A Background

A.1 Convex and 2-Order Differentiable Assumptions

In Section 3.1, we use an assumption that the local minima are convex and 2-order differentiable to
derive our generalization bound. This assumption has been primarily proved by empirical works (see
fig. 3 which is originally presented in a recent work by [18, p. 1, figs. 1(a) and 1(b) and p. 6, figs.
4(a) and 4(b)]).

A

(a) ResNet-56 with skips (b) DenseNet (112 layers) with
skips

Figure 3: The risk surfaces with/without skips ([18]).

A.2 The PAC-Bayesian Framework

The PAC-Bayesian framework dates back to works by [24, 25]. In the PAC-Bayesian view, the
hypothesis function learned by a stochastic machine learning algorithm is drawn randomly (but still
under several “laws”) from the hypothesis class. The generalization capability of the algorithm has
a negative correlation with the distance (usually measured by Kullback-Leibler (KL) divergence)
between the distribution of the output hypothesis and the priori (usually a Gaussian distribution
or uniform distribution). This result gives a trade-off between minimising the empirical risk and
exploring further areas of the hypothesis space from the initial (priori).

Suppose the prior distribution over the parameter space O is P. Let () is the distribution on the
parameter space © expressing the learned hypothesis function. We then define the expected risk with
respect to the distribution (@ is as follows

R(Q) = EgqR(6).
Similarly, the empirical risk with respect to the distribution () is defined as
R(Q) = EoqR(0).

Then, a classic result uniformly bounding the expected risk R(Q) in terms of the empirical risk 7@(@)
and the KL divergence D(Q)|| P) is as follows.

Lemma 1 (see [24], Theorem 1). For any positive real § € (0, 1), with probability at least 1 — §
over a sample of size N, we have the following inequality for all distributions Q:

. D(Q||P) +log +1log N +2
R(Q) <R(Q) + | 2L b8 : (20)
2N -1
where D(Q||P) is the KL divergence between the distributions () and P and is defined as,
Q)
D P)=Eyp.qg (! . 21
(Q1P) = Eong (105 29 e

B Proofs

To obtain the generalization bound, we follow an emerging and promising path of using a stochastic
differential equation to model the iterative updates of SGD (see, e.g., [7, 23, 26]). It is indicated that
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the update equation of SGD can be translated as Ornstein-Uhlenbeck process [33] under appropriate
assumptions. Ornstein-Uhlenbeck process has an analytic stationary distribution, with which we can
express the distribution of the weights of the output hypothesis function. By exploiting the stationary
distribution, we further obtain a generalization bound via the stationary distribution by employing
the PAC-Bayesian framework which presents a negative correlation between the generalization of a
stochastic algorithm and the distance between the distribution of the output hypothesis and the prior
distribution on the hypothesis space [24, 25].

To avoid technicalities, the measurability/integrability issues are ignored throughout this paper.
Moreover, Fubini’s theorem is assumed to be applicable for any integration with respect to multiple
variables, that the order of integrations is exchangeable. Also, we assume the stable (stationary)
solutions of all stochastic differential equations involved exit and are unique.

B.1 Proof of Theorem 1

Lemma 2 (cf. [23], pp. 27-18, Appendix B). Under the 2-order differentiable assumption (eq. 14),
the Ornstein-Uhlenbeck process (eq. 13)’s stationary distribution,

1
q(0) = M exp {—29T2_19} , (22)
has the following property,
AY £ YA = ‘—;0. (23)

This lemma is from [23]. Here, we recall the proof to make this paper complete.

Proof. Form a result in Ornstein-Uhlenbeck process [8], we know that the parameter 6 has the
following analytic solution,

t
G(t):H(O)e_At+1/|77?‘ / e~ A=) Baw (1), (24)
0

where W (¢') is a white noise and follows A/ (0, I). From eq. (22), we know that
Y =Egq [00"]. (25)
Therefore, we have the following equation,
t
AL +¥A :% / A=At Ce=All=to) g/

n t

Jri
1S /-

t
|g|/ %AefA(tftg)CefA(tfto)

o= Alt—to) (1= Alt—to) g4/ A

Ul
=—C. 26

The proof is completed. O

Proof of Theorem 1. In PAC-Bayesian framework (Lemma 1), an essential part is the KL divergence
between the distribution of the learned hypothesis and the priori on the hypothesis space. The prior
distribution can be interpreted as the distribution of the initial parameters, which are usually settled
according to Gaussian distributions or uniform distributions.> Here, we use a standard Gaussian

3Usually, when there is no confident prior knowledge of the latent model parameters, the priori should be
set as distributions with no information, such as Gaussian distributions or uniform distributions. This setting
comes from two considerations: (1) Once the algorithms based on the Bayesian statistics can converge, after
long enough time and with big enough data, the algorithms can always converge to the stationary distributions.
This is guaranteed by the assumption that the stationary solution of the latent stochastic differential equation
exists and is unique; (2) Setting priori should be very careful, as we can not assume we have any knowledge of
the target hypothesis function before we have started training the model.

