
A Notations

X The input domain

Y The output domain

D The underlying distribution over X × Y
S The training set of m samples drawn according to Dm

(x, y) The sample drawn from the underlying distribution D
ht(x) The t-layer CAScade Deep Forest (CASDF)

Ht The hypotheses set of t-layer CASDF

F (x) The additive CASDF

σ̃(·) The map from average prediction score vector to a label

F̃ (x) The entire additive CASDF model

F The convex hull of the union ofH1, . . . ,HT
GF,n The set of unweighted averages over n elements from F
αt The scalar determined by optimizing `md

`md(x) The convex margin distribution loss function

[x, ft−1(x)] The concatenation operation of original features x and aug-
mented features ft−1(x)

φt([x, ft−1(x)]) The function computed by forest block in the t-th layer

ft(x) The augmented feature in the t-th layer

ES [·] The empirical expectation over the training set

Var[·] The empirical variance over the training set

λ The margin ratio between the standard deviation and mean

Arfb The random forest block algorithm that computes the func-
tion gt([x, ft−1(x)])

Dt The sample weight in the t-th layer

B Optimal Margin Distribution Principle

Figure 3 shows that AdaBoost often does not overfit, that is, the test error often tends to decrease
even after the training error reached zero, margin theory has been used to analyze this phenomenon
which seemed to contradict with the Occam’s Razor. We will introduce several algorithms based on
margin theory, such as AdaBoost, Support Vector Machine (SVM) and Optimal Margin Distribution
Machine (ODM).

Since Reyzin & Schapire [23] found that the margin distribution of AdaBoost is better than that of
arc-gv [2] which is a boosting algorithm designed to maximize the minimum margin, Reyzin &
Schapire [23] conjectured that margin distribution is more important to get a better generalization
performance than the instance with the minimum margin. Gao & Zhou [16] prove that utilizing both
the margin mean and margin variance can portray the relationship between margin and generalization
performance for AdaBoost algorithm more precisely. We list the several loss functions of the
algorithms based on margin theory to compare and plot them in Figure 4:

Exponential loss function:
`exp(x) = exp{−x}. (15)

Hinge loss function:
`hinge(x) = max{1− x, 0}. (16)
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Figure 3: An empirical result using AdaBoost with C4.5 decision trees as base learners. In this
example, the training error goes to zero after about 5 rounds of boosting, yet the test error continues
to decrease for larger values of T .
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Figure 4: Examples of several convex upper bounds on the zero-one loss.

Margin distribution loss function:

`md(x) =


(x−1+θ)2

(1−θ)2 x ≤ 1− θ,
0 1− θ < x ≤ 1 + θ,
µ(x−1−θ)2

(1+θ)2 x > 1 + θ.

(17)

AdaBoost utilizes the exponential loss function to reweight the training samples in each round
according to the margin distribution. This operation can make the model focus on dealing with the
instance with a low confidence-rate (small margin). Mathematically, it proves that one version of the
derivation of AdaBoost is achieved by minimizing the expected exponential loss function:

`exp(F |D) = Ex∼D
[
e−yF (x)

]
(19)
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Algorithm 3 AdaBoost Algorithm
Input: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}.
Output: The additive model H .

1: Initialize D1(i) = 1/m for i = 1, . . . ,m.
2: for t = 1, . . . , T : do
3: Train weak learner using distribution Dt.
4: Get weak hypothesis ht : X → {−1,+1}.
5: Aim: select ht to minimalize the weighted error:

εt
.
= Pr
i∼Dt

[ht (xi) 6= yi]

.
6: Choose αt = 1

2 ln
(

1−εt
εt

)
.

7: Update, for i = 1, . . . ,m :

Dt+1(i) =
Dt(i)

Zt
×
{
e−αt if ht (xi) = yi
eαt if ht (xi) 6= yi

=
Dt(i) exp (−αtyiht (xi))

Zt
,

(18)

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
8: end for
9: Output the final hypothesis:

F (x) = sign

(
T∑
t=1

αtht(x)

)
.

using the additive weighted combination of weak learners as:

F (x) =

T∑
t=1

αtht(x) (20)

The exponential loss is used here since it gives an elegant update formula, and it is consistent with
the goal of minimizing classification error. Schapire & Freund [24] give theoretical evidence that
AdaBoost is especially suited to the task of maximizing the number of training examples with a large
margin. Informally, this is because, at every round, AdaBoost puts the most weight on the examples
with the smallest margins.

