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Abstract

Classical multi-armed bandit problems use the expected value of an arm as a metric
to evaluate its goodness. However, the expected value is a risk-neutral metric. In
many applications like finance, one is interested in balancing the expected return
of an arm (or portfolio) with the risk associated with that return. In this paper,
we consider the problem of selecting the arm that optimizes a linear combination
of the expected reward and the associated Conditional Value at Risk (CVaR) in a
fixed budget best-arm identification framework. We allow the reward distributions
to be unbounded or even heavy-tailed. For this problem, our goal is to devise
algorithms that are entirely distribution oblivious, i.e., the algorithm is not aware of
any information on the reward distributions, including bounds on the moments/tails,
or the suboptimality gaps across arms.
In this paper, we provide a class of such algorithms with provable upper bounds
on the probability of incorrect identification. In the process, we develop a novel
estimator for the CVaR of unbounded (including heavy-tailed) distributions and
prove a concentration inequality for the same, which could be of independent
interest. We also compare the error bounds for our distribution oblivious algorithms
with those corresponding to standard non-oblivious algorithms. Finally, numerical
experiments reveal that our algorithms perform competitively when compared with
non-oblivious algorithms, suggesting that distribution obliviousness can be realised
in practice without incurring a significant loss of performance.

1 Introduction

The multi-armed bandit (MAB) problem is fundamental in online learning, where an optimal option
needs to be identified among a pool of available options. Each option (or arm) generates a random
reward/cost when chosen (or pulled) from an underlying unknown distribution, and the goal is to
quickly identify the optimal arm by exploring all possibilities.

Classically, MAB formulations consider reward distributions with bounded support, typically [0, 1].
Moreover, the support is assumed to be known beforehand, and this knowledge is baked into the
algorithm. However, in many applications, it is more natural to not assume bounded support for the
reward distributions, either because the distributions are themselves unbounded, or because a bound
on the support is not known a priori. There is some literature on MAB formulations with (potentially)
unbounded rewards; see, for example, Bubeck et al. [2013], Vakili et al. [2013]. Typically, in these
papers, the assumption of a known bound on the support of the reward distributions is replaced with
the assumption that certain bounds on the moments/tails of the reward distributions are known.1
However, such access to prior information is not always practical, and goes against the spirit of
online learning. This motivates the design and analysis of algorithms for the MAB problem that are
distribution oblivious, i.e., algorithms that have zero prior knowledge about the reward distributions.

1Additionally, many algorithms require knowledge of a lower bound on the sub-optimality gap between arms.
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Furthermore, the typical metric used to quantify the goodness of an arm in the MAB framework is its
expected return, which is a risk-neutral metric. In some applications, particularly in finance, one is
interested in balancing the expected return of an arm with the risk associated with that arm. This is
particularly relevant when the underlying reward distributions are unbounded, even heavy-tailed, as
is found to be the case with portfolio returns in finance Bradley and Taqqu [2003]. In these settings,
there is a non-trivial probability of a ‘catastrophic’ outcome, which motivates a risk-aware approach
to optimal arm selection.

In this paper, we seek to address the two issues described above. Specifically, we consider the problem
of identifying the arm that optimizes a linear combination of the reward and the Conditional Value at
Risk (CVaR) in a fixed budget (pure exploration) MAB framework. The CVaR is a classical metric
used to capture the risk associated with an option/portfolio Artzner et al. [1999]. We make very
mild assumptions on the reward distributions (the existence of a (1 + ε)th moment for some ε > 0),
allowing for unbounded support and even heavy tails. In this setting, our goal is to design algorithms
that are entirely distribution oblivious.

The main contribution of this paper is the design and analysis of distribution oblivious algorithms
for the risk-aware best arm identification problem described above. These algorithms are based on
truncation-based estimators for the mean and CVaR, where the truncation parameters are scaled suit-
ably as the algorithm runs. We prove upper bounds on the probability of incorrect arm identification
for these algorithms that have the form O(exp(−γT 1−q)), where T is the budget of arm pulls, γ > 0
is a constant that depends on the arm distributions, and q ∈ (0, 1) is an algorithm parameter. Note the
slower-than-exponential decay in the probability of erroneous arm identification with respect to T.
This is a consequence of the distribution obliviousness of the proposed algorithms. Indeed, in the
non-oblivious setting, it is easy to develop algorithms with an O(exp(−γ′T )) probability of error.
Moreover, numerical experiments show that the proposed distribution oblivious algorithms perform
competitively when compared with standard non-oblivious algorithms. This suggests that distribution
obliviousness can be realised in practice without incurring a significant performance hit. Finally, we
note that the truncation-based CVaR estimator used in our algorithms is novel, and the concentration
inequality we prove for this estimator may be of independent interest.

The remainder of this paper is organized as follows. A brief survey of the related literature is
provided below, followed by some preliminaries. Our CVaR concentration results are presented
in Section 2, and our distribution oblivious algorithms for risk-aware best arm identification are
proposed and analysed in Section 3. Numerical experiments are presented in Section 4, and we
conclude in Section 5. Throughout the paper, references to the appendix (primarily for proofs) point
to the ‘additional material’ document uploaded separately.

