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Abstract

Simulation-to-real domain adaptation for semantic segmentation has been actively
studied for various applications such as autonomous driving. Existing methods
mainly focus on a single-source setting, which cannot easily handle a more practical
scenario of multiple sources with different distributions. In this paper, we propose
to investigate multi-source domain adaptation for semantic segmentation. Specif-
ically, we design a novel framework, termed Multi-source Adversarial Domain
Aggregation Network (MADAN), which can be trained in an end-to-end manner.
First, we generate an adapted domain for each source with dynamic semantic
consistency while aligning at the pixel-level cycle-consistently towards the target.
Second, we propose sub-domain aggregation discriminator and cross-domain cycle
discriminator to make different adapted domains more closely aggregated. Finally,
feature-level alignment is performed between the aggregated domain and target
domain while training the segmentation network. Extensive experiments from
synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate
that the proposed MADAN model outperforms state-of-the-art approaches. Our
source code is released at: https://github.com/Luodian/MADAN.

1 Introduction

Semantic segmentation assigns a semantic label (e.g. car, cyclist, pedestrian, road) to each pixel
in an image. This computer vision kernel plays a crucial role in many applications, ranging from
autonomous driving [1] and robotic control [2] to medical imaging [3] and fashion recommenda-
tion [4]. With the advent of deep learning, especially convolutional neural networks (CNNs), several
end-to-end approaches have been proposed for semantic segmentation [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
Although these methods have achieved promising results, they suffer from some limitations. On the
one hand, training these methods requires large-scale labeled data with pixel-level annotations, which
is prohibitively expensive and time-consuming to obtain. For example, it takes about 90 minutes to
label each image in the Cityscapes dataset [15]. On the other hand, they cannot well generalize their
learned knowledge to new domains, because of the presence of domain shift or dataset bias [16, 17].

To sidestep the cost of data collection and annotation, unlimited amounts of synthetic labeled data can
be created from simulators like CARLA and GTA-V [18, 19, 20], thanks to the progress in graphics
and simulation infrastructure. To mitigate the gap between different domains, domain adaptation
(DA) or knowledge transfer techniques have been proposed [21] with both theoretical analysis [22,
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23, 24, 25] and algorithm design [26, 27, 28, 29, 30, 31, 32]. Besides the traditional task loss on the
labeled source domain, deep unsupervised domain adaptation (UDA) methods are generally trained
with another loss to deal with domain shift, such as a discrepancy loss [31, 33, 34, 35], adversarial
loss [36, 37, 38, 39, 37, 40, 41, 42, 43, 32, 44], reconstruction loss [30, 45, 46], etc. Current
simulation-to-real DA methods for semantic segmentation [47, 48, 49, 50, 51, 52, 32, 53, 54, 55, 56]
all focus on the single-source setting and do not consider a more practical scenario where the labeled
data are collected from multiple sources with different distributions. Simply combining different
sources into one source and directly employing single-source DA may not perform well, since images
from different source domains may interfere with each other during the learning process [57].

Early efforts on multi-source DA (MDA) used shallow models [58, 59, 60, 61, 62, 63, 64, 65, 66, 67].
Recently, some multi-source deep UDA methods have been proposed which only focus on image
classification [68, 69, 70]. Directly extending these MDA methods from classification to segmentation
may not perform well due to the following reasons. (1) Segmentation is a structured prediction
task, the decision function of which is more involved than classification because it has to resolve the
predictions in an exponentially large label space [48, 71]. (2) Current MDA methods mainly focus on
feature-level alignment, which only aligns high-level information. This may be enough for coarse-
grained classification tasks, but it is obviously insufficient for fine-grained semantic segmentation,
which performs pixel-wise prediction. (3) These MDA methods only align each source and target pair.
Although different sources are matched towards the target, there may exist significant mis-alignment
across different sources.

To address the above challenges, in this paper we propose a novel framework, termed Multi-source
Adversarial Domain Aggregation Network (MADAN), which consists of Dynamic Adversarial Image
Generation, Adversarial Domain Aggregation, and Feature-aligned Semantic Segmentation. First, for
each source, we generate an adapted domain using a Generative Adversarial Network (GAN) [36]
with cycle-consistency loss [39], which enforces pixel-level alignment between source images and
target images. To preserve the semantics before and after image translation, we propose a novel
semantic consistency loss by minimizing the KL divergence between the source predictions of a
pretrained segmentation model and the adapted predictions of a dynamic segmentation model. Second,
instead of training a classifier for each source domain [68, 70], we propose sub-domain aggregation
discriminator to directly make different adapted domains indistinguishable, and cross-domain cycle
discriminator to discriminate between the images from each source and the images transferred from
other sources. In this way, different adapted domains can be better aggregated into a more unified
domain. Finally, the segmentation model is trained based on the aggregated domain, while enforcing
feature-level alignment between the aggregated domain and the target domain.

In summary, our contributions are three-fold. (1) We propose to perform domain adaptation for
semantic segmentation from multiple sources. To the best of our knowledge, this is the first work
on multi-source structured domain adaptation. (2) We design a novel framework termed MADAN
to do MDA for semantic segmentation. Besides feature-level alignment, pixel-level alignment is
further considered by generating an adapted domain for each source cycle-consistently with a novel
dynamic semantic consistency loss. Sub-domain aggregation discriminator and cross-domain cycle
discriminator are proposed to better align different adapted domains. (3) We conduct extensive
experiments from synthetic GTA [18] and SYNTHIA [19] to real Cityscapes [15] and BDDS [72]
datasets, and the results demonstrate the effectiveness of our proposed MADAN model.