Theorem 2 (Schapire & Freund [24]). Given the notation of AdaBoost Algorithm 3, let γt = 1
2 − εt.

Then the fraction of training examples with margin at most r is at most

T∏
t=1

√
(1 + 2γt)

1+r
(1− 2γt)

1−r
. (21)

When
√

(1− 2γ)1−r(1 + 2γ)1+r < 1, this bound implies that the fraction of training examples with
yf(x) ≤ r decreases to zero exponentially fast with T , and must actually be equal to zero at some
point since this fraction must always be O(1/m). In a word, optimizing the exponential loss function
for classification tasks can get a classifier with good margin distribution.

Boosting is not the only classification method that seems to operate on the principle of margin
maximization. In particular, Support Vector Machines (SVMs), which are based explicitly on this
principle, are currently very popular due to their effectiveness for general machine-learning tasks.
SVMs can be formulated as optimizing a hinge loss with `2 regularization. However, SVMs focus on
maximizing the minimum margin which is similar to the arc-gv algorithm. Although such methods
may succeed at increasing the minimum margin among all training examples, this increase may come
at the expense of the vast majority of the other training examples, so that although the minimum
margin increases, the bulk of the margin distribution decreases.
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Figure 5: A simple illustration of linear separators optimizing the minimum margin, margin mean and
margin distribution, respectively. hmin represents the classifier learned by maximizing the minimum
margin. hmean represents that learned by maximizing the margin mean. hdist represents that learned
by optimizing the margin distribution through maximizing the margin variance and minimizing the
margin variance simultaneously.

Compared with maximizing the minimum margin, the optimal margin distribution principle [16, 28]
conjecture that maximizing the margin mean and minimizing the margin variance is the key to
achieving a better generalization performance. Figure 5 shows that optimizing the margin distribution
with first- and second-order statistics can utilize more information on training data, e.g. the covariance
among the different features. Inspired by this idea, Zhang & Zhou [28] propose the optimal margin
distribution machine (ODM) which can be formulated as:

min
w,ξi,εi

Ω(w) +
λ

m

m∑
i=1

ξ2
i + µε2i

(1− θ)2

s.t. γh (xi, yi) ≥ 1− θ − ξi
γh (xi, yi) ≤ 1 + θ + εi,∀i

(22)

where θ + ξi and θ + εi are the deviation of the margin γh(xi, yi) to the margin mean, µ ∈ (0, 1] is a
parameter to trade off two different kinds of deviation (larger or less than margin mean). θ ∈ [0, 1) is
a parameter of the zero-loss band, which can control the number of support vectors, i.e., the sparsity
of the solution, and (1 − θ)2 in the denominator is to scale the second term to be a surrogate loss
for 0-1 loss. Similar to support vector machines (SVMs), we can give ODM an intuitive illustration
in Figure 6. Similar to formulating support vector machines as a combination of the hinge loss
and the regularization term, we can use margin distribution loss function `md defined in (17) and a
regularization term to represent the ODM. The simplified version margin distribution loss function
(14) is similar to that of the ODM. Our forest representation learning approach requires as many
samples as possible to train the model and generate the augmented features. Therefore, we remove
the parameter θ which can control the number of support vectors. Our loss function is to optimize the
margin distribution to minimize the margin ratio λ, referring to Remark 2 in Section 3.

C Complete Proofs for Section 3

C.1 Preliminaries

For simplicity, we consider the binary classification task. We define the strong classifier as
F (x) =

∑T
t=1 αtht, i.e., CASDF is formulated as an additive model. Now we define the mar-

gin for sample (x, y) as yF (x) ∈ [−1, 1], which implies the confidence of prediction. We assume
that the hypotheses setH of base classifiers {h1, h2, . . . , hT } can be decomposed as the union of T
familiesH1,H2, . . . ,HT ordered by increasing complexity, where ∀t ≥ 1,Ht ⊂ Ht+1 and ht ∈ Ht.
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Figure 6: A simple illustration of optimal margin distribution machine (ODM). We assume that
the margin mean is preset to a constant 1, so that θ is somewhat a parameter which implies the
margin variance. Since the sample points away form margin mean, i.e., ξi > 0 ∨ εi > 0, will be
imposed a square-type penalty, [1− θ, 1 + θ] is the zero-loss band to contain as much training data as
possible. At last, when we minimize the margin distribution loss with a regularization term Ω(w),
we maximize the normalized margin mean 1

Ω(w) with a margin variance controlled by parameter θ.