1.1 Related Literature

There is a considerable body of literature on the multi-armed bandit problem. We refer the reader to
Bubeck and Cesa-Bianchi [2012], Lattimore and Szepesvári [2018] for a comprehensive review. Here,
we restrict ourselves to papers that consider (i) unbounded reward distributions, and (ii) risk-aware
arm selection.

The papers that consider MAB problems with (potentially) heavy-tailed reward distributions include:
Bubeck et al. [2013], Vakili et al. [2013], Carpentier and Valko [2014], which consider the regret
minimization framework, and Yu et al. [2018], which considers the pure exploration framework.
All the above papers take the expected return of an arm to be its goodness metric. Bubeck et al.
[2013], Vakili et al. [2013] assume prior knowledge of moment bounds and/or the suboptimality gaps.
Carpentier and Valko [2014] assumes that the arms belong to parameterized family of distributions
satisfying a second order Pareto condition. Yu et al. [2018] does analyse one distribution oblivious
algorithm (see Theorem 2 in the paper), though the performance guarantee derived there is much
weaker than the ones proved here; we elaborate on this in Section 3.

There has been some recent interest in risk-aware multi-armed bandit problems. Sani et al. [2012]
considers the setting of optimizing a linear combination of mean and variance in the regret minimiza-
tion framework. In the pure exploration setting, VaR-optimization has been considered in David and
Shimkin [2016], David et al. [2018]. However, the CVaR is a more preferable metric because it is a
coherent risk measure (unlike the VaR); see Artzner et al. [1999]. Strong concentration results for
VaR are available without any assumptions on the tail of the distribution Kolla et al. [2019], whereas
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concentration results for CVaR are more difficult to obtain. Assuming bounded rewards, Galichet
et al. [2013] have considered the problem of CVaR-optimization. In a recent paper, Prashanth et al.
[2019] consider CVaR optimization with heavy tailed distributions, but they assume prior knowledge
of moment bounds. None of the above papers consider the problem of risk-aware arm selection in a
distribution oblivious fashion, as is done here.

1.2 Preliminaries

Here, we define the Value at Risk (VaR) and the Conditional Value at Risk (CVaR), and state the
assumptions we make in this paper on the arm distributions.

For a random variable X, given a prescribed confidence level α ∈ (0, 1), the Value at Risk (VaR) is
defined as vα(X) = inf(ξ : P(X ≤ ξ) ≥ α). IfX denotes the loss associated with a portfolio, vα(X)
can be interpreted as the worst case loss corresponding to the confidence level α. The Conditional
Value at Risk (CVaR) of X at confidence level α ∈ (0, 1) is defined as

cα(X) = vα(X) +
1

1− α
E[X − vα(X)]+,

where [z]+ = max(0, z). Both VaR and CVaR are used extensively in the finance community as
measures of risk, through the CVaR is often preferred as mentioned above. Typically, the confidence
level α is chosen between 0.95 and 0.99. Throughout this paper, we use the CVaR as a measure of the
risk associated with an arm. We define β := 1− α. For the special case where X is continuous with
a cumulative distribution function (CDF) FX that is strictly increasing over its support, vα(X) =
F−1
X (α). In this case, the CVaR can also be written as cα(X) = E [X|X ≥ vα(X)]. Going back to

our portfolio loss analogy, cα(X) can, in this case, be interpreted as the expected loss conditioned on
the ‘bad event’ that the loss exceeds the VaR.

For our analysis, we assume that the arm distributions satisfy the following condition: A random
variable X satisfies condition C1 if there exists p > 1 and B <∞ such that E [|X|p] < B. Note that
C1 is only mildly more restrictive than assuming the well-posedness of the MAB problem, which
requires E [|X|] <∞.2 In particular, all light-tailed distributions and most heavy-tailed distributions
used and observed in practice satisfy C1.

2 CVaR Concentration

In this section, we derive a concentration inequality for an estimator of the CVaR corresponding
to a distribution with unbounded support. The key feature of this concentration inequality is that
it makes very mild assumptions on the tail of the distribution; specifically, our concentration result
applies even to heavy-tailed distributions (unlike prior results in the literature, that assume a bounded
distribution Wang and Gao [2010], or a subgaussian/subexponential tail Kolla et al. [2019]). This
CVaR concentration result (Theorem 2 below), while of independent interest, will be invoked in
Section 3 to prove guarantees on our algorithms for the risk-aware multi-armed bandit problem.

Assume that {Xi}ni=1 are n i.i.d. samples distributed as the random variable X. Let {X[i]}ni=1 denote
the order statistics of {Xi}ni=1 i.e., X[1] ≥ X[2] · · · ≥ X[n]. Recall that the classical estimator for
cα(X) given the samples {Xi}ni=1 is

ĉn,α(X) = X[dnβe] +
1

nβ

bnβc∑
i=1

(X[i] −X[dnβe]).

