
Online-Within-Online Meta-Learning

Giulia Denevi1,2, Dimitris Stamos3, Carlo Ciliberto3,4 and Massimiliano Pontil1,3
1Istituto Italiano di Tecnologia (Italy), 2University of Genoa (Italy),

3University College of London (UK),4Imperial College of London (UK),
giulia.denevi@iit.it, c.ciliberto@imperial.ac.uk, {d.stamos.12,m.pontil}@ucl.ac.uk

Abstract

We study the problem of learning a series of tasks in a fully online Meta-Learning
setting. The goal is to exploit similarities among the tasks to incrementally adapt
an inner online algorithm in order to incur a low averaged cumulative error over
the tasks. We focus on a family of inner algorithms based on a parametrized
variant of online Mirror Descent. The inner algorithm is incrementally adapted
by an online Mirror Descent meta-algorithm using the corresponding within-task
minimum regularized empirical risk as the meta-loss. In order to keep the process
fully online, we approximate the meta-subgradients by the online inner algorithm.
An upper bound on the approximation error allows us to derive a cumulative
error bound for the proposed method. Our analysis can also be converted to the
statistical setting by online-to-batch arguments. We instantiate two examples of the
framework in which the meta-parameter is either a common bias vector or feature
map. Finally, preliminary numerical experiments confirm our theoretical findings.

1 Introduction

Humans can quickly adapt knowledge gained when learning past tasks, in order to solve new tasks
from just a handful of examples. In contrast, learning systems are still rather limited when it comes to
transfer knowledge over a sequence of learning problems. Overcoming this limitation can have a broad
impact in artificial intelligence, as it can save the expensive preparation of large training samples,
often humanly annotated, needed by current machine learning methods. As a result, Meta-Learning
is receiving increasing attention, both from applied [15, 32] and theoretical perspective [5, 40, 17].

Until very recently, Meta-Learning was mainly studied in the batch statistical setting, where data are
assumed to be independently sampled from some distribution and they are processed in one batch, see
[6, 23, 24, 25, 26, 29]. Only recently, a lot of interest raised in investigating more efficient methods,
combining ideas from Online Learning and Meta-Learning, see [1, 12, 13, 30, 3, 21, 16, 8, 11, 30]. In
this setting, which is sometimes referred to as Lifelong Learning, the tasks are observed sequentially
– via corresponding sets of training examples – and the broad goal is to exploit similarities across the
tasks to incrementally adapt an inner (within-task) algorithm to such a sequence. There are different
ways to deal with Meta-Learning in an online framework: the so-called Online-Within-Batch (OWB)
framework, where the tasks are processed online but the data within each task are processed in one
batch, see [1, 12, 13, 16, 8, 3, 21], or the so-called Online-Within-Online (OWO) framework, where
data are processed sequentially both within and across the tasks, see [1, 3, 21, 16, 11]. Previous work
mainly analyzed specific settings, see the technical discussion in App. A. The main goal of this work
is to propose an OWO Meta-Learning approach that can be adapted to a broad family of algorithms.

We consider a general class of inner algorithms based on primal-dual Online Learning [37, 33, 38, 36,
35]. In particular, we discuss in detail the case of online Mirror Descent on a regularized variant of the
empirical risk. The regularizer belongs to a general family of strongly convex functions parametrized
by a meta-parameter. The inner algorithm is adapted by a meta-algorithm, which also consists in
applying online Mirror Descent on a meta-objective given by the within-task minimum regularized

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

empirical risk. The interplay between the meta-algorithm and the inner algorithm plays a key role
in our analysis. The latter is used to compute a good approximation of the meta-subgradient which
is supplied to the former. A key novelty of our analysis is to show that, exploiting a closed form
expression of the error on the meta-subgradients, we can automatically derive a cumulative error
bound for the entire procedure. Our analysis holds also for more aggressive primal-dual online
updates and it can be adapted to the statistical setting by online-to-batch arguments.

Contributions. Our contribution is threefold. First, we derive an efficient and theoretically grounded
OWO Meta-Learning framework which is inspired by Multi-Task Learning (MTL). Our framework
applies to a wide class of within-task algorithms and tasks’ relationships. Second, we establish how
our analysis can be converted to the statistical setting. Finally, we show how our general analysis
can be directly applied to two important families of inner algorithms in which the meta-parameter is
either a bias vector or a feature map shared across the tasks.

Paper organization. We start by introducing in Sec. 2 our OWO Meta-Learning setting. In Sec. 3
we recall some background material from primal-dual Online Learning. In Sec. 4 we outline the
proposed method and we give a cumulative error bound for it. In Sec. 5 we show how the above
analysis can be used to derive guarantees for our method in the statistical setting. In Sec. 6 we specify
our framework to two important examples in which the tasks share a common bias vector or feature
map. Finally, in Sec. 7 we report preliminary experiments with our method and in Sec. 8 we draw
conclusions. Technical proofs are postponed to the appendix.