2 Problem Setup

We consider the unsupervised MDA scenario, in which there are multiple labeled source domains
S1, S2, · · · , SM , whereM is number of sources, and one unlabeled target domain T . In the ith source
domain Si, suppose Xi = {xj

i}
Ni
j=1 and Yi = {yj

i }
Ni
j=1 are the observed data and corresponding

labels drawn from the source distribution pi(x,y), where Ni is the number of samples in Si. In
the target domain T , let XT = {xj

T }
NT
j=1 denote the target data drawn from the target distribution

pT (x,y) without label observation, where NT is the number of target samples. Unless otherwise
specified, we have two assumptions: (1) homogeneity, i.e. xj

i ∈ Rd,xj
T ∈ Rd, indicating that the

data from different domains are observed in the same image space but with different distributions;
(2) closed set, i.e. yj

i ∈ Y,y
j
T ∈ Y , where Y is the label set, which means that all the domains

share the same space of classes. Based on covariate shift and concept drift [21], we aim to learn an
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Figure 1: The framework of the proposed Multi-source Adversarial Domain Aggregation Network
(MADAN). The colored solid arrows represent generators, while the black solid arrows indicate the
segmentation network F . The dashed arrows correspond to different losses.

adaptation model that can correctly predict the labels of a sample from the target domain trained on
{(Xi, Yi)}Mi=1 and {XT }.

3 Multi-source Adversarial Domain Aggregation Network

In this section, we introduce the proposed Multi-source Adversarial Domain Aggregation Network
(MADAN) for semantic segmentation adaptation. The framework is illustrated in Figure 1, which
consists of three components: Dynamic Adversarial Image Generation (DAIG), Adversarial Domain
Aggregation (ADA), and Feature-aligned Semantic Segmentation (FSS). DAIG aims to generate
adapted images from source domains to the target domain from the perspective of visual appearance
while preserving the semantic information with a dynamic segmentation model. In order to reduce
the distances among the adapted domains and thus generate a more aggregated unified domain,
ADA is proposed, including Cross-domain Cycle Discriminator (CCD) and Sub-domain Aggregation
Discriminator (SAD). Finally, FSS learns the domain-invariant representations at the feature-level in
an adversarial manner. Table 1 compares MADAN with several state-of-the-art DA methods.

3.1 Dynamic Adversarial Image Generation

The goal of DAIG is to make images from different source domains visually similar to the target
images, as if they are drawn from the same target domain distribution. To this end, for each source
domain Si, we introduce a generator GSi→T mapping to the target T in order to generate adapted im-
ages that fool DT , which is a pixel-level adversarial discriminator. DT is trained simultaneously with
each GSi→T to classify real target images XT from adapted images GSi→T (Xi). The corresponding
GAN loss function is:

LSi→T
GAN (GSi→T , DT , Xi, XT ) = Exi∼Xi

logDT (GSi→T (xi)) + ExT∼XT
log[1−DT (xT )]. (1)

Since the mappingGSi→T is highly under-constrained [36], we employ an inverse mappingGT→Si as
well as a cycle-consistency loss [39] to enforce GT→Si(GSi→T (xi)) ≈ x and vice versa. Similarly,
we introduce Di to classify Xi from GT→Si

(XT ), with the following GAN loss:

LT→Si

GAN (GT→Si
, Di, XT , Xi) = Exi∼Xi

log[1−Di(xi)] + Ext∼XT
logDi(GT→Si

(xt)). (2)
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Table 1: Comparison of the proposed MADAN model with several state-of-the-art domain adaptation
methods. The full names of each property from the second to the last columns are pixel-level
alignment, feature-level alignment, semantic consistency, cycle consistency, multiple sources, domain
aggregation, one task network, and fine-grained prediction, respectively.

pixel feat sem cycle multi aggr one fine
ADDA [25] 7 3 – – 7 – 3 3

CycleGAN [39] 3 7 7 3 7 – 3 7
PiexlDA [37] 3 7 7 7 7 – 3 3
SBADA [41] 3 7 3 3 7 – 3 7

GTA-GAN [42] 3 3 7 7 7 – 3 7
DupGAN [43] 3 3 3 7 7 – 3 7
CyCADA [32] 3 3 3 3 7 – 3 3

DCTN [68] 7 3 – – 3 7 7 7
MDAN [69] 7 3 – – 3 7 3 7
MMN [70] 7 3 – – 3 7 7 7

MADAN (ours) 3 3 3 3 3 3 3 3

The cycle-consistency loss [39] ensures that the learned mappings GSi→T and GT→Si are cycle-
consistent, thereby preventing them from contradicting each other, is defined as:

LSi↔T
cyc (GSi→T , GT→Si

, Xi, XT ) =Exi∼Xi
‖ GT→Si

(GSi→T (xi))− xi ‖1 +

ExT∼XT
‖ GSi→T (GT→Si(xt))− xt ‖1 .

(3)

The adapted images are expected to contain the same semantic information as original source images,
but the semantic consistency is only partially constrained by the cycle consistency loss. The semantic
consistency loss in CyCADA [32] was proposed to better preserve semantic information. xi and
GSi→T (xi) are both fed into a segmentation model Fi pretrained on (Xi, Yi). However, since xi and
GSi→T (xi) are from different domains, employing the same segmentation model, i.e. Fi, to obtain
the segmentation results and then computing the semantic consistency loss may be detrimental to
image generation. Ideally, the adapted images GSi→T (xi) should be fed into a network FT trained
on the target domain, which is infeasible since target domain labels are not available in UDA. Instead
of employing Fi on GSi→T (xi), we propose to dynamically update the network FA, which takes
GSi→T (xi) as input, so that its optimal input domain (the domain that the network performs best
on) gradually changes from that of Fi to FT . We employ the task segmentation model F trained on
the adapted domain as FA, i.e. FA = F , which has two advantages: (1) GSi→T (xi) becomes the
optimal input domain of FA, and as F is trained to have better performance on the target domain, the
semantic loss after FA would promote GSi→T to generate images that are closer to target domain at
the pixel-level; (2) since FA and F can share the parameters, no additional training or memory space
is introduced, which is quite efficient. The proposed dynamic semantic consistency (DSC) loss is:

LSi
sem(GSi→T , Xi, Fi, FA) = Exi∼Xi

KL(FA(GSi→T (xi))||Fi(xi)), (4)
where KL(·||·) is the KL divergence between two distributions.