We begin by proving a concentration inequality for ĉn,α(X) for the special case when X is bounded.
Theorem 1. For b > 0, suppose that X satisfies supp(X) ⊆ [−b, b]. Then for any ε > 0,

Pr (|ĉn,α(X)− cα(X)| ≥ ε) ≤ 6exp
(
− nβ(ε/b)2

34 + 4.4ε/b

)
.

Theorem 1 is a refinement of the CVaR concentration inequality for bounded distributions in Wang
and Gao [2010]. The proof can be found in Appendix A.

2Of course, our distribution oblivious algorithms do not know the values of p,B for any of the arms.
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We now use Theorem 1 to develop a CVaR concentration inequality for unbounded (potentially
heavy-tailed) distributions. In particular, our concentration inequality applies to the following
truncation-based estimator. For b > 0, define

X
(b)
i = min(max(−b,Xi), b).

Note that X(b)
i is simply the projection of Xi onto the interval [−b, b]. Let {X(b)

[i] }
n
i=1 denote the

order statistics of truncated samples {X(b)
i }ni=1. Our estimator ĉ(b)n,α(X) for cα(X) is simply the

empirical CVaR estimator for X(b) := min(max(−b,X), b), i.e.,

ĉ(b)n,α(X) = ĉn,α(X(b)) = X
(b)
[dnβe] +

1

nβ

bnβc∑
i=1

(X
(b)
[i] −X

(b)
[dnβe]).

Note that the nature of truncation performed here is different from that in the conventional truncation-
based mean estimators (see, for example, Bubeck et al. [2013]), where samples with an absolute value
greater than b are set to zero. In contrast, our estimator projects these samples to the interval [−b, b].
This difference plays an important role in establishing the concentration properties of the estimator.

We are now ready to state our main result, which shows that the truncation-based estimator ĉ(b)n,α(X)
works well when the truncation parameter b is large enough.
Theorem 2. Suppose that {Xi}ni=1 are i.i.d. samples distributed as X, where X satisfies condition
C1. Given ∆ > 0,

Pr
(
|cα(X)− ĉ(b)n,α(X)| ≥ ∆

)
≤ 6exp

(
− n(1− α)

∆2

154b2

)
(1)

for b > max

(
∆

2
, |vα(X)|,

[
2B

∆(1− α)

] 1
p−1

)
. (2)

The proof of Theorem 2 can be found in Appendix B. The key feature of truncation-based estimators
like the one proposed here for the CVaR is that they enable a parameterized bias-variance trade-off.
While the truncation of the data itself adds a bias to the estimator, the boundedness of the (truncated)

data limits the variability of the estimator. Indeed, the condition that b >
[

2B
∆(1−α)

] 1
p−1

in the
statement of Theorem 2 ensures that the estimator bias induced by the truncation is at most ∆/2.

In practice, one might not know the values of vα(X), B, p or even ∆ (as is the case in MAB
problems), so ensuring that the lower bound on b is satisfied is problematic.3 The natural strategy
to follow then is to set the truncation parameter as an increasing function of the number of data
samples n, which ensures that (2) holds for large enough n. Moreover, it is clear from (1) that for the
estimation error to (be guaranteed to) decay with n, b2 can grow at most linearly in n. Indeed, for our
bandit algorithms, we set b = nq, where q ∈ (0, 1/2).

Finally, it is tempting to set b in a data-driven manner, i.e., to estimate the VaR, moment bounds and
so on from the data, and set b large enough so that (2) holds with high probability. The issue however
is that b then becomes a (data-dependent) random variable, and proving concentration results with
such data-dependent truncation is much harder.

3 Risk-aware, distribution oblivious algorithms for MAB

In this section, we formulate the problem of best arm identification in a risk-aware fashion, propose
algorithms, and prove performance guarantees for these algorithms.

Consider a multi-armed bandit problem with K arms, labeled 1, 2, · · · ,K. The loss (or cost) asso-
ciated with arm i is distributed as X(i), where it is assumed that there exists p > 1 and B < ∞

3We note here that |vα(X)| can be upper bounded in terms of p and B as follows: |vα(X)| ≤
(

B
min(α,β)

) 1
p

(see Appendix C.2). Thus, b >
(

B
min(α,β)

) 1
p implies b > |vα(X)|.
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such that E [|X(i)|p] < B for all i.4 Each time an arm i is pulled, an independent sample distributed
as X(i) is observed. Given a fixed budget of T arm pulls in total, our goal is to identify the arm
that minimizes ξ1E [X(i)] + ξ2cα(X(i)), where ξ1 and ξ2 are non-negative (and given) weights.
(ξ1, ξ2) = (1, 0) corresponds to the classical mean minimization problem Audibert et al. [2010],
Yu et al. [2018], whereas (ξ1, ξ2) = (0, 1) corresponds to a pure CVaR minimization Galichet et al.
[2013], Prashanth et al. [2019]. Optimization of a linear combination of the mean and CVaR has
been considered before in the context of portfolio optimization in the finance community, but not,
to the best of our knowledge, in the MAB framework. The performance metric we consider is the
probability of incorrect arm identification.