2 Setting

In this section we introduce the OWO Meta-Learning problem. We consider that the learner is facing
a sequence of online tasks. Corresponding to each task, there is an input space X , an output space
Y and a dataset Z = (zi)ni=1 = (xi, yi)ni=1 2 (X ⇥ Y)n, which is observed sequentially. Online
Learning aims to design an algorithm that makes predictions through time from past information.
More precisely, at each step i 2 {1, . . . , n}: (a) a datapoint zi = (xi, yi) is observed, (b) the
algorithm outputs a label ŷi, (c) the learner incurs the error `i(ŷi), where `i(·) = `(·, yi) for a loss
function `. To simplify our presentation, throughout we let X ✓ Rd, Y ✓ R and we consider
algorithms that perform linear predictions of the form ŷi = hxi, wii, where (wi)ni=1 is a sequence of
weight vectors updated by the algorithm and h·, ·i denotes the standard inner product in Rd. The goal
is to bound the cumulative error of the algorithm, i.e. Einner(Z) =

Pn
i=1 `i(hxi, wii), with respect

to (w.r.t.) the same quantity incurred by a vector ŵ 2 Rd fixed in hindsight, i.e.
Pn

i=1 `i(hxi, ŵi).

In the OWO Meta-Learning setting, we have a family of inner online algorithms identified by a
meta-parameter ✓ belonging to a prescribed set ⇥ and the goal is to adapt ✓ to a sequence of learning
tasks, in online fashion. Throughout this work, ⇥ will be a closed, convex, non-empty subset of
an Euclidean space M. The broad goal is to “transfer information” gained when learning previous
tasks, in order to help learning future tasks. For this purpose, we propose a Meta-Learning procedure,
acting across the tasks, which modifies the inner algorithm one task after another. More precisely,
we let T be the number of tasks and, for each task t 2 {1, . . . , T} we let Zt = (xt,i, yt,i)ni=1

1 be
the corresponding data sequence. At each time t: (a) the meta-learner incrementally receives a task
dataset Zt, (b) it runs the inner online algorithm with meta-parameter ✓t on Zt, returning the predictor
vectors (w✓t,i)

n
i=1, (c) it incrementally incurs the errors `t,i(hxt,i, w✓t,ii), where `t,i(·) = `(·, yt,i),

(d) the meta-parameter (and consequently, the inner algorithm) is updated in ✓t+1. Denoting by
Einner(Zt, ✓t) the cumulative error of the inner algorithm with meta-parameter ✓t on the dataset Zt,
the goal is to bound the error accumulated across the tasks, i.e.

Emeta

�
(Zt)

T
t=1

�
=

TX

t=1

Einner(Zt, ✓t) =
TX

t=1

nX

i=1

`t,i(hxt,i, w✓t,ii), (1)

w.r.t. the same quantity incurred by a sequence of tasks’ vectors (ŵt)Tt=1 fixed in hindsight, i.e.PT
t=1

Pn
i=1 `t,i(hxt,i, ŵti).

The setting we consider in the paper is inspired by previous work on Multi-Task Learning, such as
[2, 10, 18]. To describe it, we use extended real-valued functions and, for any data sequence Z and

1Throughout the paper we use the double subscript notation “t,i”, to denote the {outer, inner} task index.

2

meta-parameter ✓ 2 ⇥, we define the within-task minimum regularized empirical risk

LZ(✓) = min
w2Rd

RZ(w) + �f(w, ✓) RZ(w) =
1

n

nX

i=1

`i(hxi, wi), (2)

where � > 0 is a regularization parameter and f is an appropriate complexity term ensuring the
existence and the uniqueness of the above minimizer ŵ✓. Assuming the entire sequence (Zt)Tt=1
available in hindsight, introducing the notation Lt = LZt , many MTL methods read as follows

min
✓2M

TX

t=1

Lt(✓) + ⌘F (✓), (3)

where ⌘ > 0 is a meta-regularization parameter and F is an appropriate meta-regularizer ensuring
that the above minimum is attained. We stress that in our OWO Meta-Learning setting, the data
are received sequentially, both within and across the tasks. The above formulation inspires us to
take a within-task online algorithm that mimics well the (batch) objective in Eq. (2) and to define
as meta-objectives for the online meta-algorithm the functions (Lt)Tt=1. Obviously, in this setting,
the meta-objectives (and consequently their subgradients used by the meta-algorithm) are computed
only up to an approximation error, depending on the specific properties of the inner algorithm we are
using. We will show how to control and exploit this approximation error in the analysis.

In the sequel, for an Euclidean space V , we let �0(V) to be the set of proper, closed and convex
functions over V and, for any f 2 �0(V), we denote by Domf its domain (we refer to App. B and
[31] for notions on convex analysis). In this work, we make the following standard assumptions in
which we introduce two norms k · k✓ and |||·||| that will be specified in two applications below.
Assumption 1 (Loss and regularizer). Let `(·, y) be a convex and closed real-valued function for
any y 2 Y and let f 2 �0(Rd

⇥M) be such that, for any ✓ 2 ⇥, f(·, ✓) is 1-strongly convex w.r.t. a
norm k · k✓ over Rd, infw2Rd f(w, ✓) = 0 and, for any ✓ /2 ⇥, Domf(·, ✓) = ;.

