample a point in {ξu/2+1, . . . , ξu} enough times, there is a larger probability361

that A does not determine the bias correctly.362

Claim 7. If α ≤
√

u
40βm , then E`∈{−1,1}u [EA,S [Ψ1(`, fA,S) + Ψ2(`, fA,S)] ] ≥ (1−β)ε

6 + αβ
6 .363

Proof. To lower bound the expectation, we lower bound the expectations of Ψ1 and Ψ2 separately.364

For every i ∈ [2, u − d] \ {1}, if ξi /∈ S then `i and fA,S(ξi) are independent, and therefore365

E`[1`ifA,S(ξi)<0] = 1
2 . Let S be the set of all samples for which |S ∩ {ξ2, . . . , ξu−d}| ≤ u−d−1

2 ,366

then for every S ∈ S,367

E`

 ∑
i∈[2,u−d−1]

1`ifA,S(ξi)<0

 ≥ u− d− 1− |S ∩ {ξ2, . . . , ξu−d}|
2

≥ u− d− 1

4
,
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As this holds for every S ∈ S, we conclude that368

EA,S [E` [Ψ1(`, fA,S)] |S ∈ S ] ≥ (1− β)ε

u− d− 1
· u− d− 1

4
=

(1− β)ε

4
.

Next, for large enough N a Chernoff bound gives PrS∼Dm [S] ≥ 1− e−Θ(u) ≥ 2/3, and therefore369

EA,S [E` [Ψ1(`, fA,S)] ] ≥ (1−β)ε
6 , and by Fubini’s theorem E` [EA,S [Ψ1(`, fA,S)]] ≥ (1−β)ε

6 .370

Next, let i ∈ [u− d+ 1, u]. Denote by σi ∈ [m] the number of times ξi was sampled into S. Then371

E`
[
EA,S

[
1`ifA,S(ξi)<0

]]
=

m∑
n=0

E`
[
EA,S

[
1`ifA,S(ξi)<0

∣∣σi = n
]]
· Pr[σi = n] (8)

For every x > 0 and y ∈ (0, 1), let Φ(x, y) = 1
4

(
1−

√
1− exp

(
−xy2
1−y2

))
, then a result by372

Anthony and Bartlett [AB09, Lemma 5.1] shows that373

E`
[
EA,S

[
1`ifA,S(ξi)<0

∣∣σi = n
]]
≥ Φ(n+ 2, α)

Plugging this into (8), by the convexity of Φ(·, α) and Jensen’s inequality we get that374

E`
[
EA,S

[
1`ifA,S(ξi)<0

]]
≥

m∑
n=0

Φ(n+ 2, α) · Pr[σi = n] ≥ Φ(E[σi] + 2, α) .

Since E[σi] = 2βm
u , and Since Φ(·, α) is monotonically decreasing we get that375

E`
[
EA,S

[
1`ifA,S(ξi)<0

]]
≥ Φ

(
4βm

u
, α

)
.

Summing over all i ∈ [u − d + 1, u] we get that E` [EA,S [Ψ2(`, fA,S)]] ≥ αβΦ
(

4βm
u , α

)
. The376

claim then follows from the fact that for every α ≤
√

u
40βm we have Φ( 8βm

u , α) ≥ 1
6 .377

We next show that for small values of α, a large fraction of labelings ` ∈ {−1, 1}u satisfy that378

Ψ1 +Ψ2 is large with some positive constant probability over the random choices ofA and the choice379

of S ∈ S.380

Claim 8. If α ≤
√

u
40βm , then with probability at least 1/11 over the choice of ` ∈ {−1, 1}u we381

have382

Pr
A,S

[
Ψ1(`, fA,S) + Ψ2(`, fA,S) ≥ (1− β)ε

24
+
αβ

24

]
≥ 1

25
.