3.2 Adversarial Domain Aggregation

We can train different segmentation models for each adapted domain and combine different predictions
with specific weights for target images [68, 70], or we can simply combine all adapted domains
together and train one model [69]. In the first strategy, it is challenging to determine how to select
the weights for different adapted domains. Moreover, each target image needs to be fed into all
segmentation models at reference time, and this is rather inefficient. For the second strategy, since
the alignment space is high-dimensional, although the adapted domains are relatively aligned with
the target, they may be significantly mis-aligned with each other. In order to mitigate this issue, we
propose adversarial domain aggregation to make different adapted domains more closely aggregated
with two kinds of discriminators. One is the sub-domain aggregation discriminator (SAD), which is
designed to directly make the different adapted domains indistinguishable. For Si, a discriminator
Di

A is introduced with the following loss function:

LSi

SAD(GS1→T , . . . GSi→T , . . . , GSM→T ,D
i
A) = Exi∼Xi

logDi
A(GSi→T (xi))+

1

M − 1

∑
j 6=i

Exj∼Xj
log[1−Di

A(GSj→T (xj))].
(5)
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The other is the cross-domain cycle discriminator (CCD). For each source domain Si, we transfer the
images from the adapted domains GSj→T (Xj), j = 1, · · · ,M, j 6= i back to Si using GT→Si and
employ the discriminator Di to classify Xi from GT→Si

(GSj→T (Xj)), which corresponds to the
following loss function:

LSi

CCD(GT→S1
, . . . GT→Si−1

,GT→Si+1
, . . . , GT→SM

, GSi→T , Di) = Exi∼Xi
logDi(xi)+

1

M − 1

∑
j 6=i

Exj∼Xj
log[1−Di(GT→Si

((GSj→T (xj)))].
(6)

Please note that using a more sophisticated combination of different discriminators’ losses to better
aggregate the domains with larger distances might improve the performance. We leave this as future
work and would explore this direction by dynamic weighting of the loss terms and incorporating
some prior domain knowledge of the sources.

3.3 Feature-aligned Semantic Segmentation

After adversarial domain aggregation, the adapted images of different domains X ′i(i = 1, · · · ,M)
are more closely aggregated and aligned. Meanwhile, the semantic consistency loss in dynamic
adversarial image generation ensures that the semantic information, i.e. the segmentation labels, is
preserved before and after image translation. Suppose the images of the unified aggregated domain

are X ′ =
M⋃
i=1

X ′i and corresponding labels are Y =
M⋃
i=1

Yi. We can then train a task segmentation

model F based on X ′ and Y with the following cross-entropy loss:

Ltask(F,X
′, Y ) = −E(x′,y)∼(X′ ,Y )

∑L

l=1

∑H

h=1

∑W

w=1
1[l=yh,w] log(σ(Fl,h,w(x

′))), (7)

where L is the number of classes, H,W are the height and width of the adapted images, σ is the
softmax function, 1 is an indicator function, and Fl,h,w(x

′) is the value of F (x′) at index (l, h, w).

Further, we impose a feature-level alignment between X ′ and XT , which can improve the segmenta-
tion performance during inference of XT on the segmentation model F . We introduce a discriminator
DF to achieve this goal. The feature-level GAN loss is defined as:
Lfeat(Ff , DFf

, X ′, XT ) = Ex′∼X′ logDFf
(Ff (x

′)) + ExT∼XT
log[1−DFf

(Ff (xT ))], (8)
where Ff (·) is the output of the last convolution layer (i.e. a feature map) of the encoder in F .

3.4 MADAN Learning

The proposed MADAN learning framework utilizes adaptation techniques including pixel-level
alignment, cycle-consistency, semantic consistency, domain aggregation, and feature-level alignment.
Combining all these components, the overall objective loss function of MADAN is:
LMADAN (GS1→T · · ·GSM→T , GT→S1

· · ·GT→SM
, D1 · · ·DM , D

1
A · · ·DM

A , DFf
, F )

=
∑

i

[
LSi→T
GAN (GSi→T , DT , Xi, XT ) + LT→Si

GAN (GT→Si
, Di, XT , Xi)

+ LSi↔T
cyc (GSi→T , GT→Si

, Xi, XT ) + LSi
sem(GSi→T , Xi, Fi, F )

+ LSi

SAD(GS1→T , . . . GSi→T , . . . , GSM→T , D
i
A)

+ LSi

CCD(GT→S1 , . . . GT→Si−1 , GT→Si+1 , . . . , GT→SM
, GSi→T , Di)

]
+ Ltask(F,X

′, Y ) + Lfeat(Ff , DFf
, X ′, XT ).

(9)

The training process corresponds to solving for a target model F according to the optimization:
F ∗ = argmin

F
min
D

max
G
LMADAN (G,D,F ), (10)

where G and D represent all the generators and discriminators in Eq. (9), respectively.

4 Experiments

In this section, we first introduce the experimental settings and then compare the segmentation results
of the proposed MADAN and several state-of-the-art approaches both quantitatively and qualitatively,
followed by some ablation studies.
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Table 2: Comparison with the state-of-the-art DA methods for semantic segmentation from GTA
and SYNTHIA to Cityscapes. The best class-wise IoU and mIoU trained on the source domains are
emphasized in bold (similar below).
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Source-only
GTA 54.1 19.6 47.4 3.3 5.2 3.3 0.5 3.0 69.2 43.0 31.3 0.1 59.3 8.3 0.2 0.0 21.7
SYNTHIA 3.9 14.5 45.0 0.7 0.0 14.6 0.7 2.6 68.2 68.4 31.5 4.6 31.5 7.4 0.3 1.4 18.5
GTA+SYNTHIA 44.0 19.0 60.1 11.1 13.7 10.1 5.0 4.7 74.7 65.3 40.8 2.3 43.0 15.9 1.3 1.4 25.8

