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Figure 5: Evolution of the di�erent statistics for SASA over the course of training ResNet18 on
CIFAR-10 using the default parameters � = 0.02, � = 0.2, ⇣ = 0.1. Panel (a) shows the raw data for
both sides of condition (6). That is, it shows the values of hxk, gki and ↵

2
1+�
1�� hdk, dki at each iteration.

Panel (1) shows z̄N with its lower and upper confidence interval [lci, uci] and the "right hand side"
(rhs) (��v̄N, �v̄N ) (see Eqn. (10)). Panel (c) shows a zoomed-in version of (b) to show the drop points
in more detail. Panel (d) depicts the di�erent variance estimators (i.i.d., batch means, overlapping
batch means) over the course of training. The i.i.d. variance (green) is a poor estimate of �2

z .

Figure 6: Training loss, test accuracy, and learning rate schedule for SASA using di�erent values
of �, � and ⇣ around the defaults 0.2, 0.02 and 0.1. The model is ResNet18 trained on CIFAR-10,
with the procedure the same as in Section 4. Top row: performance for fixed � = 0.2, ⇣ = 0.1,
and � 2 {0.005, 0.01, 0.02, 0.04}. Middle row: performance for fixed � = 0.02, ⇣ = 0.1, and
� 2 {0.05, 0.1, 0.2}. Bottom row: performance for fixed � = 0.2, � = 0.02, and ⇣ 2 {0.5, 0.2, 0.1}.
Qualitatively, increasing � and increasing � both cause the algorithm to drop sooner. The value of ⇣
does not influence the final performance, as long as the learning rate finally decays to the same level.

A Details and Additional Experiments362

In this section, we provide more experimental details and discussion, and examine the sensitivity of363

SASA’s performance with respect to its parameters.364
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A.1 CIFAR-10 experiments in Section 4365

For the CIFAR-10 experiment, we set SGM to use ↵0 = 1.0 and ⇣ = 0.1, and drop every 50 epochs.366

We used the same values of ↵0 and ⇣ for SASA. For Adam, we used a warmup phase of 50 epochs with367

↵ = 1.0, and then set ↵0 = 0.0001, the optimal value in our grid search of {0.00001, 0.0001, 0.01, 0.1}.368

The weight decay parameter for all models was set to 0.0005. All methods used batch size 128.369

Evolution of statistics. Figure 5 shows the evolution of SASA’s di�erent statistics over the course of370

training the ResNet18 model on CIFAR-10 using the default parameter settings � = 0.02, � = 0.2, ⇣ =371

0.1. In each phase, the running average of the di�erence between the statistics, z̄N , decays toward372

zero. The learning rate ↵ drops once z̄N and its confidence interval are contained in (��v̄N, �v̄N ); see373

Eqn (10). After the drop, the statistics increase in value and enter another phase of convergence. The374

batch means variance estimator (BM) and overlapping batch means variance estimator (OLBM) give375

very similar estimates of the variance, while the i.i.d. variance estimator, as expected, gives quite376

di�erent values.377

Sensitivity analysis. We perturb the relative equivalence threshold �, the confidence level � and378

the decay rate ⇣ around their default values (0.2, 0.02, 0.1) and repeat the CIFAR-10 experiment379

from the previous section, using the same values for the other hyperparameters. In Figure 6, the top380

row shows the performance for fixed (�, ⇣) = (0.2, 0.1) and changing �. The middle row shows the381

performance for fixed (�, ⇣) = (0.02, 0.1) and changing �. The bottom row shows the performance for382

fixed (�, �) = (0.02, 0.2) and changing ⇣ . Increases in both � and � tend to cause the algorithm to383

drop sooner; this behavior is intuitive from the testing procedure (10). For values of the parameters384

close to the defaults, SASA still obtains good performance. The value of ⇣ does not influence the385

final performance, as long as the learning rate finally decays to the same level.386