12



distribution NV(0, I) as the priori. Suppose the densities of the stationary distribution ) and the prior
distribution P are respectively p(6) and ¢(6) in terms of the parameter 6 as the following equations,

1 1
) = ———ex —GTIO}, 27
p(0) T doi () p{ 5 (27)
6) 1 e { laTzle} (28)
T e—— X —_— s
1 27 det(X) P12
where ep. (28) comes from eq. (22) by calculating the normalizer M.
Therefore,
Q(9)>
log | —=
¢ (p<0>
2 I
=log M exp {IHTIH — 19T2_10}
27 det(X) 2 2
1 1 1
=—log|—= ) +=(0"16-0"2714). 2
9 %8 <det(2)) 5 ) 29)

Applying eq. (29) to eq. (21), we can calculate the KL divergence between the distributions ) and P
(we assume O = R?):

D(QI|P)

e
(2

/ v (a

(9T19 e 9)} q(6)do

1
+ = / 0" 10p(0)do — = 0" x"10q(0)do
2 0cO 2

RISI

2

d
1 1 1 1 _
== log ( ) + ~Egno,5)0 ' 160 — §E9~N(072)9T2 g
1
) + 5tr(z —1. (30)

From eq. (23), we have that

AY + YA = ‘Z,|c G1)
Therefore,
AYA™ 43 = |Z|CA 1 (32)

After calculating the trace of the both sides, we have the following equation,
tr (AEA71 +3) =t <|S| CA™ > (33)

The left-hand side (LHS) is as follows,

LHS =tr (AXA™' + %)
=tr (AXA™") + (%)
=tr (SA™'A) + r (%)
=tr () + tr (%)
=2tr (). (34)
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Therefore,

(%) = %tr <Z|CA1> = %‘—thr (ca™ty. (35)

At the same time, we can easily calculate that

tr(l) = d, (36)
as I € R?? where d is the dimension of the parameter 6.
Insert egs. (35) and (36) to eq. (30), we can get the following inequality,

11 1 1

Eq. (37) gives an upper bound for the distance (measured by KL divergence) between the stationary
distribution of the output weights by SGD and the priori on the hypothesis space. Considering the
monotonicity of the generalization bound in terms of the KL divergence, we can further obtain a
PAC-Bayesian generalization bound for SGD by inserting the KL divergence bound (eq. 37) into the
PAC-Bayesian framework (eq. (20) of Lemma 1).

The proof is completed. O

B.2 Proof of Theorem 2

This subsection gives a proof for Theorem 2. Before proving it, we first present a Lemma.

Lemma 3. When Assumptions 1, the KL divergence between the stationary distribution Q of SGD
and the prior distribution P is satisfies the following inequality
2|5

A=Y + Latog (281) L syt
D(Q||P)§4‘S|tr(CA )+2dlog( p ) 2log(det(CA ) 2d. (38)

Lemma 3 gives an upper bound for the distance between the distribution of the output hypothesis
by SGD and the prior distribution of the hypothesis space. It measures how far SGD can explore
in the hypothesis space. Based on it, we can further get the following theorem that controls the
generalization error of the special case under Assumptions 1.

Proof of Lemma 3. Apply Assumptions 1 to eq. (23), we can get the following equation.
SA+ AN =_"LC

5]
U
2YA =—1C
1S
_ N~y
272|S\CA . 39)
Therefore,
d
n -1 n -1
det(X) =det | —CA === det(CA . 40
o) = det (704~ ) = (g ) dev(0a7) 40
Thus,

= —dlog <2|:> + log [det (CA*I)} . (41)

Applying egs. (39) and (36) to eq. (30), we can get eq. (38).
The proof is completed. ]

Then, we can directly obtain Theorem 2.

14



Proof of Theorem 2. Apply eq. (38) of Lemma 3 to eq. (20) of Lemma 1 of Lemma 1, we can
directly get eq. (18).

The proof is completed. O

B.3 Proof of Corollary 1

Proof of Corollary 1. We first define
= -1 2|5 -1 1

Then the generalization eq. (18) becomes,

R(Q) <R(Q)+1/5 NI_ 5 (43)

We thus calculate the derivative of I with respect to the ratio % in order to check whether the

generalization bound has a positive correlation withe the ratio. For the brevity, we define k = %

or 91, B .
% "ok [%tr(C’A ) + dlog (2k) — log(det(CA™")) — d + 21log (6) +2log N + 4]
1 1
:% [%tr(CA—l) + dlog (2k) — log(det(CA™Y)) — d + 2log <5> +2log N + 4]
1 1 d
=-— @tr(CA )+ Z (ad)
Therefore, when Assumption 2 holds, we have
tr(CA=Y)n 1 .
a> A Ly oy, 45
~ 2|5 2%k r(CA™) (45)
Thus, )
I
il ) 4
or 0 (46)

So, I and further the generalization bound has a positive correlation with the ratio of batch size to
learning rate.

The proof is completed. O
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