GTA-only DA

FCN Wld [47] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 64.6 44.1 4.2 70.4 7.3 3.5 0.0 27.1
CDA [48] 74.8 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 66.5 38.0 9.3 55.2 18.9 16.8 14.6 28.9
ROAD [50] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 68.9 48.5 14.1 78.0 23.8 8.3 0.0 39.0
AdaptSeg [71] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 71.3 46.8 6.5 80.1 26.9 10.6 0.3 38.3
CyCADA [32] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 60.7 50.5 9.0 76.9 28.2 4.5 0.0 38.7
DCAN [55] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 69.5 52.6 11.1 79.6 21.2 17.0 6.7 39.8
FCN Wld [47] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2
CDA [48] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
ROAD [50] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2
CyCADA [32] 66.2 29.6 65.3 0.5 0.2 15.1 4.5 6.9 67.1 68.2 42.8 14.1 51.2 12.6 2.4 20.7 29.2

SYNTHIA-only DA

DCAN [55] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
Source-combined DA CyCADA [32] 82.8 35.8 78.2 17.5 15.1 10.8 6.1 19.4 78.6 77.2 44.5 15.3 74.9 17.0 10.3 12.9 37.3

MDAN [69] 64.2 19.7 63.8 13.1 19.4 5.5 5.2 6.8 71.6 61.1 42.0 12.0 62.7 2.9 12.3 8.1 29.4Multi-source DA MADAN (Ours) 86.2 37.7 79.1 20.1 17.8 15.5 14.5 21.4 78.5 73.4 49.7 16.8 77.8 28.3 17.7 27.5 41.4
Oracle-Train on Tgt FCN [5] 96.4 74.5 87.1 35.3 37.8 36.4 46.9 60.1 89.0 89.8 65.6 35.9 76.9 64.1 40.5 65.1 62.6

Table 3: Comparison with the state-of-the-art DA methods for semantic segmentation from GTA and
SYNTHIA to BDDS. The best class-wise IoU and mIoU are emphasized in bold.
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Source-only
GTA 50.2 18.0 55.1 3.1 7.8 7.0 0.0 3.5 61.0 50.4 19.2 0.0 58.1 3.2 19.8 0.0 22.3
SYNTHIA 7.0 6.0 50.5 0.0 0.0 15.1 0.2 2.4 60.3 85.6 16.5 0.5 36.7 3.3 0.0 3.5 17.1
GTA+SYNTHIA 54.5 19.6 64.0 3.2 3.6 5.2 0.0 0.0 61.3 82.2 13.9 0.0 55.5 16.7 13.4 0.0 24.6

GTA-only DA CyCADA [32] 77.9 26.8 68.8 13.0 19.7 13.5 18.2 22.3 64.2 84.2 39.0 22.6 72.0 11.5 15.9 2.0 35.7
SYNTHIA-only DA CyCADA [32] 55 13.8 45.2 0.1 0.0 13.2 0.5 10.6 63.3 67.4 22.0 6.9 52.5 10.5 10.4 13.3 24.0

Source-combined DA CyCADA [32] 61.5 27.6 72.1 6.5 2.8 15.7 10.8 18.1 78.3 73.8 44.9 16.3 41.5 21.1 21.8 25.9 33.7
MDAN [69] 35.9 15.8 56.9 5.8 16.3 9.5 8.6 6.2 59.1 80.1 24.5 9.9 53.8 11.8 2.9 1.6 25.0Multi-source DA MADAN (Ours) 60.2 29.5 66.6 16.9 10.0 16.6 10.9 16.4 78.8 75.1 47.5 17.3 48.0 24.0 13.2 17.3 36.3

Oracle-Train on Tgt FCN [5] 91.7 54.7 79.5 25.9 42.0 23.6 30.9 34.6 81.2 91.6 49.6 23.5 85.4 64.2 28.4 41.1 53.0

4.1 Experimental Settings

Datasets. In our adaptation experiments, we use synthetic GTA [18] and SYNTHIA [19] datasets as
the source domains and real Cityscapes [15] and BDDS [72] datasets as the target domains.

Baselines. We compare MADAN with the following methods. (1) Source-only, i.e. train on
the source domains and test on the target domain directly. We can view this as a lower bound
of DA. (2) Single-source DA, perform multi-source DA via single-source DA, including FCNs
Wld [47], CDA [48], ROAD [50], AdaptSeg [71], CyCADA [32], and DCAN [55]. (3) Multi-source
DA, extend some single-source DA method to multi-source settings, including MDAN [69]. For
comparison, we also report the results of an oracle setting, where the segmentation model is both
trained and tested on the target domain. For the source-only and single-source DA standards, we
employ two strategies: (1) single-source, i.e. performing adaptation on each single source; (2)
source-combined, i.e. all source domains are combined into a traditional single source. For MDAN,
we extend the original classification network for our segmentation task.

Evaluation Metric. Following [47, 48, 32, 56], we employ mean intersection-over-union (mIoU) to
evaluate the segmentation results. In the experiments, we take the 16 intersection classes of GTA and
SYNTHIA, compatible with Cityscapes and BDDS, for all mIoU evaluations.

Implementation Details. Although MADAN could be trained in an end-to-end manner, due to
constrained hardware resources, we train it in three stages. First, we train two CycleGANs (9 residual
blocks for generator and 4 convolution layers for discriminator) [39] without semantic consistency
loss, and then train an FCN F on the adapted images with corresponding labels from the source
domains. Second, after updating FA with F trained above, we generate adapted images using
CycleGAN with the proposed DSC loss in Eq. (4) and aggregate different adapted domains using
SAD and CCD. Finally, we train an FCN on the newly adapted images in the aggregated domain with
feature-level alignment. The above stages are trained iteratively.