A.2 ImageNet experiments in Section 4387

For the ImageNet experiment, we again used ↵0 = 1.0 and ⇣ = 0.1 for SGM and SASA, and dropped388

the SGM learning rate every 30 epochs. We let Adam have a warmup phase of 30 epochs, initializing it389

with the parameters obtained from running SGM with ↵ = 1.0. After this phase, we used ↵0 = 0.0001,390

the optimal value from a grid {0.00001, 0.0001, 0.001, 0.01}. The weight decay for all models was391

set to 0.0001. All methods used batch size 256.392

Evolution of statistics. Figure 7 shows the evolution of SASA’s di�erent statistics over the course393

of training the ResNet18 model on CIFAR-10, under the default parameter setting � = 0.02, � =394

0.2, ⇣ = 0.1. In each phase, z and v get close two easy other as predicted by (6). Together with its395

confidence interval, the statistics z̄N decay toward zero. The learning rate is dropped as long as the396

confidence interval is contained in (��v̄N, �v̄N ); see Eqn (10). The batch mean variance estimator397

(bm) and overlapping batch mean variance estimator (olbm) give very close variance estimates, while398

the i.i.d. variance estimator is clearly much di�erent from the batch mean and overlapping batch mean399

estimators.400

Sensitivity analysis. We perturb the relative equivalence threshold �, the confidence level � and401

the decay rate ⇣ around their default values (0.2, 0.02, 0.1) and repeat the CIFAR-10 experiment402

from the previous section, using the same values for the other hyperparameters. In Figure 8, the top403

row shows the performance for fixed (�, ⇣) = (0.2, 0.1) and changing �. The middle row shows the404

performance for fixed (�, ⇣) = (0.02, 0.1) and changing �. The bottom row shows the performance for405

fixed (�, �) = (0.02, 0.2) and changing ⇣ . Increases in both � and � tend to cause the algorithm to406

drop sooner; this behavior is intuitive from the testing procedure (10). For values of the parameters407

close to the defaults, SASA still obtains good performance. The value of ⇣ does not influence the408

final performance, as long as the learning rate finally decays to the same level.409

A.3 RNN experiments in Section 4410

For the RNN experiment, we trained the PyTorch word-level language model example (2019) with411

600 hidden units, 600-dimensional embeddings, dropout 0.65, and tied weights. All optimizers also412

used gradient clipping with 2.0 as the threshold and weight decay 0.0005. We set ↵0 and ⇣ for SGM413

and SASA to be 2.0 and 0.25, respectively. Because Adam was tuned in this example using the414
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Figure 7: Evolution of the di�erent statistics for SASA over the course of training ResNet18 on
ImageNet using the default parameters � = 0.02, � = 0.2, ⇣ = 0.1. Panel (a) shows the raw data for
both sides of condition (6). That is, it shows the values of hxk, gki and ↵

2
1+�
1�� hdk, dki at each iteration.

Panel (b) shows z̄N with its lower and upper confidence interval [lci, uci] and the "right hand side"
(rhs) (��v̄N, �v̄N ) (see Eqn. (10)). Panel (c) shows a zoomed-in version of (b) to show the drop points
in more detail. Panel (d) depicts the di�erent variance estimators (i.i.d., batch means, overlapping
batch means) over the course of training. The i.i.d. variance (green) is a poor estimate of �2

z .

Figure 8: Training loss, test accuracy, and learning rate schedule for SASA using di�erent values
of �, � and ⇣ around the default 0.2, 0.02 and 0.1. The model is ResNet18 trained on ImageNet, as
in 4. Top row: performance for fixed � = 0.2, ⇣ = 0.1, and � 2 {0.005, 0.01, 0.02}. Middle row:
performance for fixed � = 0.02, ⇣ = 0.1, and � 2 {0.05, 0.1, 0.2}. Bottom row: performance for fixed
� = 0.2, � = 0.02, and ⇣ 2 {0.5, 0.2, 0.1}. Qualitatively, increasing � and increasing � both cause the
algorithm to drop sooner. The value of ⇣ does not influence the final performance, as long as the
learning rate finally decays to the same level.

validation set, we also used ⇣ = 0.25 for Adam. The optimal ↵0 for Adam was 0.5, chosen from the415

grid {0.1, 0.5, 1.0, 2.0, 3.0}.416

A.4 Additional experiment: training logistic regression on the MNIST dataset417

We train a logistic regression model on the MNIST dataset with weight decay 0.0005.418
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Figure 9: Top: training loss, test accuracy, and learning rate schedule for SASA and Adam for
logistic regression on MNIST. Bottom: Evolution of the di�erent statistics for SASA, as in Figures
5 and 7. SASA uses its default parameters (�, �, ⇣) = (0.02, 0.2, 0.1). Adam uses its default
(�1, �2) = (0.9, 0.999) but its initial learning rate ↵0 = 0.00033 is obtained from a grid search.