We also assume that there is a unique optimal arm. This is purely for simplicity in expressing our
performance guarantees; it is straightforward to extend these to the setting where there are multiple
optimal arms. Let the ordered sub-optimality gaps for the metric ξ1E [X(·)] + ξ2cα(X(·)) be denoted
by ∆[2], · · · ,∆[K]; here, 0 < ∆[2] ≤ · · · ≤ ∆[K].

Finally, recall that we consider an entirely distribution oblivious environment. In other words, the
algorithm does not have any prior information about the arm distributions, including the values of p
and B. This is in contrast with the most of the literature on MAB problems, where information about
the support of the arm distributions, bounds on their moments and/or sub-optimality gaps are baked
into the algorithms.5

3.1 Algorithms

We estimate the performance of each arm as follows. Suppose that arm i has been pulled n times,
and we observe samples Xi

1, X
i
2, · · · , Xi

n. We use the following truncated empirical estimator (see
Bickel [1965], Bubeck et al. [2013]) for the mean value associated with the arm:

µ̂†n(i) :=

∑n
j=1X

i
j1
{
|Xi

j | ≤ bm(n)
}

n
,

where bm(n) = nqm for qm ∈ (0, 1). Note that we are growing the truncation parameter bm sub-
linearly in n. Our estimator for the CVaR associated with arm i is the one developed in Section 2,
i.e.,

ĉ†n,α = ĉ(bc(n))
n,α ,

where bc(n) = nqc for qc ∈ (0, 1/2).

Our algorithms are of successive rejects (SR) type Audibert et al. [2010]. They are parameterized by
non-negative integers n1 ≤ n2 ≤ · · · ≤ nK−1 satisfying

∑K−2
i=1 ni + 2nK−1 ≤ T. The algorithm

proceeds in K − 1 phases, with one arm being rejected from further consideration at the end of
each phase. In phase i, the K − 1 + i arms under consideration are pulled ni − ni−1 times, after
which the arm with the worst (estimated) performance is rejected. This is formally expressed in
Algorithm 1. The classical successive rejects algorithm in Audibert et al. [2010] used nk ∝ T−K

K+1−k .

Another special case is uniform exploration (UE), where n1 = n2 = · · ·nK−1 = bT/Kc. As the
name suggests, under uniform exploration, all arms are pulled an equal number of times, after which
the arm with the best estimate is selected.

If the time horizon T is not known a priori, an any-time variant can be constructed by modifying the
UE algorithm using the doubling trick Lattimore and Szepesvári [2018]. The classical SR algorithm,
however, cannot be made any-time since the duration of each phase depends on the horizon T.

3.2 Performance evaluation

We now state upper bounds on the probability of incorrect arm identification under the successive
rejects and uniform exploration algorithms. However, our bounding techniques easily extend to the
complete class of generalized successive rejects algorithms described in Algorithm 1.

4We pose the problem as (risk-aware) loss minimization, which is of course equivalent to (risk-aware) reward
maximization.

5While the algorithms we propose are distribution oblivious, their performance guarantees will of course
depend on the arm distributions.
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Algorithm 1 Generalized successive rejects algorithm

procedure GSR(T,K, {n1, · · · , nK−1})
A1 ← {1, · · · ,K}
n0 ← 0
for k = 1 to K − 1 do

for i ∈ Ak do
Sample arm i for nk − nk−1 rounds.

end for
ã← arg maxi∈Akξ1µ

†
nk

(i) + ξ2ĉ
†
nk,α

(i)
Ak+1 ← Ak \ ã

end for
Output unique element of AK

end procedure

Theorem 3. Suppose that the arm distributions satisfy the condition C1. Under the uniform explo-
ration algorithm, the probability of incorrect arm identification pe is bounded as

pe ≤ 2Kexp
(
− (T/K)1−qm ∆[2]

16ξ1

)
+ 6Kexp

(
− (T/K)1−2qc

β∆[2]2

2464ξ2
2

)
for T > Kn∗, where

n∗ = max

((12ξ1B

∆[2]

) 1
qm min(p−1,1)

,
( 8ξ2B

β∆[2]

) 1
qc(p−1)

,
( B

min(α, β)

) 1
qcp

,
(∆[2]

8ξ2

) 1
qc

)
.

The proof of Theorem 3 can be found in Appendix C. Here, we highlight the main takeaways from
this result.

First, note that the probability of error (incorrect arm identification) decays to zero as T → ∞.
However, the decay is slower than exponential in T ; taking qm = q, qc = q/2 for q ∈ (0, 1), the
probability of error is O(exp(−γT 1−q)) for a positive constant γ. This slower-than-exponential
bound is a consequence of the distribution obliviousness of the algorithm. In technical terms, this
results from having to set the truncation parameters bm and bc for each arm as increasing functions of
the horizon T. Indeed, as we show in Section 3.3, if B, p, and ∆[2] are known to the algorithm (as is
often assumed in the literature), then it is possible to achieve an exponential decay of the probability
of error with T ; in this case, it is possible to simply set the truncation parameters as static constants
(that do not depend on T ).