We choose to use FCN [5] as our semantic segmentation network, and, as the VGG family of networks
is commonly used in reporting DA results, we use VGG-16 [73] as the FCN backbone. The weights
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(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: Qualitative semantic segmentation result from GTA and SYNTHIA to Cityscapes. From
left to right are: (a) original image, (b) ground truth annotation, (c) source only from GTA, (d)
CycleGANs on GTA and SYNTHIA, (e) +CCD+DSC, (f) +SAD+DSC, (g) +CCD+SAD+DSC, and
(h) +CCD+SAD+DSC+Feat (MADAN).

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Visualization of image translation. From left to right are: (a) original source image,
(b) CycleGAN, (c) CycleGAN+DSC, (d) CycleGAN+CCD+DSC, (e) CycleGAN+SAD+DSC, (f)
CycleGAN+CCD+SAD+DSC, and (g) target Cityscapes image. The top two rows and bottom rows
are GTA→ Cityscapes and SYNTHIA→ Cityscapes, respectively.

of the feature extraction layers in the networks are initialized from models trained on ImageNet [74].
The network is implemented in PyTorch and trained with Adam optimizer [75] using a batch size of
8 with initial learning rate 1e-4. All the images are resized to 600× 1080, and are then cropped to
400× 400 during the training of the pixel-level adaptation for 20 epochs. SAD and CCD are frozen
in the first 5 and 10 epochs, respectively.

4.2 Comparison with State-of-the-art

The performance comparisons between the proposed MADAN model and the other baselines, includ-
ing source-only, single-source DA, and multi-source DA, as measured by class-wise IoU and mIoU
are shown in Table 2 and Table 3. From the results, we have the following observations:

(1) The source-only method that directly transfers the segmentation models trained on the source
domains to the target domain obtains the worst performance in most adaptation settings. This is
obvious, because the joint probability distributions of observed images and labels are significantly
different among the sources and the target, due to the presence of domain shift. Without domain
adaptation, the direct transfer cannot well handle this domain gap. Simply combining different source
domains performs better than each single source, which indicates the superiority of multiple sources
over single source despite the domain shift among different sources.

(2) Comparing source-only with single-source DA respectively on GTA and SYNTHIA, it is clear that
all adaptation methods perform better, which demonstrates the effectiveness of domain adaptation in
semantic segmentation. Comparing the results of CyCADA in single-source and source-combined
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Table 4: Comparison between the proposed dynamic semantic consistency (DSC) loss in MADAN
and the original SC loss in [32] on Cityscapes. The better mIoU for each pair is emphasized in bold.
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CycleGAN+SC 85.6 30.7 74.7 14.4 13.0 17.6 13.7 5.8 74.6 69.9 38.2 3.5 72.3 5.0 3.6 0.0 32.7
CycleGAN+DSC 76.6 26.0 76.3 17.3 18.8 13.6 13.2 17.9 78.8 63.9 47.4 14.8 72.2 24.1 19.8 10.8 38.1
CyCADA w/ SC 85.2 37.2 76.5 21.8 15.0 23.8 21.5 22.9 80.5 60.7 50.5 9.0 76.9 28.2 9.8 0.0 38.7GTA

CyCADA w/ DSC 84.1 27.3 78.3 21.6 18.0 13.8 14.1 16.7 78.1 66.9 47.8 15.4 78.7 23.4 22.3 14.4 40.0
CycleGAN+SC 64.0 29.4 61.7 0.3 0.1 15.3 3.4 5.0 63.4 68.4 39.4 11.5 46.6 10.4 2.0 16.4 27.3
CycleGAN + DSC 68.4 29.0 65.2 0.6 0.0 15.0 0.1 4.0 75.1 70.6 45.0 11.0 54.9 18.2 3.9 26.7 30.5
CyCADA w/ SC 66.2 29.6 65.3 0.5 0.2 15.1 4.5 6.9 67.1 68.2 42.8 14.1 51.2 12.6 2.4 20.7 29.2SYNTHIA

CyCADA w/ DSC 69.8 27.2 68.5 5.8 0.0 11.6 0.0 2.8 75.7 58.3 44.3 10.5 68.1 22.1 11.8 32.7 31.8

Table 5: Comparison between the proposed dynamic semantic consistency (DSC) loss in MADAN
and the original SC loss in [32] on BDDS. The better mIoU for each pair is emphasized in bold.
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CycleGAN+SC 62.1 20.9 59.2 6.0 23.5 12.8 9.2 22.4 65.9 78.4 34.7 11.4 64.4 14.2 10.9 1.9 31.1
CycleGAN+DSC 74.4 23.7 65.0 8.6 17.2 10.7 14.2 19.7 59.0 82.8 36.3 19.6 69.7 4.3 17.6 4.2 32.9
CyCADA w/ SC 68.8 23.7 67.0 7.5 16.2 9.4 11.3 22.2 60.5 82.1 36.1 20.6 63.2 15.2 16.6 3.4 32.0GTA

CyCADA w/ DSC 70.5 32.4 68.2 10.5 17.3 18.4 16.6 21.8 65.6 82.2 38.1 16.1 73.3 20.8 12.6 3.7 35.5
CycleGAN+SC 50.6 13.6 50.5 0.2 0.0 7.9 0.0 0.0 63.8 58.3 21.6 7.8 50.2 1.8 2.2 19.9 21.8
CycleGAN + DSC 57.3 13.4 56.1 2.7 14.1 9.8 7.7 17.1 65.5 53.1 11.4 1.4 51.4 13.9 3.9 8.7 22.5
CyCADA w/ SC 49.5 11.1 46.6 0.7 0.0 10.0 0.4 7.0 61.0 74.6 17.5 7.2 50.9 5.8 13.1 4.3 23.4SYNTHIA

CyCADA w/ DSC 55 13.8 45.2 0.1 0.0 13.2 0.5 10.6 63.3 67.4 22.0 6.9 52.5 10.5 10.4 13.3 24.0

settings, we can conclude that simply combining different source domains and performing single-
source DA may result in performance degradation.