Default value performance. Figure 9 shows SASA’s performance with default parameters. For419

this convex optimization problem, SASA and Adam achieve similar performance. SASA uses420

its default parameters (�, �, ⇣) = (0.02, 0.2, 0.1) and initial ↵0 = 1.0. Adam uses its default421

(�1, �2) = (0.9, 0.999) and its initial learning rate lr = 0.00033 is obtained from a grid search over422

{0.01, 0.0033, 0.001, 0.00033, 0.0001}.423

Sensitivity analysis. As with the experiments on CIFAR-10 and ImageNet, we perturb the relative424

equivalence threshold �, the confidence level �, and the decay rate ⇣ around their default values425

(0.2, 0.02, 0.1). In Figure 10, the top row shows the performance for fixed (�, ⇣) = (0.2, 0.1) and426

changing �. The middle row shows the performance for fixed (�, ⇣) = (0.02, 0.1) and changing �.427

The bottom row shows the performance for fixed (�, �) = (0.02, 0.2) and changing ⇣ . The results are428

the qualitatively the same as in Figures 6 and 8.429

A.5 Additional experiment: training MaskRCNN on the COCO dataset430

We train a Mask-RCNN model He et al. (2017) with a Feature Pyramid Network (FPN) Lin431

et al. (2017) as a backbone for both object detection and instance segmentation on the the COCO432

dataset Lin et al. (2014). The FPN backbone is based on the ResNet50, and the implementa-433

tion is based on the MaskRCNN-benchmark repo Massa and Girshick (2018). In the recom-434

mend training setting, the model is trained for 90000 iterations with the SGM optimizer. The435

learning rate is scheduled to decay by 10 (⇣ = 0.1) at iteration 60000 and 80000. Readers436

can refer to https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/437

configs/e2e_mask_rcnn_R_50_FPN_1x.yaml for a detailed experiment setup. This hyperparame-438

ter setting is carefully tuned to reach the reported performance: object detection mean average precision439

(bbox-AP) 37.8% and instance segmentation mean average precision (segm-AP) 34.2%; see https:440

//github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md.441

Default value performance. Figure 11 shows SASA’s performance with default parameters. For442

this challenging task, SASA achieves a slightly better performance than the hand-tuned SGM optimizer443

without any parameter tuning. However, SASA with default parameters takes longer to achieve444

comparable performance, because SASA decides to decay the learning rate later than the hand-tuned445

SGM. Notice that SASA only decreases the learning rate once and already surpasses the performance446

of the hand-tuned SGM. We believe that if the learning rate is decreased again, the performance can447

be further improved. However, when the training reaches the maximum iteration 200000, the training448

loss is still constantly decreasing, so the dynamics have not reached a stationary distribution. This449

prevents SASA from decreasing its learning rate. Meanwhile, the model starts to overfit at this stage,450

which suggests that we should either decrease the learning rate or stop the training. As mentioned451

in Section 5, a combination of stationary detection (SASA) and overfitting detection is a promising452

direction toward a fully automated optimizer.453
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Figure 10: Training loss, test accuracy, and learning rate schedule for SASA using di�erent values
of �, � and ⇣ around the default 0.2, 0.02 and 0.1. The model is the logistic regression trained on
MNIST. Top row: performance for fixed � = 0.2, ⇣ = 0.1, and � 2 {0.005, 0.01, 0.02, 0.04}. Middle
row: performance for fixed � = 0.02, ⇣ = 0.1, and � 2 {0.05, 0.1, 0.2}. Bottom row: performance
for fixed � = 0.2, � = 0.02, and ⇣ 2 {0.5, 0.2, 0.1}. Qualitatively, increasing � and increasing � both
cause the algorithm to drop sooner. The value of ⇣ does not influence the final performance, as
typically the learning rate automatically decays to the same level.