Second, our upper bounds only hold when T is larger than a certain threshold. This is again a
consequence of distribution obliviousness—the concentration inequalities on our truncated estimators
are only valid when the truncation interval is wide enough. This is required in order to limit the bias
of these estimators. As a consequence, our performance guarantees only kick in once the horizon
length is large enough to ensure that this condition is met. As expected, in the non-oblivious setting,
this limitation does not arise, since the truncation parameters can be statically set to be large enough
to limit the bias (see Section 3.3).

Third, there is a natural tension between the bound for the probability of error and the threshold on
T beyond which they are applicable, with respect to the choice of truncation parameters qm and qc.
In particular, the upper bound on pe decays fastest with respect to T when qm, qc ≈ 0. However,
choosing qm, qc to be small would make the threshold on the horizon to be large, since the bias of
our estimators would decay slower with respect to T. Intuitively, smaller values of qm, qc limit the
variance of our estimators (which is reflected in the bound for pe) at the expense of a greater bias
(which is reflected in the threshold on T ), whereas larger values qm, qc limit the bias at the expense
of increased variance. We comment on the best choice of these parameters as suggested by numerical
experimentation in Section 4.

Finally, we note that the bound on the probability of error in Theorem 4 is stronger than the power
law bound corresponding to the distribution oblivious algorithm for the mean metric analysed in
Yu et al. [2018]. The latter uses the standard (non-truncated) empirical mean estimator, which has
weaker concentration properties compared to the truncated empirical mean estimator used here.
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Next, we consider the successive rejects algorithm. Let log(K) := 1/2 +
∑K
i=2 1/i.

Theorem 4. Let the arms satisfy the condition C1. The probability of incorrect arm identification for
the successive rejects algorithm is bounded as follows.

pe ≤
K∑
i=2

(K + 1− i)2exp
(
− 1

16ξ1

( T −K
log(K)

)1−qm ∆[i]

i1−qm

)

+

K∑
i=2

(K + 1− i)6exp
(
− β

2464ξ2
2

( T −K
log(K)

)1−2qc ∆[i]2

i1−2qc

)
for T > K +Klog(K)n∗, where

n∗ = max

((12ξ1B

∆[2]

) 1
qm min(p−1,1)

,
( 8ξ2B

β∆[2]

) 1
qc(p−1)

,
( B

min(α, β)

) 1
qcp

,
(∆[2]

8ξ2

) 1
qc

)
.

Structurally, our results for the successive rejects algorithm are similar to those for uniform exploration.
Indeed, taking qm = q, qc = q/2 for q ∈ (0, 1), the probability of error remains O(exp(−γT 1−q))
for a different positive constant γ. So our conclusions from Theorem 3, including the bias-variance
trade-off in setting the truncation parameters qm and qc, apply to Theorem 4 as well. Intuitively, one
would expect the successive rejects algorithm to perform better when the arms are well separated,
whereas uniform exploration would work well when all sub-optimal arms are nearly identically
separated from the optimal arm.

3.3 The non-oblivious setting

Finally, we consider the non-oblivious setting, where the algorithm knows p, B and ∆[2] (or a lower
bound on ∆[2]). This is the setting that is effectively considered in the bulk of the literature on MAB
algorithms. In this case, we show that it is possible to set the algorithm parameters (specifically, the
truncation parameters) so that we achieve an exponential decay of the probability of error with T.
Moreover, unlike our results for the distribution oblivious case, there is no lower bound on T beyond
which the bounds on the probability of error apply.

In particular, we set truncation threshold for the mean estimator as bm =
(

12Bξ1
∆[2]

) 1
min(1,p−1)

and

the truncation threshold for the CVaR estimator as bc = max

((
8ξ2B
β∆[2]

) 1
p−1

,
(

B
min(α,β)

) 1
p

)
. It can

be shown that this would ensure an exponentially decaying (in T ) probability of error for uniform
exploration as well as successive rejects (see Appendix D).

In conclusion, the results in this section show that one can indeed devise algorithms for risk-aware best
arm identification in an entirely distribution oblivious manner. However, the performance guarantees
we obtain are not as strong as those that can be obtained for non-oblivious algorithms; this is of
course what one would expect.