Assumption 2 (Meta-regularizer). Let F be a closed and 1-strongly convex function w.r.t. a norm
|||·||| over M such that inf✓2M F (✓) = 0 and DomF = ⇥.

Notice that the norm w.r.t. which the function f(·, ✓) is assumed to be strongly convex may vary
with ✓. Moreover, under Asm. 1, DomLZ = ⇥ and, since LZ is defined as the partial minimum of a
function in �0(Rd

⇥M), LZ 2 �0(M). This property supports the choice of this function as the
meta-objective for our meta-algorithm. Finally, by Lemma 29 in App. B, Asm. 1 and Asm. 2 ensure
the existence and the uniqueness of the minimizers in Eq. (2) and Eq. (3).

We conclude this section by giving two examples included in the framework above. The first one
is inspired by the MTL variance regularizer in [14], while the second example, which can be easily
extended to more general MTL regularizers such as in [2, 10, 27, 28], relates to the MTL trace norm
regularizer. As we will see in the following, in the first example the tasks’ predictors are encouraged
to stay close to a common bias vector, in the second example they are encouraged to lie in the range
of a low-rank feature map. In order to describe these examples we require some additional notation.
We let k · k2, k · kF , k · kTr, k · k1, be the Euclidean, Frobenius, trace, and operator norm, respectively.
We also let “·†” be the pseudo-inverse, Tr(·) be the trace, Ran(·) be the range and Sd (resp. Sd+) be
the set of symmetric (resp. positive semi-definite) matrices in Rd⇥d. Finally, ◆S denotes the indicator
function of the set S , taking value 0 when the argument belongs to S and +1 otherwise.
Example 1 (Bias). We choose M = ⇥ = Rd, F (·) = 1

2k · k
2
2, satisfying Asm. 2 with |||·||| = k · k2,

and f(·, ✓) = 1
2k ·�✓k22, satisfying Asm. 1 with k · k✓ = k · k2 for every ✓ 2 Rd.

Example 2 (Feature Map). We choose M = Sd and ⇥ = S, where S = {✓ 2 Sd+ : Tr(✓) 1}.
For a fixed ✓0 2 S, we set F (·) = 1

2k · �✓0k2F + ◆S(·), satisfying Asm. 2 with |||·||| = k · kF , and
f(·, ✓) = 1

2 h·, ✓
†
·i+ ◆Ran(✓)(·) + ◆S(✓), satisfying Asm. 1 with k · k✓ =

p
h·, ✓†·i for any ✓ 2 S .

We will return to these examples in Sec. 6, specializing our method and our analysis to these settings.

3 Preliminaries: primal-dual Online Learning

Our OWO Meta-Learning method consists in the application of two nested primal-dual online
algorithms, one operating within the tasks and another across the tasks. In particular, even though our

3

Algorithm 1 Primal-dual online algorithm – online Mirror Descent

Input (gm)Mm=1, (Am)Mm=1, (cm)Mm=1, (✏m)Mm=1, r as described in the text
Initialization ↵1 = (), v1 = rr⇤(0) 2 Dom r

For m = 1 to M

Receive gm, Am, cm+1, ✏m
Suffer gm(Amvm) and compute ↵0

m 2 @✏mgm(Amvm)

Update ↵m+1 = (↵m,↵0
m)

Define vm+1 = rr⇤
�
� 1/cm+1

Pm
j=1 A

⇤
j↵m+1,j

�
2 Dom r

Return (↵m)M+1
m=1 , (vm)M+1

m=1

analysis holds also for more aggressive schemes, in this work, we consider online Mirror Descent
algorithm. In this section we briefly recall some material from the primal-dual interpretation of this
algorithm that will be used in our subsequent analysis. The material of this section is an adaptation
from [37, 33, 38, 36, 35]; we refer to App. C for a more detailed presentation.

Online Mirror Descent algorithm on a (primal) problem can be derived from the following primal-
dual framework in which we introduce an appropriate dual algorithm. Specifically, at each iteration
m 2 {1, . . . ,M}, we consider the following instantaneous primal optimization problem

P̂m+1 = inf
v2V

Pm+1(v) Pm+1(v) =
mX

j=1

gj(Ajv) + cmr(v) (4)

where V is an Euclidean space, cm > 0, r 2 �0(V) is a 1-strongly convex function w.r.t. a norm
k · k over V (with dual norm k · k⇤) such that infv2V r(v) = 0, for any j 2 {1, . . . ,M}, letting Vj an
Euclidean space, gj 2 �0(Vj) and Aj : V ! Vj is a linear operator with adjoint A⇤

j . As explained in
App. C, the corresponding dual problem is given by

D̂m+1 = inf
↵2V1⇥···⇥Vm

Dm+1(↵) Dm+1(↵) =
mX

j=1

g⇤j (↵j) + cmr⇤
⇣
�

1

cm

mX

j=1

A⇤
j↵j

⌘
, (5)