Proof. First note that by substituting every indicator in (3) with 1 we get that with probability 1 over383

all samples S, labelings ` and random choices of A we have384

Ψ1 + Ψ2 ≤ (1− β)ε+ αβ , (9)

and therefore Pr` [EA,S [Ψ1 + Ψ2] ≤ (1− β)ε+ αβ] = 1. Furthermore, for every α ≤
√

u
40βm we385

get from Claim 7 that E` [EA,S [Ψ1 + Ψ2]] ≥ 1
6 ((1− β)ε+ αβ). Denote X = EA,S [Ψ1 + Ψ2] and386

a = (1 − β)ε + αβ. In these notations we have that (9) states that Pr`[X ≤ a] = 1, and Claim 7387

states that E`[X] ≥ a/6. Therefore a−X is a non-negative random variable, and from Markov’s388

inequality we get that389

Pr
`

[X ≤ a/12] = Pr
`

[a−X ≥ 11a/12] ≤ Pr
`

[a−X ≥ 1.1E[a−X]] ≤ 10/11

and therefore Pr`[EA,S [Ψ1 + Ψ2] ≥ 1
12 ((1− β)ε+ αβ)] ≥ 1/11.390

Next, fix some ` ∈ {−1, 1}u for which EA,S [Ψ1 + Ψ2] ≥ 1
12 ((1 − β)ε + αβ). Once again, as391

PrA,S [Ψ1 + Ψ2 ≤ 12EA,S [Ψ1 + Ψ2]] = 1 we get from Markov’s inequality that with probability at392

least 1/25 we have393

Pr
A,S

[
Ψ1 + Ψ2 ≥

(1− ε)β
24

+
αβ

24

]
≥ Pr
A,S

[
Ψ1 + Ψ2 ≥

1

2
EA,S [Ψ1 + Ψ2]

]
≥ 1

25
.

394
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To finish the proof of Lemma 6, observe that from Claims 5 and 8 we get that with positive probability395

over ` ∈ {−1, 1} there exists a voting classifier f ∈ C(Ĥ) such that for every i ∈ [u], `if(xi) ≥ θ396

and in addition PrA,S

[
Ψ1 + Ψ2 ≥ (1−ε)β

24 + αβ
24

]
≥ 1

25 . As this occurs with positve probability, we397

conclude that there exists some labeling ˆ̀∈ {−1, 1}u satisfying both properties. Since for every set398

of random choices of A, and every S ∼ Dmˆ̀ , Claim 4 guarantees that399

Pr
(x,y)∼Dˆ̀

[yfA,S(x)] ≥ (1− α)β

2
+ Ψ1(ˆ̀, fA,S) + Ψ2(ˆ̀, fA,S) ,

this concludes the proof of Lemma 6, and thus the proof of Theorem 1 is now complete.400

3.2 Proof of Existential Lower Bound401

This section is devoted to the proof of Theorem 2. That is, we show the existence of a distribution402

D ∈ {D`}`∈{−1,1}u such that with a constant probability over S ∼ Dm there exists some voting403

classifier fS ∈ C(Ĥ) such that fS has large margins on points in S, but has large generalization404

probability with respect to D. To this end, let m be such that lnN
θ2 <

(
m

lgm

)9/10

, and note that405

m =
(

lnN
θ2

)1+Ω(1)
. Let u = 40m

lgm , and let d = lnN
θ2 .406

Similarly to the proof of Theorem 1, the main challenge is to show the existence of a lebeling that407

satisfies all desired properties. We draw the reader’s attention to the fact that unlike the previous proof,408

the distribution over labelings is not uniform over the entire set {−1, 1}u, but rather a designated409

subset of sparse labelings.410

With every labeling ` ∈ {−1, 1}u and an m-point sample S, we associate a classifier h`,S as411

follows. Intuitively, h`,S “adverserially changes” at most d labels of points in {ξ2, . . . , ξu−d} that412

were not picked by S, and chooses the majority label for points in {ξu−d+1, . . . , ξu}. Formally, let413

IS ⊆ {ξ2, . . . , ξu−d} \ S be an arbitrary sets of size at most d, then for every x ∈ {ξ1, . . . , ξu−d},414

h`,S(x) = −`(x) if and only if x ∈ IS , and for every x ∈ {ξu−d+1, . . . , ξu}, h`,S(x) is the majority415

of labels of x in S. That is h`,S(x) = 1 if and only if (x, 1) appears in S more times than (x,−1).416

Break ties arbitratily.417

Lemma 9. If α ≤
√

d
40βm then there exists ˆ̀∈ {−1, 1}u such that418

1. For every i ∈ [u− d], ˆ̀
i = 1;419

2. With probability at least 99/100 over the choice of sample S ∼ Dmˆ̀ , there exists a voting420

classifier fS ∈ C(Ĥ) such that fS(ξi)hˆ̀,S(ξi) ≥ θ for all i ∈ [u]; and421

3. with probability at least 1/25 over S ∼ Dmˆ̀ we have

Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ (1− α)β

2
+

(1− β)εd

8(u− d− 1)
+
αβ

24
.