(3) MADAN achieves the highest mIoU score among all adaptation methods, and benefits from the
joint consideration of pixel-level and feature-level alignments, cycle-consistency, dynamic semantic-
consistency, domain aggregation, and multiple sources. MADAN also significantly outperforms
source-combined DA, in which domain shift also exists among different sources. By bridging this gap,
multi-source DA can boost the adaptation performance. On the one hand, compared to single-source
DA [47, 48, 50, 71, 32, 55], MADAN utilizes more useful information from multiple sources. On the
other hand, other multi-source DA methods [68, 69, 70] only consider feature-level alignment, which
may be enough for course-grained tasks, e.g. image classification, but is obviously insufficient for
fine-grained tasks, e.g. semantic segmentation, a pixel-wise prediction task. In addition, we consider
pixel-level alignment with a dynamic semantic consistency loss and further aggregate different
adapted domains.

(4) The oracle method that is trained on the target domain performs significantly better than the
others. However, to train this model, the ground truth segmentation labels from the target domain are
required, which are actually unavailable in UDA settings. We can deem this performance as a upper
bound of UDA. Obviously, a large performance gap still exists between all adaptation algorithms and
the oracle method, requiring further efforts on DA.

Visualization. The qualitative semantic segmentation results are shown in Figure 2. We can clearly
see that after adaptation by the proposed method, the visual segmentation results are improved notably.
We also visualize the results of pixel-level alignment from GTA and SYNTHIA to Cityscapes in
Figure 3. We can see that with our final proposed pixel-level alignment method (f), the styles of the
images are close to Cityscapes while the semantic information is well preserved.

4.3 Ablation Study

First, we compare the proposed dynamic semantic consistency (DSC) loss in MADAN with the
original semantic consistency (SC) loss in CyCADA [32]. As shown in Table 4 and Table 5, we can
see that for all simulation to real adaptations, DSC achieves better results. After demonstrating its
value, we employ the DSC loss in subsequent experiments.

Second, we incrementally investigate the effectiveness of different components in MADAN on both
Cityscapes and BDDS. The results are shown in Table 6 and Table 7. We can observe that: (1)
both domain aggregation methods, i.e. SAD and CCD, can obtain better performance by making
different adapted domains more closely aggregated, while SAD outperforms CCD; (2) adding the
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Table 6: Ablation study on different components in MADAN on Cityscapes. Baseline denotes
using piexl-level alignment with cycle-consistency, +SAD denotes using the sub-domain aggregation
discriminator, +CCD denotes using the cross-domain cycle discriminator, +DSC denotes using the
dynamic semantic consistency loss, and +Feat denotes using feature-level alignment.

Method

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

t-
lig

ht

t-
si

gn

ve
ge

tti
on

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
-b

ik
e

bi
cy

cl
e

m
Io

U

Baseline 74.9 27.6 67.5 9.1 10.0 12.8 1.4 13.6 63.0 47.1 41.7 13.5 60.8 22.4 6.0 8.1 30.0
+SAD 79.7 33.2 75.9 11.8 3.6 15.9 8.6 15.0 74.7 78.9 44.2 17.1 68.2 24.9 16.7 14.0 36.4
+CCD 82.1 36.3 69.8 9.5 4.9 11.8 12.5 15.3 61.3 54.1 49.7 10.0 70.7 9.7 19.7 12.4 33.1
+SAD+CCD 82.7 35.3 76.5 15.4 19.4 14.1 7.2 13.9 75.3 74.2 50.9 19.0 66.5 26.6 16.3 6.7 37.5
+SAD+DSC 83.1 36.6 78.0 23.3 12.6 11.8 3.5 11.3 75.5 74.8 42.2 17.9 72.2 27.2 13.8 10.0 37.1
+CCD+DSC 86.8 36.9 78.6 16.2 8.1 17.7 8.9 13.7 75.0 74.8 42.2 18.2 74.6 22.5 22.9 12.7 38.1
+SAD+CCD+DSC 84.2 35.1 78.7 17.1 18.7 15.4 15.7 24.1 77.9 72.0 49.2 17.1 75.2 24.1 18.9 19.2 40.2
+SAD+CCD+DSC+Feat 86.2 37.7 79.1 20.1 17.8 15.5 14.5 21.4 78.5 73.4 49.7 16.8 77.8 28.3 17.7 27.5 41.4

Table 7: Ablation study on different components in MADAN on BDDS.
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Baseline 31.3 17.4 55.4 2.6 12.9 12.4 6.5 18.0 63.2 79.9 21.2 5.6 44.1 14.2 6.1 11.7 24.6
+SAD 58.9 18.7 61.8 6.4 10.7 17.1 20.3 17.0 67.3 83.7 21.1 6.7 66.6 22.7 4.5 14.9 31.2
+CCD 52.7 13.6 63.0 6.6 11.2 17.8 21.5 18.9 67.4 84.0 9.2 2.2 63.0 21.6 2.0 14.0 29.3
+SAD+CCD 61.6 20.2 61.7 7.2 12.1 18.5 19.8 16.7 64.2 83.2 25.9 7.3 66.8 22.2 5.3 14.9 31.8
+SAD+DSC 60.2 29.5 66.6 16.9 10.0 16.6 10.9 16.4 78.8 75.1 47.5 17.3 48.0 24.0 13.2 17.3 34.3
+CCD+DSC 61.5 27.6 72.1 6.5 12.8 15.7 10.8 18.1 78.3 73.8 44.9 16.3 41.5 21.1 21.8 15.9 33.7
+SAD+CCD+DSC 64.6 38.0 75.8 17.8 13.0 9.8 5.9 4.6 74.8 76.9 41.8 24.0 69.0 20.4 23.7 11.3 35.3
+SAD+CCD+DSC+Feat 69.1 36.3 77.9 21.5 17.4 13.8 4.1 16.2 76.5 76.2 42.2 16.4 56.3 22.4 24.5 13.5 36.3

DSC loss could further improve the mIoU score, again demonstrating the effectiveness of DSC; (3)
feature-level alignments also contribute to the adaptation task; (4) the modules are orthogonal to each
other to some extent, since adding each one of them does not introduce performance degradation.