where g⇤j and r⇤ are respectively the conjugate functions of gj and r. After this, we define the dual
scheme in which the dual variable ↵m+1 is updated by a greedy coordinate descent approach on the
dual, setting ↵m+1 = (↵m,↵0

m), where ↵0
m 2 @✏mgm(Amvm) is an ✏m-subgradient of gm at Amvm

and vm is the current primal iteration. The primal variable is then updated from the dual one by a
variant of the Karush–Kuhn–Tucker (KKT) conditions, providing its belonging to Dom r, see Alg. 1.
In this paper, following [36], we refer to such a scheme as lazy online Mirror Descent. However, the
term linearized Follow-The-Regularized-Leader is historically more accurate. We recall also that
such a scheme includes many well-known algorithms, when one properly specifies the complexity
term r. The behavior of Alg. 1 is analyzed in the next result which will be a key tool for our analysis.
Theorem 1 (Dual optimality gap for Alg. 1). Let (vm)Mm=1 be the primal iterates returned by Alg. 1
when applied to the generic problem in Eq. (4) and let �Dual = DM+1(↵M+1) � D̂M+1 be the
corresponding (non-negative) dual optimality gap at the last dual iterate ↵M+1 of the algorithm.

1. If, for any m 2 {1, . . . ,M}, cm+1 � cm, then,

�Dual �

MX

m=1

gm(Amvm) + P̂M+1 +
1

2

MX

m=1

1

cm

��A⇤
m↵0

m

��2
⇤ +

MX

m=1

✏m.

2. If, for any m 2 {1, . . . ,M}, cm =
Pm

j=1 �j for some �j > 0, then,

�Dual �

MX

m=1

n
gm(Amvm) + �mr(vm)

o
+ P̂M+1 +

1

2

MX

m=1

1

cm

��A⇤
m↵0

m

��2
⇤ +

MX

m=1

✏m.

The first (resp. second) inequality in Thm. 1 links the dual optimality gap of the last dual iterate
generated by Alg. 1, with the (resp. regularized) cumulative error of the corresponding primal iterates.
Note that this result can be readily used to bound the cumulative error (resp. its regularized version)
of Alg. 1 by the batch regularized comparative P̂M+1 and additional terms. In the following section,
we will make use of the above theorem in order to analyze our OWO Meta-Learning method.

4

Algorithm 2 Within-task algorithm

Input � > 0, ✓ 2 ⇥, Z = (zi)
n
i=1

Initialization s✓,1 = (), w✓,1 = rf(·, ✓)⇤(0)
For i = 1 to n

Receive the datapoint zi = (xi, yi)

Compute s0✓,i 2 @`i(hxi, w✓,ii) ✓ R
Define (s✓,i+1)i = s0✓,i, �i = �(i+ 1)

Update w✓,i+1=rf(·, ✓)⇤
�
�1/�i

Pi
j=1 xjs

0
✓,j

�

Return (w✓,i)
n+1
i=1 , w̄✓ =

1
n

nX

i=1

w✓,i, s✓,n+1

Algorithm 3 Meta-algorithm

Input ⌘ > 0, (Zt)
T
t=1

Initialization ✓1 = rF ⇤(0)

For t = 1 to T

Receive incrementally the dataset Zt

Run Alg. 2 with ✓t over Zt

Compute s✓t,n+1

Compute r0
✓t as in Prop. 3 using s✓t,n+1

Update ✓t+1 = rF ⇤�� 1/⌘
Pt

j=1 r
0
✓j

�

Return (✓t)
T+1
t=1 , ✓̄ =

1
T

TX

t=1

✓t

4 Method

In this section we present the proposed OWO Meta-Learning method and we establish a (regularized)
cumulative error bound for it. As anticipated in Sec. 2, the method consists in the application of
Alg. 1 both to the (non-normalized) within-task problem in Eq. (2) and to the across-tasks problem in
Eq. (3), corresponding, as we will show in the following, to Alg. 2 and Alg. 3, respectively. In order
to analyze our method, we start from studying the behavior of the inner Alg. 2.
Proposition 2 (Dual optimality gap for the inner Alg. 2). Let Asm. 1 hold. Then, Alg. 2 coincides with
Alg. 1 applied to the non-normalized within-task problem in Eq. (2). As a consequence, introducing
the regularized cumulative error of the iterates generated by Alg. 2,

E
reg
inner(Z, ✓) =

nX

i=1

n
`i(hxi, w✓,ii) + �f(w✓,i, ✓)

o
, (6)

where w✓,i 2 Domf(·, ✓) for any i 2 {1, . . . , n}, the following upper bound for the associated dual
optimality gap �Dual introduced in Thm. 1 holds

�Dual ✏✓ ✏✓ = �

⇣
E
reg
inner(Z, ✓)� nLZ(✓)

⌘
+

1

2�

nX

i=1

1

i

��xis
0
✓,i

��2
✓,⇤. (7)

Proof. The inner Alg. 2 coincides with Alg. 1 applied to the non-normalized within-task problem in
Eq. (2), once one makes the identifications ↵0

m s0✓,i for the (exact) subgradients and realizes that
the non-normalized within-task problem in Eq. (2) is of the form in Eq. (4) with
m M, j i, M n, v w, V Rd, gj `i, Aj x>

i , cm n�, r(·) f(·, ✓).