B Comparison with Yaida’s test454

The variance experiment in Figure 4 can be interpreted as showing that for a fixed testing frequency455

M , the statistical procedure (10) is more robust to changes in the noise level of the samples than the456

heuristic test (9). We essentially repeat this experiment in Figure 12, which shows the performance of457

the two testing methods (9) and (10) on a logistic regression model trained on MNIST. We used the458

same procedure as in all other logistic regression experiments, except with batch size one. We test the459

statistics every M = 100 iterations and plot the results of ten independent runs for each method, using460

a fixed M as in Figure 4. While the final training and test loss for the two methods are similar (92.7%461

±0.16 for SASA, 92.7% ±0.2 for (9)), the variance in the learning rate schedules for Yaida’s method462

is dramatically higher. On strongly convex problems, this may not cause poor performance, but as463

shown in Figure 4, it can cause dramatic results in more general settings. This experiment gives a464

further indication that when using a fixed test frequency M , explicitly accounting for the variance in465

z̄N , as in SASA, is critical for robust performance. Finally, Figure 13 shows a complementary result466

on CIFAR-10: even when the batch size is large (128), the statistical approach is less sensitive to467

using a small testing frequency M. While this e�ect is on a much smaller scale than the others, it468

indicates that Yaida’s heuristic (performing the test (9) once per epoch) is more sensitive than SASA469

to the choice of the testing frequency.470

Figure 4, Figure 12, and Figure 13 indicate that the statistical test is more robust to changes in noise471

and testing frequency than Yaida’s deterministic ratio test. However, Figure 13 indicates that this472

method can obtain similar (albeit less robust) performance on large deep learning datasets, and473

our practical results can be taken more generally as large-scale evidence that methods for detecting474

stationarity have good practical performance when used as adaptive optimizers. Still, our formulation475

recovers Yaida’s when � = 1, heuristics like "test once per epoch" are not always available—such476

as in an online training setting—so robustness to the test frequency M is desirable, and we have477
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Figure 11: Top: training loss, test accuracy, and learning rate schedule for SASA and SGM for
MaskRCNN training on COCO. Bottom: Evolution of the di�erent statistics for SASA, as in Figures
5 and 7. SASA uses its default parameters (�, �, ⇣) = (0.02, 0.2, 0.1). The SGM is scheduled to decay
the learning rate by 10 (⇣ = 0.1) twice, once at iteration 60000 and once at iteration 90000. SASA
takes more iterations (double) to reach a slightly better performance without any parameter tuning.

(a) (b) (c) (d)

Figure 12: Variance in learning rate schedule and training loss for the two tests (9) (Panels (a)-(b))
and (10) (Panels (c)-(d)) for a logistic regression model on MNIST, using batch size one and test
frequency M = 100 iterations. Ten independent runs are shown for each method. With the same
value of �, the variance in the learning rate schedule for Yaida’s method (9) is much higher.

demonstrated that SASA is less sensitive to noise in several regimes, such as small batch size and478

high test frequency. For these reasons we believe SASA will be more robust in practice, and we hope479

it leads to more research on using statistical tests in optimization.480

C Generalized Pflug condition and comparison with Yaida’s condition481

In this section, we provide a generalization of Pflug’s stationary condition to the case of SGM for482

quadratic functions. We also compare the two stationary conditions (Pflug’s and Yaida’s) and show483

that Yaida’s stationary condition works much better for practical machine learning problems.484

C.1 Derivation of the generalized Pflug stationary condition485

As in (Pflug, 1990; Mandt et al., 2017), the derivation is based on two assumptions:486