We first show that the lemma implies Theorem 2.422

Proof of Theorem 2. Fix some τ ∈ [0, 49/100]. Assume first that τ ≤ d
50u , and let ε = 1

2 and423

β = α = 0. With probability 1/25 over S we have424

Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ (1− β)εd

8u
≥ τ +Ω

(
d

u

)
= τ +Ω

 ln |Ĥ| lnm
mθ2

+

√
τ ln |Ĥ| lnm

mθ2

 ,

where the last transition is due to the fact that d = θ−2 lnN = Θ(θ−2 ln |Ĥ|) and τ = O(d/u).425

Moreover, with probability 99/100 over S there exists fS ∈ C(Ĥ) such that fS(ξi)hˆ̀,S(ξi) ≥ θ for426

all i ∈ [u]. We get that with probability at least 1/100 over the sample S there exists fS ∈ C(Ĥ)427

such that428

Pr
S

[yjfS(xj) < θ] = Pr
S

[yjhˆ̀,S(xj) < 0] = 0 ≤ τ ,
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and moreover429

Pr
(x,y)∼Dˆ̀

[yfS(x) < 0] = Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ τ + Ω

 ln |Ĥ| lnm
mθ2

+

√
τ ln |Ĥ| lnm

mθ2

 .

Otherwise, assume τ > d
50u , and let ε = 1

2 , α =
√

d
2560τm and β = 64τ

32−31α . Since τ ≥ d
50u , then430

α ∈ [0, 1]. Moreover, for large enough constant C > 0, if m > Cd, then 32− 31α ≥ 64 · 499
1000 ≥431

64 · 101
100τ , and therefore β ∈ [0, 100/101].432

Next, let 〈(x1, y1), . . . , (xm, ym)〉 ∼ Dmˆ̀ be a sample of m points drawn independently according433

to Dˆ̀. For every j ∈ [m], let Ej be the event that (xj , yj) ∈ {(ξi,−ˆ̀
i)}i∈[u−d+1,u], then we have434

1yjfS(xj)<0 < 1Ej . Moreover, E[1Ej ] = (1−α)β
2 , and {1Ej}j∈[m] are independent. Therefore by435

Chernoff we get that for large enough N ,436

Pr
S∼Dm

ˆ̀

[
Pr

(x,y)∼S

[
yhˆ̀,S(x) < 0

]
≥ τ

]
≤ Pr
S∼Dm

ˆ̀

 1

m

∑
j∈[m]

1Ej ≥
(1− 31α/32)β

2


≤ e−Θ(α2βm) = e−Θ(d) ≤ 10−3 ,

where the inequality before last is due to the fact that α2βm = dβ
2560τ = Ω(d), since β ≥ 2τ .437

Moreover, since α ≤ 1 then β ≤ 64τ , and therefore α =
√

d
2560τm ≤

√
d

40βm . Thus with438

probability at least 1/25 over S we get that439

Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ (1− α)β

2
+

(1− β)εd

u− d− 1
+
αβ

32
=

(1− 31α/32)β

2
+

(1− β)εd

u− d− 1
+
αβ

64

= τ + Ω

(
d

u
+

√
τd

m

)
≥ τ + Ω

 ln |Ĥ| lnm
mθ2

+

√
τ ln |Ĥ|
mθ2

 ,

Therefore with probability at least 1/50 over the sample S we get that Pr(x,y)∼S

[
yhˆ̀,S(x) < 0

]
≤ τ440

and moreover441

Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ τ + Ω

 ln |Ĥ| lnm
mθ2

+

√
τ ln |Ĥ|
mθ2

 .