Now, the bound in the statement directly derives from the second point of Thm. 1.

Since �Dual � 0, by moving the terms and normalizing by the number of points n, the above
result tells us that, when the terms kxis0✓,ik

2
✓,⇤ are bounded, for an appropriate choice of �, the inner

algorithm attempts to mimic the function LZ in Eq. (2), as the number of points n increases. The
method we propose in this work relies on the application of Alg. 1 also to the meta-problem in
Eq. (3) as the tasks are sequentially observed, using the functions (Lt)Tt=1 as meta-objectives. A key
difficulty here is that the meta-objective is defined via the inner batch problem in Eq. (2), hence it is
not available exactly but it is only approximately approached by the within-task online algorithm.
From a practical point of view, this means that in this case, differently from the inner algorithm, the
resulting meta-algorithm has to deal with an error on the meta-subgradients at each iteration. Our
next result describes how, leveraging on the dual optimality gap for the inner Alg. 2, we can compute
an ✏-subgradient of the meta-objective, where ✏ is (up to normalization) the value stated in Prop. 2.
This will allow us to develop an efficient method which is computationally appealing and fully online.
Proposition 3 (Computation of an ✏-subgradient of LZ). Let Asm. 1 hold and let s✓,n+1 be the output
of Alg. 2 with ✓ 2 ⇥ over the dataset Z. Let r✓ 2 @{�Dn+1(s✓,n+1, ·)}(✓), where

Dn+1(s, ✓) =
nX

i=1

`⇤i (si) + �nf⇤(·, ✓)
⇣
�

1

�n

nX

i=1

xisi
⌘

s 2 Rn (8)

5

is the dual of the non-normalized Eq. (2). Then, r0
✓ = r✓/n 2 @✏✓/nLZ(✓), with ✏✓ as in Prop. 2.

The proof of the above statement is reported in App. D. It is based on rewriting the meta-objective
as LZ(✓) = 1/nmaxs2Rn{�Dn+1(s, ✓)} (by strong duality, see Lemma 34 in App. D) and it
essentially exploits Prop. 2, according to which, the last dual iteration s✓,n+1 returned by Alg. 2 is an
✏✓-maximizer of the dual objective �Dn+1(·, ✓). We remark that the procedure described above to
compute an ✏-subgradient has been already used in our work [11] for the statistical setting in Ex. 1.
Here, with a different proof technique, we show that it can be extended also to more general inner
regularizers. Leveraging on the form of the error on the meta-subgradients in Prop. 3, we now show
how we can automatically deduce a (regularized) cumulative error bound for the entire procedure.
Theorem 4 (Cumulative error bound). Let Asm. 1 and Asm. 2 hold. Then, Alg. 3 coincides with
Alg. 1 applied to the outer-tasks problem in Eq. (3). As a consequence, introducing the regularized
cumulative error for the iterates generated by the combination of Alg. 2 and Alg. 3,

E
reg
meta

�
(Zt)

T
t=1

�
=

TX

t=1

E
reg
inner(Zt, ✓t) =

TX

t=1

nX

i=1

n
`t,i(hxt,i, w✓t,ii) + �f(w✓t,i, ✓t)

o
, (9)

where ✓t 2 ⇥ for any t 2 {1, . . . , T}, for any sequence of vectors (ŵt)Tt=1 in Rd and any ✓ 2 ⇥
such that f(ŵt, ✓) < +1 for any t 2 {1, . . . , T}, the following upper bound holds

E
reg
meta

�
(Zt)

T
t=1

�
 nT

1

T

TX

t=1

RZt(ŵt) +
�

T

TX

t=1

f(ŵt, ✓) +
1

2�nT

TX

t=1

nX

i=1

1

i

��xt,is
0
✓t,i

��2
✓t,⇤

+
⌘F (✓)

T
+

1

2⌘T

TX

t=1

������r0
✓t

������2
⇤

!
.

Proof. The meta-algorithm in Alg. 3 coincides with Alg. 1 applied to the outer-tasks problem in
Eq. (3), once one makes the identifications ↵0

m r
0
✓t

for the (approximated) subgradients and
realizes that the outer-tasks problem in Eq. (3) is of the form in Eq. (4) with

m M, j t, M T, v ✓, V ⇥, gj Lt, Aj I, cm ⌘, r F.