4 Numerical Experiments

In this section, we evaluate the performance of the proposed algorithms via simulations, by making the
comparison with (more conventional) non-oblivious algorithms. Due to space constraints, we restrict
ourselves to successive rejects (SR) algorithms, and two specific objectives: (i) mean minimization,
i.e., (ξ1, ξ2) = (0, 1), and (ii) CVaR minimization, i.e., (ξ1, ξ2) = (1, 0). In each of the experiments
below, the probability of error is computed by averaging over 50000 runs at each sampled T . For
the mean minimization problem, our results are compared to the non-oblivious truncation based SR
algorithm from Yu et al. [2018] where bm = (6Bp/∆[2])1/min(1,p−1). The proposed oblivious SR
algorithm for CVaR minimization is compared to a non-oblivious truncation based SR algorithm with
bc = (4B/(∆[2]β))1/(p−1), which ensures an exponential decay in T of the error probability upper
bound. For CVaR minimization problems, the confidence level is set to 0.95.

Consider the case when all the arms are light-tailed. In particular, for mean minimization we consider
the following MAB problem instance: there are 10 arms, exponentially distributed, the optimal
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having mean loss 0.97, and the remaining having mean loss 1. For CVaR minimization, consider
the following MAB problem instance: there are 10 arms, exponentially distributed, the optimal
having a CVaR 2.85, and the remaining having a CVaR 3.00. The non-oblivious algorithms also
know that p = 2.0, B = 2.0 for both settings as well as ∆[2] = 0.03 for mean minimization and
∆[2] = 0.15 for CVaR minimization. Oblivious truncation parameters for both the settings are
growing as n0.3. As can be seen in Figure 1a and Figure 1b, the oblivious and the non-oblivious
algorithms perform equally well. The estimators concentrate around the true values easily when the
underlying distributions are light-tailed.

(a) Mean Minimization (b) CVaR Minimization

Figure 1: Exponentially Distributed Arms

Now, consider the case when all the arms are heavy-tailed. For mean minimization we consider the
following MAB problem instance: there are 10 arms, distributed according to the lomax distribution
(scale parameter = 1.8), the optimal arm having mean loss 0.9, and the remaining arms having
mean loss 1. The parameters available to the non-oblivious algorithm are: p = 1.7, B = 10.8 and
∆[2] = 0.1. For CVaR minimization, consider the following MAB problem instance: there are 10
arms, distributed according to lomax distribution (scale parameter = 2.0), the optimal having a CVaR
2.55, and the remaining having a CVaR 3.00. Here, the parameters for the non-oblivious algorithm
are: p = 1.9, B = 0.057 and ∆[2] = 0.45. Note that like the previous case, the truncation parameters
grow as n0.3.

As can be seen in Figure 2a and Figure 2b, the non-oblivious algorithms show a visible hit in perfor-
mance when compared to the oblivious algorithms. The truncation parameters for the non-oblivious
algorithms are much larger compared to the truncation parameters of the oblivious algorithms. The
smaller truncation introduces a bias in estimation but reduces variability of the estimator considerably.
Despite having a smaller bias, the non-oblivious estimators suffer due to the variability induced by
the heavy-tailed cost distributions.

(a) Mean Minimization (b) CVaR Minimization

Figure 2: Lomax Distributed Arms

Finally, we consider the case where we have both light-tailed and heavy-tailed arms. First, consider
the case where the optimal arm is light tailed. The mean minimization MAB problem instance is as
follows: there are 10 arms, five distributed according to lomax distribution (scale parameter=1.8),
and five distributed exponentially, the optimal having mean loss 0.9, and the remaining having
mean loss 1.0. The parameters provided to the non-oblivious algorithm are: p = 1.7, B = 10.8
and ∆[2] = 0.1. For CVaR minimization, we set the confidence value to be 0.95 and consider the
following MAB problem instance: there are 10 arms, five distributed according to lomax distribution
(scale parameter=2.0), and five distributed exponentially, the optimal arm having a CVaR 2.55, and

8



the remaining arms having a CVaR 3.00. The non-oblivious algorithm knows the following: p = 1.9,
B = 0.057 and ∆[2] = 0.45.

It can be observed in Figure 3a and Figure 3b that growing the truncation parameter as n0.3 leads to a
poor performance of the oblivious algorithms. Small truncation parameters lead to an underestimation
of the mean, which affects the heavy tailed arms much more than the light tailed arms and causes
the algorithm to misidentify the sub-optimal heavy tailed arms as optimal. When the truncation
growth is fast enough, for example, n0.8 for mean minimization and n0.45 for CVaR minimization, the
performance is as good as the non-oblivious algorithms, which use estimators with large truncation
values.

(a) Mean Minimization (b) CVaR Minimization

Figure 3: Mixture of Exponential and Lomax Arms with an Exponential Arm Optimal

The case where the optimal arm is heavy-tailed is less interesting. Here, the greater underestimation
of the true value for the heavy tailed arms actually aids the proposed distribution oblivious algorithms.
As a result, the distribution oblivious algorithms perform very well; the results are omitted due to
space constraints.

5 Concluding Remarks

In this paper, we consider the problem of risk-aware best arm selection in a pure exploration MAB
framework. A key feature of our algorithms is distribution obliviousness; the algorithms have no
prior knowledge about the arm distributions. This is in contrast with most algorithms in the literature
for MAB problems, which assume prior knowledge of the support, moment bounds, or bounds on the
sub-optimality gaps. The proposed algorithms come with analytical performance guarantees, and
also seem to perform well in practice.