Finally, from Lemma 9 and similarly to the first part of the proof, we get that with probability 1/100442

over the choice of S there exists fS ∈ C(Ĥ) such that hˆ̀,S(ξi)fS(ξi) ≥ θ for all i ∈ [u]. For all these443

samples S we get that Pr(x,y)∼S [yfS(x) < θ] = Pr(x,y)∼S

[
yhˆ̀,S(x) < 0

]
≤ τ and moreover444

Pr
(x,y)∼Dˆ̀

[yfS(x) < 0] = Pr
(x,y)∼Dˆ̀

[yhˆ̀,S(x) < 0] ≥ τ + Ω

 ln |Ĥ| lnm
mθ2

+

√
τ ln |Ĥ|
mθ2

 .

445

For the rest of the section we therefore prove Lemma 9. As with the proof of Lemma 6, we start by446

lower bounding the expected value of Ψ1(`, h`,S) + Ψ2(`, h`,S) over a choice of a labeling ` and447

samples S ∈ D`. We consider next the subset L′ of L(u, d) containing all labelings ` satisfying448

`i = 1 for all i ∈ [u]. Intuitively, by a coupon-collector like argument we show that with very high449

probability over the sample S, there are at least d points in {ξi}i∈[u−d] not sampled into S. The450

argument lower bounding Ψ2 is identical to the one in the proof of Lemma 9.451
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Claim 10. If α ≤
√

d
40βm then

E`∈L′ [ES [Ψ1(`, h`,S) + Ψ2(`, h`,S)]] ≥ (1− ε)βd
2(u− d− 1)

+
αβ

6
.

Proof. Let S be the set of all m-point samples S for which |{ξ2, . . . , ξu−d} \ S| ≥ d. For every452

S ∈ S we have |IS | = d, and therefore453 ∑
i∈[2,u−d]

1`ifS(ξi)<0 =
∑

i∈[2,u−d]

1fS(ξi)<0 = |IS | = d .

Therefore E`[ES [Ψ1(`, fS)|S ∈ S]] = (1−ε)βd
u−d−1 . We will show next that PrS [S] ≥ 1/2, and conclude454

that E`[ES [Ψ1(`, fS)]] ≥ (1−ε)βd
2(u−d−1) . To see this, consider a random sampling S ∼ Dm` . We will455

show by a coupon-collector argument that with high probability, no more than (u − d − 1) − d456

elements of {ξ2, . . . , ξu−d} are sampled to S, and therefore S ∈ S. Consider the set of elements of457

{ξ2, . . . , ξu−d} sampled by S. For every k ∈ [u− 2d− 1], let Xk be the number of samples between458

the time (k − 1)th distinct element was sampled from {ξ2, . . . , ξu−d} and the time the kth distinct459

element was sampled from {ξ2, . . . , ξu−d}. Then Xk ∼ Geom (pk), where pk = (1− β)ε · u−d−ku−d−1 .460

Denote X :=
∑
k∈[u−2d−1]Xk, then461

E[X] =
∑

k∈[u−2d−1]

1

pk
=

∑
k∈[u−2d−1]

u− d
(1− β)ε(u− d− k)

=
u− d− 1

(1− β)ε

u−d−1∑
k=d+1

1

k

≥ (u− d− 1)[ln(u− d− 1)− ln(d+ 1)− 1] ≥ 1

2
u ln

u

d
≥ 1

20
u lnu ≥ 4

3
m

Therefore by letting λ = 3
4 , and p∗ = mink∈[u−2d−1] pk = (1−β)ε· u−d−(u−2d−1)

u−d−1 ≥ d
u then known462

tail bounds on the sum of geometrically-distributed random variable (e.g. [Jan18, Theorem 3.1]) we463

get that for large enough values of m,464

Pr
S∼Dm

[S /∈ S] = Pr[X ≤ m] ≤ Pr[X ≤ λE[X]] ≤ e−p∗E[X](λ−1−lnλ) ≤ e−Ω(lnu) ≤ 1/2 . (10)

The lower bound on the expectation of Ψ2 is proved identically to the proof in Claim 7.465

Similarly to Claim 8, we conclude the following.466

Claim 11. For α ≤
√

d
40βm , then with probability at least 1/11 over the choice of ` ∈ L′ we have

Pr
S∼Dm

`

[
Ψ1(`, h`,S) + Ψ2(`, h`,S) ≥ (1− β)εd

4(u− d− 1)
+
αβ

12

]
≥ 1

25
.