As a consequence, denoting by �Dual the associated dual optimality gap introduced in Thm. 1,
specializing the first point of Thm. 1 to this setting and exploiting the fact �Dual � 0, we get

0 �

TX

t=1

Lt(✓t) + min
✓2⇥

n TX

t=1

Lt(✓) + ⌘F (✓)
o
+

1

2⌘

TX

t=1

������r0
✓t

������2
⇤ +

1

n

TX

t=1

✏✓t . (10)

Substituting the closed form of ✏✓t in Prop. 2 (applied to the task t) into Eq. (10), one immediately
observes that the term

PT
t=1 Lt(✓t) erases. The desired statement then directly follows by rearranging

the remaining terms, using the definition of (Lt)Tt=1 and multiplying by the number of points n.

When the inputs are bounded and both the inner loss and meta-objective are Lipschitz w.r.t. the
associated norms (as we will see for Ex. 1), the terms

������r0
✓t

������2
⇤ and

��xt,is0✓t,i
��2
✓t,⇤

can be upper
bounded by a constant. In this case, for an appropriate choice of � and ⌘, we recover a reasonable
rate Õ(1/

p
n) +O(1/

p
T). However, when the bounds on

������r0
✓t

������2
⇤ hide a dependency w.r.t. � or n

(as we will see for Ex. 2), the bound must be accordingly analyzed.

5 Adaptation to the statistical setting

In this section we present guarantees for our method in the statistical setting. Following the framework
outlined in [6, 23, 26] we assume that, for any t 2 {1, . . . , T}, the within-task dataset Zt is an
independently identically distributed (i.i.d.) sample from a distribution (task) µt, and in turn the
tasks (µt)Tt=1 are an i.i.d. sample from a meta-distribution ⇢. The estimator we consider here is
w̄✓̄ = 1

n

Pn
i=1 w✓,i, the average of the iterates resulting from applying Alg. 2 to a test dataset Z

with meta-parameter ✓̄ = 1
T

PT
t=1 ✓t, the average of the meta-parameters returned by our online

meta-algorithm in Alg. 3 applied to the training datasets (Zt)Tt=1. We wish to study the performance
of such an estimator in expectation w.r.t. the tasks sampled from the environment ⇢.

6

Formally, for any µ ⇠ ⇢, we require that the corresponding true risk Rµ(w) = E(x,y)⇠µ`(hx,wi, y)
admits minimizers over the entire space Rd and we denote by wµ the minimum norm one. With these
ingredients, we introduce the oracle E⇢ = Eµ⇠⇢ Rµ(wµ), representing the expected minimum error
over the environment of tasks, and, introducing the transfer risk of the estimator w̄✓̄:

Estat(w̄✓̄) = Eµ⇠⇢ EZ⇠µn Rµ(w̄✓̄(Z)), (11)
we give a bound on it w.r.t. the oracle E⇢. This is described in the following theorem.
Theorem 5 (Transfer risk bound). Let the same assumptions in Thm. 4 hold in the i.i.d. statistical
setting. Then, introducing the regularized transfer risk of the average w̄✓̄ of the iterates resulting
from the combination of Alg. 2 and Alg. 3,

E
reg
stat(w̄✓̄) = Eµ⇠⇢ EZ⇠µn

h
Rµ(w̄✓̄(Z)) + �f(w̄✓̄(Z), ✓̄)

i
,

for any ✓ 2 ⇥ such that Eµ⇠⇢f(wµ, ✓) < +1, the following upper bound holds in expectation w.r.t.
the sampling of the datasets (Zt)Tt=1

E E
reg
stat(w̄✓̄) E⇢ + � Eµ⇠⇢f(wµ, ✓) +

1

2�nT
E

TX

t=1

nX

i=1

1

i

��xt,is
0
✓t,i

��2
✓t,⇤

+
⌘F (✓)

T
+

1

2⌘T
E

TX

t=1

������r0
✓t

������2
⇤ + E Eµ⇠⇢ EZ⇠µn

1

2�n

nX

i=1

1

i

��xis
0
✓̄,i

��2
✓̄,⇤.

The proof of the statement above is reported in App. E. It exploits the regularized cumulative error
bound given in Thm. 4 for our Meta-Learning procedure and two nested online-to-batch conversion
steps [9, 22], one within-task and one across-tasks. The bound above is composed by the expectation
of the terms comparing in Thm. 4 plus an additional term. Such a term comes out from the online-
to-batch conversion and, as we will see in the sequel, it does not affect the general behavior of the
bound. Finally, we observe that, differently from [1, Thm. 6.1] and [3, Thm. 3.3], the theorem
above holds for the average of the meta-parameters (✓t)Tt=1 returned by our meta-algorithm (not
for a meta-parameter randomly sampled from the pool) and, consequently, it does not require their
memorization or the introduction of additional randomization to the process. In the following section
we will show that specializing Thm. 4 and Thm. 5 to Ex. 1 and Ex. 2, we will get meaningful bounds.

6 Examples

In this section we specify our framework to Ex. 1 and Ex. 2 outlined at the end of Sec. 2. In order
to do this, we require the following assumption, which is for instance satisfied by the absolute loss
`(ŷ, y) =

��ŷ � y
�� and the hinge loss `(ŷ, y) = max

�
0, 1� yŷ

, where y, ŷ 2 Y .