This paper motivates future work along several directions. First, our numerical experiments suggest
that our upper bounds on the probability of error for the distribution oblivious algorithms are rather
loose. Tighter performance bounds, which would in turn require tighter concentration bounds for
truncation-based estimators, are worth exploring. More importantly, fundamental lower bounds on
the performance of any algorithm need to be devised for the distribution oblivious setting. Currently,
available lower bounds (see Audibert et al. [2010]) on the error probability for best arm identification
do not take into account the information available to the algorithm, and only capture risk-neutral
arm selection. Finally, it is also interesting to explore distribution oblivious algorithms in the regret
minimization framework, as well as the PAC framework.
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A CVaR Concentration for Bounded Random Variables (Proof of
Theorem 1)

We state two concentration inequalities that will be used repeatedly in the proof of Theorem 1.

Bernstein’s Inequality

Let Xi be IID samples of a random variable X with mean µ. If |X| ≤ b almost surely, then for any
ε > 0,

P
(∣∣∣∣∑n

i=1Xi

n
− µ

∣∣∣∣ > ε

)
≤ 2exp

(
− nε2

2E[X2] + 2bε/3

)
Chernoff Bound for Bernoulli Experiment

Let X1, ..., Xn be independent Bernoulli experiments, P(Xi = 1) = pi. Set X =
∑n
i=1Xi,

µ = E[X]. Then for every 0 < δ < 1,

P (X ≤ (1− δ)µ) ≤ exp(−µδ
2

2
),

for every δ > 0,

P (X ≥ (1 + δ)µ) ≤ exp(− µδ2

2 + δ
),

and in particular, for every 0 < δ < 2,

P (X ≥ (1 + δ)µ) ≤ exp(−µδ
2

4
)

Theorem 1 follows from the following statement. Let X be any random variable with supp(X)
⊆ [−b, b]. Then for any ε ≥ 0,

P(ĉn,α(X) ≤ cα(X)− ε) ≤ 3exp
(
− (1− α)n

(ε/b)2

9 + 1.6ε/b

)
(3a)

P(ĉn,α(X) ≥ cα(X) + ε) ≤ 3exp
(
− n(1− α)

(ε/b)2

34 + 4.4ε/b

)
(3b)

A.1 Proof of 3a

We’re going to use the following lemma from Wang and Gao [2010].

Lemma 1. Let X[i] be the decreasing order statistics of Xi; then f(k) = 1
k

∑k
i=1X[i], 1 ≤ k ≤ n,

is decreasing and the following two inequalities hold:

1

nβ

bnβc∑
i=1

X[i] ≤ ĉn,α(X) ≤ 1

nβ

dnβe∑
i=1

X[i] (4a)

f(dnβe) ≤ ĉn,α(X) ≤ f(bnβc) (4b)

1. ε > 2b
P(ĉn,α(X) ≤ cα(X)− ε) = 0

Both cα(X) ∈ [−b, b] and ĉn,α(X) ∈ [−b, b]. Therefore, the difference can’t be larger than 2b.

2. ε ∈ [0, 2b]

We’ll condition the probability above on a random variable Kn,β which is defined as Kn,β =
max{i : X[i] ∈ [vα(X), b]}. Note that vα(X) is a constant such that the probability of a X being
greater than vα(X) is β. Also observe that P(Kn,β = k) = P(k from {Xi}ni=1 have values in
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[vα(X), b]). Using the above two statements one can easily see that Kn,β follows a binomial
distribution with parameters n and β.

Consider k I.I.D. random variables {X̃i}ki=1 which are distributed according to P(X ∈ · |X ∈
[vα(X), b]). By conditioning on Kn,β = k, one can observe using symmetry that 1

k

∑k
i=1X[i] and

1
k

∑k
i=1 X̃i have the same distribution. We’ll next bound the probability P(ĉn,α(X) ≤ cα(X) −

ε|Kn,β = k) for different values of k. Now,

P(ĉn,α(X) ≤ cα(X)− ε) =

n∑
k=0

P(Kn,β = k)P(A)

≤
bnβc∑
k=0

P(Kn,β = k)P(A)︸ ︷︷ ︸
I2

+

n∑
k=dnβe

P(Kn,β = k)P(A)

︸ ︷︷ ︸
I1

where P(A) = P(ĉn,α(X) ≤ cα(X)− ε|Kn,β = k).

Bounding I1
Note that k ≥ dnβe. We’ll begin by bounding P (A).