We next want to show that there exists a labeling ` ∈ L′ such that with high probability over S ∼ Dm` ,467

there exists a voting classifier fS ∈ C(Ĥ) attaining high margins with h`,S . since the distribution468

induced on {ξi})i∈[u−d+1,u] by D` is uniform, we conclude the following for a large enough value469

of N .470

Claim 12. With probability at least 99/100 over the choice of a labeling ` ∈ L′,

Pr
S∼D`

[
∃fS ∈ C(Ĥ) : ∀i ∈ [i]. h`,S(ξi)fS(ξi) ≥ θ

]
≥ 99

100
.

Proof. For two labelings ` ∈ L(u, d) and `′ ∈ L′ we say that ` and `′ are similar, and denote ` ≡ `′471

if for all i ∈ [u− d+ 1, u], `i = `′i. From Claim 5 we know that472

1− 1/N ≤ Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(ξi) ≥ θ] =

=
∑
`′∈L

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(ξi) ≥ θ|` ≡ `′] · Pr
`∈RL(u,d)

[` ≡ `′]

=
∑
`′∈L

Pr
S∼Dm

`′
[∃fS ∈ C(Ĥ) : ∀i ∈ [u]. h`′,S(ξi)f(ξi) ≥ θ|` ≡ `′] · Pr

`∈RL(u,d)
[` ≡ `′]

13



For a large enough value of N we conclude that with probability at least 99/100 over a choice of473

`′ ∈ L′, for at least a 99/100 fraction of samples S ∼ Dm`′ there exists a voting classifier fS ∈ C(Ĥ)474

attaining high margins with h`′,S .475

Combining Claims 12 and 11 we conclude that if α ≤
√

d
40βm then there exists ˆ̀∈ L′ satisfying the476

guarantees in Lemma 9. The proof of the lemma, and therefore of Theorem 2 is now complete.477

4 Existence of a Small Hypotheses Set478

Fix some θ ∈ (0, 1/40), δ ∈ (0, 1) and an integer d ≤ u. Let γ = 4θ ∈ (0, 1/10) and let479

N = 2γ−2 ln d · ln γ−2 ln d
δ · eO(θ2d).We define the distribution µ via the following procedure, that480

samples a hypothesis set H ∼ µ. Let ĥ : X → {−1, 1} be defined by ĥ(x) = 1 for all x ∈ X .481

Sample independently and uniformly at random N hypotheses h1, . . . , hN ∈R X → {−1, 1}, and482

defineH := {ĥ} ∪ {hj}j∈[N ].483

Clearly everyH ∈ supp(µ) satisfies |H| = N + 1. We therefore turn to prove the second property.484

To this end, let k = γ−2 ln d. In order to show existence of a voting classifier, we conceptually change485

the procedure defining µ, and think of the random hypotheses as being sampled in k equally sized486

“batches”, each of size N/k, and adding ĥ to each of them. Denote the batches byH1,H2, . . . ,Hk.487

We consider next the following procedure to construct a voting classifier f ∈ C(H) given H ∼ µ.488

We will use the main ideas from the AdaBoost algorithm. Recall that AdaBoost creates a voting489

classifier using a sample S = ((x1, y1), . . . , (xu, yu)) in iterations. Staring with f0 = 0, in iteration490

j, it computes a new voting classifier fj = fj−1 + αjhj for some hypothesis hj ∈ H and weight αj .491

The heart of the algorithm lies in choosing hj . In each iteration, AdaBoost computes a distribution492

Dj over S and chooses a hypothesis hj minimizing493

εj = Pr
i∼Dj

[hj(xi) 6= yi].

The weight it then assigns is αj = (1/2) ln((1− εj)/εj) and the next distribution Dj+1 is494

Dj+1(i) =
Dj(i) exp(−αjyihj(xi))

Zj

where Zj is a normalization factor, namely495

Zj =

d∑
i=1

Dj(i) exp(−αjyihj(xi)).