1. The quadratic objective assumption:487

F(x) = (1/2)xT Ax, (12)

where A is positive definite.488

2. The i.i.d. additive noise assumption:489

gk = rF(xk) + ⇠k, (13)

where ⇠k is independent of x
k , and for all k � 0 satisfies490

E
⇥
⇠k
⇤
= 0, E

⇥
⇠k(⇠k)T

⇤
= ⌃⇠ . (14)
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Figure 13: Test accuracy and learning rate schedule when using Yaida’s ratio test (9) (top row) and our
statistical test (10) (bottom row) with M = 10, � = 0.02, and with SASA using � = 0.2. The standard
deviation of both the learning rate drops and the best test set performance is higher for Yaida’s test:
3.2 epochs vs 2.9 epochs, and 0.17% vs 0.12%. The mean performance of the statistical test is also
marginally higher, 94.08% vs 93.84% test accuracy.

Mandt et al. (2017) observe that this noise assumption can hold approximately when ↵ is small and491

the dynamics of SGM are approaching stationarity around a local minimum.492

For the dynamics of SGM with constant ↵ and �, i.e., (2), the sequence {(xk, dk, gk)} is assumed to493

converge to a stationary distribution ⇡(x, d, g), as we defined in Section 2. We denote x’s covariance494

matrix under the stationary distribution as495

⌃x = lim
k!1

E
⇥
x
k(xk)T

⇤
. (15)

The following theorem characterizes the dependence of ⌃x on A, ↵ and �. It also derives an asymptotic496

expression of E⇡[hg, di] in terms of A, ↵ and �.497

Theorem 2. Suppose F(x) = (1/2)xT Ax, where A is positive definite with maximum eigenvalue L,498

and gk satisfies (13) and (14). If we choose ↵ 2 (0, 1/L) and � 2 [0, 1) in (2), then ⌃x defined in (15)499

exists. Moreover, we have500

A⌃x + ⌃x A = ↵⌃⇠ +O(↵2) (16)
and501

E⇡[hg, di] = �↵(1 � �)
2(1 + �) tr(A⌃⇠ ) +O(↵2). (17)

Theorem 2 states that when ↵ is small, we can approximate ⌃x by solving the linear equation502

A⌃x + ⌃x A = ⌃⇠ . Moreover, the variance tr(⌃x) decreases to zero as ↵! 0. It is well known that503

larger � often leads to faster transient convergence when SGM is far away from a local minimum.504

According to (16), it does not a�ect the covariance in steady state, especially for small ↵.505

Equation (17) implies that for small ↵, the vectors gk and d
k will eventually have negative correlation.506

Interestingly, their correlation is less negative for larger �.507
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Assuming ergodicity, E⇡[hg, di] can be evaluated by the history average508

E⇡

⇥
hgk, dki

⇤
⇡ 1

N

k+NX
i=k+1

hgi, dii, (18)

where N can be chosen to control the quality of estimation. If an online estimate of tr(A⌃⇠ ) is also509

available, then we can check if the relation established in (17) holds in a statistical sense, which serves510

as a test of stationarity.511

Since we do not assume any knowledge of A or ⌃⇠ , it can be hard to estimate tr(A⌃⇠ ) using simple512

statistics. To address this challenge, Pflug (1983) constructed a novel scheme that requires three513

stochastic gradients at each iteration. Specifically, at each iteration k, we first compute two stochastic514

gradients gk1 and gk2 of F at x
k , and we let r

k = (gk1 � gk2 )/2 (in a data-parallel training setting, gk1 and515

gk2 can be computed from separate processing units, and thus can be obtained without extra delay).516

Next, we let x̃
k = x

k + ↵r
k and compute another stochastic gradient g̃k of F at x̃

k . Then, it can be517

shown (Pflug, 1983) that518

E[hrk, g̃ki] = ↵
2

tr(A⌃⇠ ). (19)

We can thus obtain an online estimate of tr(A⌃⇠ ) using the running average of hrk, g̃ki in a similar519

way to (18).520

As suggested by Pflug (1983), a less wasteful use of the stochastic gradients is to define gk = (gk1+gk2 )/2521

and use it in (2). This averaging reduces the covariance of gk+1 and d
k+1 by a factor of 1/2, which522

together with (17) implies523

E⇡

⇥
hg, di

⇤
⇡ �↵(1 � �)