Remarkably, the complexity term admits an explicit dependency in terms of the mixture coefficients
defining the ensembles. Thus, the ensemble family we consider is F = conv

(⋃T
t=1Ht

)
, which is

the family of functions F (x) of the form F (x) =
∑T
t=1 αtht(x), where α = (α1, . . . , αT ) is in the

simplex ∆.

For a fixed g = (1, . . . , gT ), any α ∈ ∆ defines a distribution over {g1, . . . , gT }. Sampling
from {g1, . . . , gT } according to α and averaging leads to functions G = 1

n

∑T
i=1 ntgt for some

n = (n1, . . . , nT ), with
∑T
t=1 nt = n, and gt ∈ Ht. For any N = (N1, . . . , NT ) with |N| = n, we

consider the family of functions

GF,N =

 1

n

T∑
k=1

Nk∑
j=1

gk,j

∣∣∣∣∣∣ ∀(k, j) ∈ [T ]× [Nk], gk,j ∈ Hk

 , (23)

and the union of all such families GF,n =
⋃
|N=n| GF,N. For a fixed N, the size of GF,N can be

bounded as follows:

ln |GF,N| ≤ ln

(
T∏
t=1

|Ht|Nt

)
=

T∑
t=1

(Nt ln |Ht|) = n

T∑
t=1

(αt ln |Ht|) ≤ n ln

T∑
t=1

αt|Ht| (24)

Technical lemmas:
Lemma 2 (Chernoff bound [6]). LetX,X1, . . . , Xm bem+1 i.i.d. random variables withX ∈ [0, 1].
Then, for any ε > 0, we have

Pr[
1

m

m∑
i=1

Xi ≥ E[X] + ε] ≤ exp

(
−mε

2

2

)
, (25)

Pr[
1

m

m∑
i=1

Xi ≤ E[X]− ε] ≤ exp

(
−mε

2

2

)
. (26)

Lemma 3 (Gao & Zhou [16]). For independent random variables X1, X2, . . . , Xm(m ≥ 5) with
values in [0, 1], and for δ ∈ (0, 1), with probability at least 1− δ we have

1

m

m∑
i=1

E[Xi]−
1

m

m∑
i=1

Xi ≤

√
2V̂m ln(2/δ)

m
+

7 ln(2/δ)

3m
, (27)
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1

m

m∑
i=1

E[Xi]−
1

m

m∑
i=1

Xi ≥ −

√
2V̂m ln(2/δ)

m
− 7 ln(2/δ)

3m
. (28)

where V̂m =
∑
i 6=j(Xi −Xj)

2/2m(m− 1)

C.2 Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. For λ > 0, according to the Markov’s inequality, we have
Pr

S,GF,n

[yG(x)− yF (x) ≥ ε] = Pr
S,GF,n

[(yG(x)− yF (x))nλ/2 ≥ nλε/2] (29)

≤ exp

(
−λnε

2

)
ES,Gj∈GF,n

exp

λ
2

n∑
j=1

(yGj(x)− yF (x))


(30)

= exp

(
−λnε

2

) n∏
j=1

ES,Gj∈GF,n

[
exp

(
λ

2
(yGj(x)− yF (x))

)]
(31)

where the last inequality holds from the independent of Gi. Notice that |yGj(x)− yF (x)| ≤ 2 (the
margin is bounded: yF (x) ∈ [−1, 1]), using Taylor’s expansion, we get

ES,Gj∈GF,n

[
exp

(
λ

2
(yGj(x)− yF (x))

)]
≤ 1 + ES,Gj∈GF,n

[(yGj(x)− yF (x))2]
eλ − 1− λ

4
(32)

≤ 1 + ES [1− (yF (x))2]
eλ − 1− λ

4
(33)

≤ exp(1− E2
S [yF (x)])

eλ − 1− λ
4

(34)

where the last inequality holds from Jensen’s inequality and 1 + x ≤ ex. Therefore, we have

Pr
S,GF,n

[yG(x)− yF (x) ≥ ε] ≤ exp

(
n(eλ − 1− λ)(1− ES [yF (x)])

4
− λnε

2

)
(35)

If 0 < λ < 3, then we could use Taylor’s expansion again to have

eλ − λ− 1 =

∞∑
i=2

λi

i!
≤ λ2

2

∞∑
m=0

λm

3m
=

λ2

2(1− λ/3)
. (36)

Now by picking λ = ε
1/2−E2

S [yF (x)]/2+ε/3
, we have

− λε

2
+
λ2(1− E2

S [yF (x)])

8(1− λ/3)
≤ −ε2

2− 2E2
S [yF (x)] + 4ε/3

(37)

By Combining (35) and (37) together, we complete the proof.