4.4 Discussions

Computation cost. Since the proposed framework deals with a harder problem, i.e. multi-source
domain adaptation, more modules are used to align different sources, which results in a larger model.
In our experiments, MADAN is trained on 4 NVIDIA Tesla P40 GPUs for 40 hours using two source
domains which is about twice the training time as on a single source. However, MADAN does not
introduce any additional computation during inference, which is the biggest concern in real industrial
applications, e.g. autonomous driving.

On the poorly performing classes. There are two main reasons for the poor performance on certain
classes (e.g. fence and pole): 1) lack of images containing these classes and 2) structural differences
of objects between simulation images and real images (e.g. the trees in simulation images are much
taller than those in real images). Generating more images for different classes and improving the
diversity of objects in the simulation environment are two promising directions for us to explore in
future work that may help with these problems.

5 Conclusion

In this paper, we studied multi-source domain adaptation for semantic segmentation from synthetic
data to real data. A novel framework, termed Multi-source Adversarial Domain Aggregation Network
(MADAN), is designed with three components. For each source domain, we generated adapted images
with a novel dynamic semantic consistency loss. Further we proposed a sub-domain aggregation
discriminator and cross-domain cycle discriminator to better aggregate different adapted domains.
Together with other techniques such as pixel- and feature-level alignments as well as cycle-consistency,
MADAN achieves 15.6%, 1.6%, 4.1%, and 12.0% mIoU improvements compared with best source-
only, best single-source DA, source-combined DA, and other multi-source DA, respectively on
Cityscapes from GTA and SYNTHIA, and 11.7%, 0.6%, 2.6%, 11.3% on BDDS. For further studies,
we plan to investigate multi-modal DA, such as using both image and LiDAR data, to better boost the
adaptation performance. Improving the computational efficiency of MADAN, with techniques such
as neural architecture search, is another direction worth investigating.

9



Acknowledgments

This work is supported by Berkeley DeepDrive and the National Natural Science Foundation of China
(No. 61701273).

References
[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the

kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3354–3361, 2012.

[2] Zhang-Wei Hong, Yu-Ming Chen, Hsuan-Kung Yang, Shih-Yang Su, Tzu-Yun Shann, Yi-
Hsiang Chang, Brian Hsi-Lin Ho, Chih-Chieh Tu, Tsu-Ching Hsiao, Hsin-Wei Hsiao, et al.
Virtual-to-real: learning to control in visual semantic segmentation. In International Joint
Conference on Artificial Intelligence, pages 4912–4920, 2018.

[3] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In International
Conference on Medical Image Computing and Computer Assisted Intervention, pages 424–432,
2016.

[4] Shatha Jaradat. Deep cross-domain fashion recommendation. In ACM Conference on Recom-
mender Systems, pages 407–410, 2017.

[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3431–
3440, 2015.

[6] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen-Change Loy, and Xiaoou Tang. Semantic image
segmentation via deep parsing network. In IEEE International Conference on Computer Vision,
pages 1377–1385, 2015.

[7] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,
Dalong Du, Chang Huang, and Philip HS Torr. Conditional random fields as recurrent neural
networks. In IEEE International Conference on Computer Vision, pages 1529–1537, 2015.

[8] Guosheng Lin, Chunhua Shen, Anton Van Den Hengel, and Ian Reid. Efficient piecewise training
of deep structured models for semantic segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 3194–3203, 2016.

[9] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
International Conference on Learning Representations, 2016.

[10] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(12):2481–2495, 2017.

[11] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In IEEE Conference on Computer Vision and Pattern Recognition, pages
2881–2890, 2017.

[12] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(4):834–848, 2017.

[13] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison
Cottrell. Understanding convolution for semantic segmentation. In IEEE Winter Conference on
Applications of Computer Vision, pages 1451–1460, 2018.

[14] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision, 127(3):302–321, 2019.

10



[15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3213–3223, 2016.

[16] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1521–1528, 2011.

[17] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. Squeezesegv2:
Improved model structure and unsupervised domain adaptation for road-object segmentation
from a lidar point cloud. In IEEE International Conference on Robotics and Automation, pages
4376–4382, 2019.

[18] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground
truth from computer games. In European Conference on Computer Vision, pages 102–118,
2016.

[19] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3234–3243,
2016.

[20] Xiangyu Yue, Bichen Wu, Sanjit A Seshia, Kurt Keutzer, and Alberto L Sangiovanni-Vincentelli.
A lidar point cloud generator: from a virtual world to autonomous driving. In ACM International
Conference on Multimedia Retrieval, pages 458–464, 2018.

[21] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain
adaptation: A survey of recent advances. IEEE Signal Processing Magazine, 32(3):53–69,
2015.

[22] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79(1-2):151–175, 2010.

[23] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Unsupervised adaptation across
domain shifts by generating intermediate data representations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(11):2288–2302, 2014.

[24] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational
fair autoencoder. arXiv:1511.00830, 2015.

[25] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2962–2971,
2017.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In International Conference on Machine Learning,
pages 513–520, 2011.

[28] I-Hong Jhuo, Dong Liu, DT Lee, and Shih-Fu Chang. Robust visual domain adaptation with
low-rank reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2168–2175, 2012.

[29] Carlos J Becker, Christos M Christoudias, and Pascal Fua. Non-linear domain adaptation with
boosting. In Advances in Neural Information Processing Systems, pages 485–493, 2013.

[30] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain general-
ization for object recognition with multi-task autoencoders. In IEEE International Conference
on Computer Vision, pages 2551–2559, 2015.

11



[31] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International Conference on Machine Learning, pages
97–105, 2015.

[32] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A
Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In Interna-
tional Conference on Machine Learning, pages 1994–2003, 2018.

[33] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
AAAI Conference on Artificial Intelligence, pages 2058–2065, 2016.

[34] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised domain
adaptation. In Domain Adaptation in Computer Vision Applications, pages 153–171. 2017.