The first distribution D1 is the uniform distribution.496

We alter the above slightly assigning uniform weights on the hypotheses, and setting αj = 1
2 ln 1+2γ

1−2γ497

for all iterations j. The algorithm is formally described as Algorithm 1.498

We will prove that the algorithm fails with probability at most δ (over the choice ofH), and that if499

the algorithm does not fail, then it returns a voting classifier with minimum margin at least θ. First500

note that if f is the classifier returned by the algorithm, then clearly f = 1
k

∑
j∈[k] hj ∈ C(H) is a501

voting classifier.502

Claim 13. Algorithm 1 fails with probability at most δ.503

Proof. Since H1, . . . ,Hk are independent, it is enough to show that for every j ∈ [k], for every504

w ∈ ∆u with probability at least 1− δ/k there exsits hj ∈ Hj such that505 ∑
i∈[u]

wi1yi 6=hj(xi) ≤
1

2
− γ , (11)

where ∆u is the u-dimensional simplex. First note that if
∑
i∈[u]:yi=−1 wi ≤

1
2 − γ, then ĥ ∈ Hj506

satisfies (11). We can therefore assume
∑
i∈[u]:yi=−1 wi >

1
2 − γ. Next, note that for every507
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Input: (H1, . . . ,Hk) ∼ µ
Output: f ∈ C

(⋃
j∈[k]Hj

)
1: let α = 1

2 ln 1+2γ
1−2γ

2: let f(x) = 0 for all x ∈ X
3: let D1(i) = 1

u for all i ∈ [u].
4: for j = 1 to k do
5: Find a hypothesis hj ∈ Hj satisfying

∑
i∈[u]Dj(i)1yi 6=hj(xi) ≤ 1

2 − γ.
If there is no such hypothesis, return fail.

6: fj ← fj−1 + hj .
7: Zj ←

∑
i∈[u]Dj(i) exp(−αyihj(xi)).

8: for every i ∈ [u] let Dj+1(i) = 1
Zj
Dj(i) exp(−αyihj(xi)).

9: return 1
kfk.

Algorithm 1: Construct a Voting Classifier

h : X → {−1, 1} we have508

∑
i∈[u]

wi1yi 6=h(xi) =
∑
i∈[u]

1

2
(wi − wiyih(xi)) =

1

2

∑
i∈[u]

wi −
∑
i∈[u]

wiyih(xi)

 =
1

2
− 1

2

∑
i∈[u]

wiyih(xi)

Therefore
∑
i∈[u] wi1yi 6=h(xi) ≥ 1

2 − γ if and only if
∑
i∈[u] wiyih(xi) ≥ 2γ. We want to show509

that with probability at most δk every h ∈ Hj satisfies
∑
i∈[u] wiyihj(xi) ≥ 2γ. We claim that it is510

enough to show that511

Pr
h∈RX→{−1,1}

∑
i∈[u]

wiyih(xi) ≥ 2γ

 ≥ k ln k
δ

N
=

1

2
e−Θ(γ2d) (12)

To see why this is enough assume that (12) is true, then since sampling Hj means indepently and512

uniformly sampling N/k hypotheses h ∈R X → {−1, 1}, the probability that there exists h ∈ Hj513

such that (11) holds is at least514

1− (1−
k ln k

δ

N
)N/k ≥ 1− exp

(
−
k ln k

δ

N
· N
k

)
= 1− δ

k
.

We thus turn to prove that (12) holds. To this end, let M := {i ∈ [u] : βi < 0}. Recall that515

|M | ≤ d and that we assumed
∑
i∈M wi =

∑
i∈M |yiwi| ≥

1
2 − γ. From a known tail bound516

by Montgomery-Smith [MS90] on the sum of Rademacher random variables we have that since517

γ ∈ (0, 1/10),518

Pr

∑
i∈[u]

wiyih(xi) ≥ 2γ

 ≥ Pr

∑
i∈M

wiyih(xi) ≥ 2γ and
∑

i∈[u]\M

wiyih(xi) ≥ 0

 ≥ 1

2
e−Θ(γ2d)

519

Claim 14. If Algorithm 1 does not fail, then for every i ∈ [y], yif(xu) ≥ θ.520

Proof. We first show by induction that for all j ∈ [k] we have that for all i ∈ [u]521

exp(−αyifj(xi)) = u ·Dj+1(i)
∏
`∈[j]

Z` .