Assumption 3 (Lipschitz Loss). Let `(·, y) be L-Lipschitz for any y 2 Y .

Below, for any task t 2 {1, . . . , T}, we let the input covariance matrices Ct =
1
n

Pn
i=1 xt,ix>

t,i, Ĉt =Pn
i=1

1
i xt,ix>

t,i, Ctot = 1
T

PT
t=1 Ct and Ĉtot = 1

T

PT
t=1 Ĉt. We also use the notation kCtot

k1,a =
1
T

PT
t=1 kCtk

a
1 with a = 1, 2 and, in the statistical setting, we let C⇢ = Eµ⇠⇢ E(x,y)⇠µxx

>.

Bias. In App. G we report the adaptation of our method in Alg. 2 and Alg. 3 (cf. Alg. 5 and Alg. 6)
and we specify Thm. 4 and Thm. 5 (cf. Cor. 40 and Cor. 42) to Ex. 1. In such a case, the resulting
inner algorithm coincides with online Subgradient Descent on the regularized empirical risk and,
similarly, the resulting meta-algorithm coincides with online Subgradient Descent (with approximated
subgradients) on the meta-objectives (Lt)Tt=1. We thus recover the method in [11] with a slightly
different choice of the inner algorithm step size. Our results (see App. G.4.2) are in line with [11],
where we present the same bound in Cor. 42 with slightly worse constants.

Feature map. In App. H.1 we report the adaptation of our method in Alg. 2 and Alg. 3 (cf. Alg. 7 and
Alg. 8) to Ex. 2. In this case, the resulting inner algorithm coincides with a pre-conditioned variant
of online Subgradient Descent on the regularized empirical risk and the resulting meta-algorithm
coincides with a lazy variant of online Subgradient Descent (with approximate subgradients) on the
meta-objectives (Lt)Tt=1, projected on the set S . The meta-algorithm we retrieve is a slightly different
version of the algorithm we propose in [12] for an OWB statistical framework.

Our next result specifies the cumulative error bound in Thm. 4 to Ex. 2. The proof is in App. H.2.

7

Corollary 6 (Cumulative error bound, feature map). Let Asm. 3 hold, consider the setting in Thm. 4
applied to Ex. 2 and let Ĉtot

✓1:T
= 1

T

PT
t=1 ✓tĈt. Then, for any sequence of vectors (ŵt)Tt=1 in Rd,

introducing B̂ = 1
T

PT
t=1 ŵtŵ>

t , for any ✓ 2 S such that Ran(B̂) ✓ Ran(✓), the following bound
holds for our method with an appropriate choice of hyper-parameters

E
reg
meta

�
(Zt)

T
t=1

�
 nT

1

T

TX

t=1

RZt(ŵt) + L

vuutTr(✓†B̂)

Tr(Ĉtot

✓1:T
)

n
+ k✓ � ✓0kF

r
kCtotk1,2

T

!!
.

The next result specifies the transfer risk bound in Thm. 5 to Ex. 2. The proof is in App. H.3.
Corollary 7 (Transfer risk bound, feature map). Let Asm. 3 hold and consider the setting in Thm. 5
applied to Ex. 2. Then, in expectation w.r.t. the sampling of the datasets (Zt)Tt=1, introducing
B⇢ = Eµ⇠⇢wµw>

µ , for any ✓ 2 S such that Ran(B⇢) ✓ Ran(✓), the following bound holds for our
method with an appropriate choice of hyper-parameters

E E
reg
stat(w̄✓̄) E⇢ + L

vuutTr(✓†B⇢)

2
�
log(n) + 1

�
Tr(E ✓̄C⇢)

n
+ k✓ � ✓0kF

r
E kCtotk1,2

T

!
.

We now analyze the statistical setting. Following [12, 26, 25] we study whether, as the number of
tasks grows, our method mimics the performance of the inner algorithm with the best feature map in
hindsight (oracle, see App. H.4.1) for any task. We note that, once fixed in an appropriate way the
meta-parameter ✓ in the statement (hence, the hyper-parameters), the above bound in Cor. 7 becomes
comparable to the bound for the best feature map in hindsight, see the discussion in App. H.4.2.
Hence, we recover the same conclusion: there is an advantage in using the feature map found by our
Meta-Learning method w.r.t. solving each task independently when kC⇢k1 is small (the inputs are
high-dimensional, for instance) and B⇢ is low-rank (the tasks share a low dimensional representation).
In addition, note that the bound in Cor. 7 converges, as the number of tasks grow, to the oracle at a
rate of O(T�1/4), whereas the corresponding bounds for the bias example (cf. Cor. 40 and Cor. 42 in
App. G) yield the faster O(T�1/2) rate, suggesting that feature learning is a more difficult problem
than bias learning. Regarding the non-statistical setting, the bound in Cor. 6 is less clear to interpret
because of the presence of the modified version of the inputs’ covariance matrix Ĉtot

✓1:T
. Future work

may be devoted to investigate this point, which could be either an artifact of our analysis or due to
some intrinsic characteristics of the problem we are considering.