[35] Junbao Zhuo, Shuhui Wang, Weigang Zhang, and Qingming Huang. Deep unsupervised
convolutional domain adaptation. In ACM International Conference on Multimedia, pages
261–269, 2017.

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[37] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial networks. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 3722–3731, 2017.

[38] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Advances in Neural
Information Processing Systems, pages 469–477, 2016.

[39] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In IEEE International Conference on
Computer Vision, pages 2223–2232, 2017.

[40] Sicheng Zhao, Xin Zhao, Guiguang Ding, and Kurt Keutzer. Emotiongan: unsupervised
domain adaptation for learning discrete probability distributions of image emotions. In ACM
International Conference on Multimedia, pages 1319–1327, 2018.

[41] Paolo Russo, Fabio M Carlucci, Tatiana Tommasi, and Barbara Caputo. From source to target
and back: symmetric bi-directional adaptive gan. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 8099–8108, 2018.

[42] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chellappa. Generate
to adapt: Aligning domains using generative adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 8503–8512, 2018.

[43] Lanqing Hu, Meina Kan, Shiguang Shan, and Xilin Chen. Duplex generative adversarial
network for unsupervised domain adaptation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1498–1507, 2018.

[44] Sicheng Zhao, Chuang Lin, Pengfei Xu, Sendong Zhao, Yuchen Guo, Ravi Krishna, Guiguang
Ding, and Kurt Keutzer. Cycleemotiongan: Emotional semantic consistency preserved cyclegan
for adapting image emotions. In AAAI Conference on Artificial Intelligence, pages 2620–2627,
2019.

[45] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep
reconstruction-classification networks for unsupervised domain adaptation. In European Con-
ference on Computer Vision, pages 597–613, 2016.

[46] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru
Erhan. Domain separation networks. In Advances in Neural Information Processing Systems,
pages 343–351, 2016.

[47] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-level
adversarial and constraint-based adaptation. arXiv:1612.02649, 2016.

12



[48] Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for semantic
segmentation of urban scenes. In IEEE International Conference on Computer Vision, pages
2020–2030, 2017.

[49] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko.
Visda: The visual domain adaptation challenge. arXiv:1710.06924, 2017.

[50] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality oriented adaptation for semantic
segmentation of urban scenes. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 7892–7901, 2018.

[51] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa.
Learning from synthetic data: Addressing domain shift for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 3752–3761, 2018.

[52] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei. Fully convolutional adaptation
networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 6810–6818, 2018.

[53] Aysegul Dundar, Ming-Yu Liu, Ting-Chun Wang, John Zedlewski, and Jan Kautz. Do-
main stylization: A strong, simple baseline for synthetic to real image domain adaptation.
arXiv:1807.09384, 2018.

[54] Xinge Zhu, Hui Zhou, Ceyuan Yang, Jianping Shi, and Dahua Lin. Penalizing top performers:
Conservative loss for semantic segmentation adaptation. In European Conference on Computer
Vision, pages 568–583, 2018.

[55] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gokhan Uzunbas, Tom Goldstein, Ser
Nam Lim, and Larry S Davis. Dcan: Dual channel-wise alignment networks for unsupervised
scene adaptation. In European Conference on Computer Vision, pages 518–534, 2018.

[56] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and
Boqing Gong. Domain randomization and pyramid consistency: Simulation-to-real general-
ization without accessing target domain data. In IEEE International Conference on Computer
Vision, 2019.

[57] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. In International Conference on Learning Representations, 2019.

[58] Shiliang Sun, Honglei Shi, and Yuanbin Wu. A survey of multi-source domain adaptation.
Information Fusion, 24:84–92, 2015.

[59] Lixin Duan, Ivor W Tsang, Dong Xu, and Tat-Seng Chua. Domain adaptation from multiple
sources via auxiliary classifiers. In International Conference on Machine Learning, pages
289–296, 2009.

[60] Qian Sun, Rita Chattopadhyay, Sethuraman Panchanathan, and Jieping Ye. A two-stage
weighting framework for multi-source domain adaptation. In Advances in Neural Information
Processing Systems, pages 505–513, 2011.

[61] Lixin Duan, Dong Xu, and Shih-Fu Chang. Exploiting web images for event recognition in
consumer videos: A multiple source domain adaptation approach. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1338–1345, 2012.

[62] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and Jieping
Ye. Multisource domain adaptation and its application to early detection of fatigue. ACM
Transactions on Knowledge Discovery from Data, 6(4):18, 2012.

[63] Lixin Duan, Dong Xu, and Ivor Wai-Hung Tsang. Domain adaptation from multiple sources:
A domain-dependent regularization approach. IEEE Transactions on Neural Networks and
Learning Systems, 23(3):504–518, 2012.

13



[64] Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-domain video concept detection
using adaptive svms. In ACM International Conference on Multimedia, pages 188–197, 2007.

[65] Gabriele Schweikert, Gunnar Rätsch, Christian Widmer, and Bernhard Schölkopf. An empirical
analysis of domain adaptation algorithms for genomic sequence analysis. In Advances in Neural
Information Processing Systems, pages 1433–1440, 2009.

[66] Zhijie Xu and Shiliang Sun. Multi-source transfer learning with multi-view adaboost. In
International Conference on Neural information processing, pages 332–339, 2012.

[67] Shi-Liang Sun and Hong-Lei Shi. Bayesian multi-source domain adaptation. In International
Conference on Machine Learning and Cybernetics, volume 1, pages 24–28, 2013.

[68] Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, and Liang Lin. Deep cocktail network:
Multi-source unsupervised domain adaptation with category shift. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 3964–3973, 2018.

[69] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. In Advances in Neural Information
Processing Systems, pages 8568–8579, 2018.

[70] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. arXiv:1812.01754, 2018.

[71] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and
Manmohan Chandraker. Learning to adapt structured output space for semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 7472–7481, 2018.

[72] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv:1805.04687, 2018.

[73] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[74] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[75] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

14