Proof of Theorem 1. For F =
∑T
t=1 αtht ∈ F and G ∈ GF,n, we have EG∈GF,n

[G] = F . For
β > 0, the Chernoff’s bound in Lemma 2 gives

Pr
D

[yF (x) < 0] = Pr
D,GF,n

[yF (x) < 0, yG(x) ≥ β] + Pr
D,GF,n

[yF (x) < 0, yG(x) < β] (38)

≤ exp(−nβ2/2) + Pr
D,GF,n

[yG(x) < β]. (39)

Recall that |GF,N | ≤
∏T
t=1 |Ht|Nt for a fixed N . Therefore, for any δn > 0, combining the union

bound with Lemma 3 guarantees that with probability at least 1−δn over sample S, for anyG ∈ GF,N
and β > 0

Pr
D

[yG(x) < β] ≤ Pr
S

[yG(x) < β] +

√√√√ 2

m
V̂m ln

(
2

δ

T∏
t=1

|Ht|Nt

)
+

7

3m
ln

(
2

δ

T∏
t=1

|Ht|Nt

)
(40)
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= Pr
S

[yG(x) < β] +

√√√√ 2

m
V̂m

T∑
i=1

Nt ln

(
2|Ht|
δ

)
+

7

3m

T∑
i=1

Nt ln

(
2|Ht|
δ

)
(41)

≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m

T∑
i=1

αt ln

(
2|Ht|
δ

)
+

7n

3m

T∑
i=1

αt ln

(
2|Ht|
δ

)
(42)

≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m ln

(
2
∑T
i=1 αt|Ht|
δ

)
+

7n

3m
ln

(
2
∑T
i=1 αt|Ht|
δ

)
(43)
(44)

where

V̂m =
∑
i 6=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
, (45)

The inequality (42) is a large probability bound when n is large enough and inequality (43) is
according to the Jensen’s Inequality. Since there are T at most Tn possible T -tuples N with |N | = n,
by the union bound, for any δ > 0, with probability at least 1− δ, for all G ∈ GF,n and β > 0:

Pr
D

[yG(x) < β] ≤ Pr
S

[yG(x) < β] +

√√√√2n

m
V̂m ln

(
2
∑T
i=1 αt|Ht|
δ/Tn

)
+

7n

3m
ln

(
2
∑T
i=1 αt|Ht|
δ/Tn

)
(46)

Meantime, we can rewrite V̂m

V̂m =
∑
i6=j

(I[yiG(xi) < β]− I[yjG(xj) < β])2

2m(m− 1)
(47)

=
2m2 PrS [yG(x) < β] PrS [yG(x) ≥ β]

2m(m− 1)
(48)

=
m

m− 1
V̂ ∗m (49)

For any θ1, θ2 > 0, we utilize Chernoff’s bound in Lemma 3 to get:

V̂ ∗m = Pr
S

[yG(x) < β] Pr
S

[yG(x) ≥ β] (50)

≤ 3 exp(−nθ2
1/2) + Pr

S
[yF (x) < β + θ1] Pr

S
[yF (x) ≥ β − θ1] (51)

≤ 3 exp(−nθ2
1/2) + Pr

S
[yF (x) < β + θ1 |ES [yF (x)] ≥ β + θ1 + θ2 ] (52)

· Pr
S

[yF (x) ≥ β − θ1|ES [yF (x)] ≥ β + θ1 + θ2]

≤ 3 exp(−nθ2
1/2) +

Var[yF (x)]

θ2
2

(According to Chebyshev’s Inequality)

≤ 3 exp(−nθ2
1/2) +

Var[yF (x)]

(ES [yF (x)]− β + θ1)2
(53)

' 3 exp(−nθ2
1/2) +

Var[yF (x)]

E2
S [yF (x)]

(54)

where Var[yF (x)] = ES [(yF (x))2]− E2
S [yF (x)] is the variance of the margins.

From Lemma 1, we obtain that

Pr
S

[yG(x) < β] ≤ Pr
S

[yF (x) < β + θ1] + exp

(
−nθ2

1

2− 2E2
S [yF (x)] + 4θ1/3

)
(55)
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Let θ1 = r/6, β = 5r/6 and n = lnm/r2, then we combine (39), (40), (54) and (55), the proof is
completed.