To see this observe that for all i ∈ [u], D2(i) = D1(i)
Z1

exp(−αyih1(xi)). Since h1 = f1 and by522

rearranging we get that exp(−αyif1(xi)) = D2(i)Z1

D1(i) = u ·D2(i)Z1. For the induction step we have523
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that524

exp(−αyifj(xi)) = exp(−αyi(fj−1(xi) + hj(xi))) = exp(−αyifj−1(xi)) · exp(−αyihj(xi))

= u ·Dj(i)
∏

`∈[j−1]

Z` ·
ZjDj+1(i)

Dj(i)

= u ·Dj+1(i)
∏
`∈[j]

Z`

Since
∑
i∈[u]Dk+1(i) = 1, we get that525 ∑

i∈[u]

exp(−αyifk(xi)) = u
∏
`∈[k]

Z` . (13)

We turn therefore to bound Z` for ` ∈ [k]. Denote ε` =
∑
i∈[u]D`(i) · 1h`(xi) 6=yi . Then526

Z` =
∑
i∈[u]

D`(i) exp(−αyih`(xi)) =
∑
i∈[u]

D`(i) exp

(
−1

2
ln

(
1 + 2γ

1− 2γ

)
yih`(xi)

)

=
∑
i∈[u]

D`(i)

(
1 + 2γ

1− 2γ

)− 1
2yih`(xi)

= ε`

(
1 + 2γ

1− 2γ

) 1
2

+ (1− ε`)
(

1 + 2γ

1− 2γ

)− 1
2

=

(
ε`

1− 2γ
+

1− ε`
1 + 2γ

)√
(1 + 2γ)(1− 2γ)

By the condition in line 5 we know that ε` ≤ 1
2−γ. Since

(
ε`

1−2γ + 1−ε`
1+2γ

)
is increasing as a function527

of ε` we therefore get that528

Z` ≤
( 1

2 − γ
1− 2γ

+
1
2 + γ

1 + 2γ

)√
(1 + 2γ)(1− 2γ) =

√
(1 + 2γ)(1− 2γ) ≤ 1− 2γ2 ,

where the last inequality follows from the fact that 1− 4γ2 ≤ (1− 2γ2)2. Substituting in (13) we529

get that for every i ∈ [u],530

exp(−αyifk(xi) ≤
∑
i∈[u]

exp(−αyifk(xi)) = u
∏
`∈[k]

Z` ≤ u ·
(
1− 2γ2

)k ≤ exp(ln d− 2kγ2) ,

and therefore531

yif(xi) =
1

k
yifk(xi) ≥

1

kα
(2kγ2 − ln d) . (14)

Since ln(1 + x) ≤ x for all x ≥ 0 we get that532

α =
1

2
ln

(
1 + 2γ

1− 2γ

)
=

1

2
ln

(
1 +

4γ

1− 2γ

)
≤ 2γ

1− 2γ
≤ 4γ ,

where the last inequality follows from the fact that γ ∈ (0, 1/4). Substituting in (14) we get that533

yif(xi) ≥
1

4kγ
(2kγ2 − ln d) =

γ

2
− ln d

4kγ
.

Recall that k = γ−2 ln d, and therefore yif(xi) ≥ γ/4 = θ.534

5 Conclusions535

In this work, we showed almost tight margin-based generalization lower bounds for voting classifiers.536

These new bounds essentially complete the theory of generalization for voting classifers based on537

margins alone. Closing the remaining gap between the upper and lower bounds is an intriguing open538

problem and we hope our techniques might inspire further improvements. Our results come in the539

form of two theorems, one showing generalization lower bounds for any algorithm producing a voting540

classifier, and a slightly stronger lower bound showing the existence of a voting classifier with poor541

generalization. This raises the important question of whether specific boosting algorithms can produce542

voting classifiers that avoid the lgm factor in the second lower bound via a careful analysis tailored543

to the algorithm. As a final important direction for future work, we suggest investigating whether544

natural parameters other than margins may be used to better explain the practical generalization error545

of voting classifiers. At least, we now have an almost tight understanding, if no further parameters546

are taken into consideration.547
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