4(1 + �) tr(A⌃⇠ ), (20)

where we still use ⇡ to denote the new stationary condition. Combining (19) and (20), we conclude524

that for small ↵,525

E⇡

⇥
hg, di

⇤
⇡ � 1 � �

2(1 + �)E
⇥
hrk, g̃ki

⇤
(21)

holds if the dynamics (2) reach stationarity. Both sides of (21) can be estimated by the history average526

during the training, thanks to ergodicity.527

Unfortunately, evaluating this estimator requires 33% more training iterations than regular SGM due528

to the stochastic gradients used to compute the point x̃
k .529

C.2 Comparing stationary conditions530

Figure 14 evaluates the two stationary conditions (5) and (6) by training an L2-regularized logistic531

regression model on MNIST and logging the estimators for both sides of each relation. The top532

row shows that even when the number of iterations grows large, there is still non-negligible error in533

Pflug’s condition even though the function is strongly convex. Contrastingly, the statistics in Yaida’s534

relation, shown in the bottom row, quickly become almost indistinguishable, as predicted by (6) and535

(4). Together with the di�culty of estimating its right-hand-side, this inaccuracy makes the Pflug536

condition unattractive for quantitative applications such as ours, which require a precise relationship537

to hold. However, the qualitative intuition given by such quadratic stationary formulae has proven538

useful (Mandt et al., 2017).539

D Additional SASA discussion540

D.1 The missing step to derive the stationary condition (6)541

Assuming the existence of a stationary condition ⇡(d, x, g) for the SGM dynamics (2), Yaida (2018)542

showed543

E⇡[hx,rF(x)i] = ↵
2

1 + �
1 � �E⇡[hd, di]. (22)

Using history average to estimate the left hand side needs the full gradient of F, which is not available544

(or expensive to compute) during training. Instead, both Yaida (2018) and SASA use (6) in practice,545
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Figure 14: The two conditions (5) (top) and (6) (bottom) evaluated on a logistic regression model
trained on MNIST, with ↵ = 1.0. Left two columns: iteration 0-100; Right two columns: iteration
10000-10100. In the statistics plots, the red and black curves (dark) are the running estimates of the
left-hand and right-hand side of each condition, respectively. The light curves show the raw value
of each estimator at each iteration. Even when the number of iterations is very large, the statistics
suggested by (5) still do not match. On the other hand, the di�erence between the statistics in (6)
quickly converges to zero.

i.e.,546

E⇡[hx, gi] =
↵

2
1 + �
1 � �E⇡[hd, di], (23)

where the left hand side can be estimated with nearly no computational overhead. Here, we provide547

the missing step from (22) to (23).548

By the law of total probability, we have

E⇡[hx, gi] = E⇡ [E⇡[hx, gi |x, d]] = E⇡ [hx,E⇡[g |x, d]i] .
We denote the time-independent transition kernel from (xk, dk, gk) to (xk+1, dk+1, gk+1) in (2) as T.
Then since ⇡ is the stationary distribution, we have the pushforward measure of ⇡ under T is still ⇡,
i.e., T

]⇡ = ⇡. Then we have

E⇡[g |x, d] = E
T]⇡[g |x, d]

(⇤)
= E

T]⇡[g(x)|x, d] = rF(x),
where the definition of the transition kernel (2) is used in the step (*) and the unbiasedness of the549

stochastic gradient, see Eqn. (3), in the last step.550

D.2 Discussion on the multiple-test problem551

Although SASA performs sequential hypothesis testing, it does not seem to su�er from the issue of552

inflated false discovery rate McDonald (2009). That is, we do not observe that the test fires earlier553

than it “should” in our numerical experiments. From Figure 5, we can see that the statistic z̄N is either554

monotonically decreasing to 0 or first decreasing and then increasing to 0, leading to high positive555

correlation among the tests. This high correlation may prevent proportional inflated false discovery556

rates; see, e.g., Benjamini and Hochberg (1995); Blanchard and Roquain (2009); Lindquist and Mejia557

(2015).558
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