7 Experiments

We present preliminary experiments with our OWO Meta-Learning method (ONL-ONL)2 in the
statistical setting of Ex. 2. In all experiments, the hyper-parameters � and ⌘ were chosen by a
meta-validation procedure (see App. I for more details) and we fixed ✓0 = I/d for the meta-algorithm
in Alg. 8. We compared ONL-ONL to the modified batch-online (BAT-ONL) variant, where the
meta-subgradients in the meta-training phase are computed with higher accuracy by a convex solver
(such as CVX), to Independent-Task Learning (ITL), i.e. running the inner Alg. 7 with the feature
map ✓ = I/d for each task, and, in the synthetic data experiment, to the Oracle, i.e. running the inner
Alg. 7 with the best feature map in hindsight for each task, see App. H.4.1.

Synthetic data. We considered the regression setting with the absolute loss function. We generated
Ttot = 3600 tasks. For each task, the corresponding dataset (xi, yi)

ntot
i=1 of ntot = 80 points was

generated according to the linear equation y = hx,wµi+ ✏, with x sampled uniformly on the unit
sphere in Rd with d = 20 and ✏ sampled from a Gaussian distribution, ✏ ⇠ G(0, 0.2). The tasks’
predictors wµ were generated as wµ = Pw̃µ with the components of w̃µ 2 Rd/5 sampled from
G(0, 1) and then w̃µ normalized to have unit norm, with P 2 Rd⇥d/5 a matrix with orthonormal
columns. In this setting, the operator norm of the inputs’ covariance matrix C⇢ is small (equal to
1/d) and the weight vectors’ covariance matrix B⇢ is low-rank, a favorable setting for our method,
according to Cor. 7. Looking at the results in Fig. 1 (Left), we can state that, in this setting, our method
outperforms ITL and it tends to the Oracle as the number of training tasks increases. Moreover, the

2The code is available at https://github.com/dstamos/Adversarial-LTL

8

https://github.com/dstamos/Adversarial-LTL

Figure 1: Synthetic data (Left) and Movielens-100k dataset (Right). Performance of different methods as the
number of training tasks increases. The results are averaged over 10 runs/splits of the data.

Figure 2: Mini-Wiki dataset (Left) and Jester-1 dataset (Right). Performance of different methods as the number
of training tasks increases. The results are averaged over 10 splits of the data.

performance of ONL-ONL and BAT-ONL are comparable, suggesting that our approximation of the
meta-subgradients is an effective way to keep the entire process fully online.

Real data. We further validated the proposed method on three real datasets: 1) the Movielens-100k
dataset3, containing the ratings of different users to different movies 2) the Mini-Wiki dataset from
[3], containing sentences from Wikipedia pages and 3) the Jester-1 dataset4, containing the ratings of
different users to different jokes. For the Movielens-100k and the Jester-1 datasets we considered each
user as a task and each movie/joke as a point. Specifically, we casted each task as a regression problem
where the labels are the ratings of the users and the raw features are simply the index of the movie/joke
(i.e. a matrix completion setting where the input dimension d coincides with the number of points).
For the Mini-Wiki dataset we casted each task as a multi-class classification problem where the labels
are the Wikipedia pages and the features are vectors with dimension d = 50. After processing the
data, we ended with a total number of Ttot = 939, 813, 5700 tasks and ntot = 939, 128, 100 points
per task for the Movielens-100k, the Mini-Wiki and the Jester-1 datasets, respectively. In the above
formulation of the problem for the Movielens-100k and the Jester-1 datasets, it is possible to show
that, the ITL algorithm is not able to predict any rate for the films/jokes without observed rates. For
this reason, in order to evaluate the performance of the Meta-Learning methods ONL-ONL and
BAT-ONL, we decided to introduce a more challenging method for this particular formulation of the
problem in which, for the films/jokes without any observed rate, we predicted the rate coinciding
with the average of the rates of all the observed users, at the end of the entire sequence of tasks. We
denoted this method as BAT. In Fig. 1 (Right) and Fig. 2 we report the performance of the methods by
using the absolute loss for the Movielens-100k and the Jester-1 datastes and the multi-class hinge loss
for the Mini-Wiki dataset. The results we got are consistent with the synthetic experiments above,
showing the effectiveness of our method also in real-life scenarios. We note also that the online
Meta-Learning methods outperform the BAT method when the number of training tasks increases.

8 Conclusion

We presented a fully online Meta-Learning method stemming from primal-dual Online Learning. Our
method can be adapted to a wide class of learning algorithms and it covers various types of tasks’
relatedness. By means of a new analysis technique we derived a cumulative error bound for our
method based on which it is also possible to obtain guarantees in the statistical setting. We illustrated
our framework with two important examples, the bias and the feature learning, improving upon
state-of-the-art results. To conclude, we believe that the generality of our framework and our method
of proof could be a valuable starting point for future theoretical investigations of Meta-Learning.

3https://grouplens.org/datasets/movielens/
4http://goldberg.berkeley.edu/jester-data/

9