D Extended Experiments

D.1 Comparison with the other mdDF structures

Here we compare our mdDF with three other mdDF structures on different datasets: (1) mdDF
using same forests (use 4 random forests), i.e., mdDFSF; (2) mdDF using stacking (only transmit
the prediction vectors to next layer), i.e., mdDFST; (3) mdDF without PRECONC (only transmit the
input feature vector to next layer), i.e., mdDFNP. In this way, we explore the importance of internal
structures (different types of forest and PRECONC operation) of the mdDF.

The experimental results are in line with our expectations. When we remove a concrete structure
while controlling other variables, the generalization performance of the mdDF approach will be
worse. This empirical result demonstrates the effectiveness of these specific model structures.

D.2 Margin ratio and feature visualization

Relation between the margin ratio and learning ability. We conduct experiments on the HAR,
PROTEIN, MNIST and ADULT data sets with mdDF and record the changes in accuracy when the
layer increases in Figure 7. Similar to Schapire et al. [25], we plot the changes in accuracy. It is clear
that mdDF achieves 100% accuracy on training sets in less than 3 layers and stays the same ever since.
However, the test accuracy keeps increasing when the layer increasing more than 3 layers. As we
show in Theorem. 1, the margin distribution is crucial to explain why the algorithm seems resistant to
the overfitting problem. Especially, we can evaluate the margin distribution by calculating the ratio of
margin variance to square of margin mean. We show that the margin ratio λ and distribution varies
with the layers, i.e., the margin mean becomes larger and the margin variance become smaller in
Figure 7.

Since the performance of mdDF model is excellent, we hope to see that the distributions of data
in the learned feature space (in different layers) are consistent with the generalization ability. In
this experiment, we use the t-SNE method to visualize the data distribution in different layers for
training samples and test samples. Figure 8 plots the 2-dimension embedding image on several
high-dimensional datasets. The t-SNE [21] is a tool to visualize high-dimensional data. It converts
similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler di-
vergence between the joint probabilities of the low-dimensional embedding and the high-dimensional
data.

All these experiments and visualizations confirm the effectiveness of mdDF in terms of performance
and representation learning ability. Furthermore, the empirical results show the correlation between
margin ratio and generalization performance. We can find that the visualization of mdDF is getting
better as the layer becomes deeper, the intra-class compactness and inter-class separability of learned
feature space are getting better. To quantify the degree of compactness of the distribution, we perform
a variance decomposition on the data in the embedding space. Such a correlation validates the
theoretical result of our refined margin distribution analysis.

Table 2: Comparison results between mdDF and the other mdDF structures on test accuracy with
different datasets.

Dataset mdDFSF mdDFST mdDFNP mdDF

ADULT 86.200 85.710 85.650 86.560
YEAST 63.000 62.780 62.556 63.340
LETTER 96.475 97.300 96.975 97.500
PROTEIN 71.127 70.291 68.509 71.247
HAR 93.926 94.290 94.060 94.600
SENSIT 82.014 80.412 80.320 82.534
SATIMAGE 91.600 91.300 90.800 91.750
MNIST 98.254 98.101 98.240 98.734
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Figure 7: The training & test accuracy (solid) and margin ratio (dot-dashed) of mdDF model in
different layers on the HAR (a), PROTEIN (c), MNIST (e) and ADULT (g) data sets . Margin rate
in different layers on the UCI HAR data set. Margin distribution of mdDF model on the HAR (b),
PROTEIN (d), MNIST (f) and ADULT (h) data sets .
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Figure 8: Multi-layer feature visualization of mdDF on HAR training set (a), test set (b), PROTEIN
training set (c), test set (d), MNIST training set (e) and test set (f). We do the variance decomposition
in this 2D space, and the ratio of the intra-class variance to the inter-class variance SA/SE can be
obtained as follows: (a) [3.88, 1.97, 0.72, 0.65], (b) [1.69, 0.88, 0.75, 0.51], (c) [15.12, 10.02, 7.5,
1.3], (d) [16.01, 14.85, 12.33, 9.86], (e) [0.43, 0.38, 0.15, 0.03], (f) [0.45, 0.43, 0.21, 0.11], i.e., the
intra-class compactness and inter-class separability is getting better as the layer becomes deeper.
Extensive margin distribution results are shown as a curve in Figure 7 correspondingly.
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