P(ĉn,α(X) ≤ cα(X)− ε|Kn,β = k)

≤ P
(

1

dnβe

dnβe∑
i=1

X[i] ≤ cα(X)− ε|Kn,β = k

)
(using 4b)

≤ P
(

1

k

k∑
i=1

X[i] ≤ cα(X)− ε|Kn,β = k

)
(∵ f(·) is decreasing)

= P
(

1

k

k∑
i=1

X̃i ≤ cα(X)− ε
)

≤ exp
(
− kε2

2E[X̃2] + 2bε/3

)
(using Bernstein’s inequality)

Supp(X̃) ∈ [vα(X), b]. In worst case, vα(X) = −b. Therefore, Supp(X̃) ∈ [−b, b] and E[X̃2] ≤ b2.
Hence,

P(ĉn,α(X) ≤ cα(X)− ε|Kn,β = k) ≤ exp
(
− kε2

2b2 + 2bε/3

)
Hence, we have the following:

I1 =

n∑
k=dnβe

(
n

k

)
βk(1− β)n−kP(ĉn,α(X) ≤ cα(X)− ε|Kn,β = k)

≤
n∑

k=dnβe

(
n

k

)(
βexp

(
− ε2

2b2 + 2bε/3

))k
(1− β)n−k

≤
(

1− β + βexp
(
− ε2

2b2 + 2bε/3

))n
≤ exp

(
− βn

(
1− exp

(
− ε2

2b2 + 2bε/3

)))
(∵ ex ≥ 1 + x ∀x ∈ R)

Now, let’s bound 1− exp
(
− ε2

2b2+2bε/3

)
. We know that 1− e−x ≥ x− x2/2 = x(1− x/2). One

can easily verify that ε2

2b2+2bε/3 is an increasing function of ε if ε ≥ 0. Putting ε = 2b, we get,

12



1− 1
2

ε2

2b2+2bε/3 ≥ 1− 3
5 = 2

5 . Hence, 1− exp
(
− ε2

2b2+2bε/3

)
≥ 2

5
ε2

2b2+2bε/3 . Therefore,

I1 ≤ exp
(
− βn

( (ε/b)2

5 + 5ε/(3b)

))

Bounding I2
Note that k ≤ bnβc. We’ll again start by bounding P(A).

P(ĉn,α(X) ≤ cα(X)− ε|Kn,β = k) ≤ P
( 1

nβ

bnβc∑
i=1

X[i] ≤ cα(X)− ε
∣∣∣Kn,β = k

)
(Using 4a)

≤ P
(1

k

k∑
i=1

X[i] ≤
nβ

k
(cα(X)− ε)

∣∣∣Kn,β = k
)

(∵ k ≤ bnβc)

≤ P
(

1

k

k∑
i=1

X[i] ≤ cα(X) +
(nβ
k
− 1
)
b− nβε

k

∣∣∣Kn,β = k

)
(∵ cα(X) ≤ b)

Case 1 ε ∈ [b, 2b]

Let ε1(k) = nβε
k +

(
1− nβ

k

)
b = b

(
1 +

(
ε
b − 1

)
nβ
k

)
. Note that ε1(k) > 0 for all k as ε ≥ b. Also

note that ε1(k) decreases as k increases. As k ≤ nβ, ε1(k) ≥ ε.

P
(1

k

k∑
i=1

X[i] ≤ cα(X)− ε1(k)|Kn,β = k
)

= P
(1

k

k∑
i=1

X̃i ≤ cα(X)− ε1(k)
)

≤ exp
(
− kε2

1(k)

2b2 + 2bε1(k)/3

)
(a)
≤ exp

(
− kε2

2b2 + 2bε/3

)
(a) above follows because ε21(k)

2b2+2bε1(k)/3 is an increasing function of ε1(k) and ε1(k) ≥ ε.

Using steps similar to that for bounding I1, we have:

I2 ≤ exp
(
− βn

( (ε/b)2

5 + 5ε/(3b)

))
; ε ∈ [b, 2b]

2. ε ∈ [0, b)

Here, ε1(k) = nβε
k −

(
nβ
k − 1

)
b = b

(
1−

(
1− ε

b

)
nβ
k

)
. Note that ε1(k) > 0 iff k > nβ(1− ε

b ).

Case 2.1 If ε is very small such that bnβc ≤ nβ
(

1 − ε
b

)
, then ε1(k) ≤ 0. Let’s bound I2 for this

case:

I2 ≤
bnβc∑
k=0

P(Kn,β = k)

= P(Kn,β ≤ bnβc)
≤ P(Kn,β ≤ nβ(1− ε/b))

≤ exp
(
− nβ ε

2

2b2

)
(Chernoff on Kn,β)
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Case 2.2 nβ(1− ε/b) < bnβc
Choose k∗γ = nβ(1− γε/b) for some γ ∈ [0, 1]. Then, nβ(1− ε/b) ≤ k∗γ ≤ nβ.

Assume k∗γ < bnβc. The proof can can be easily adapted when k∗γ ≥ bnβc. As we will see, the
bound on I2 is looser when k∗γ < bnβc.

For k > k∗γ , ε(k) > 0. As k increases, ε1(k) also increases.

Now, we’ll bound P
(

1
k

∑k
i=1X[i] ≤ cα(X)− ε1(k)

)
:

P
(1

k

k∑
i=1

X[i] ≤ cα(X)− ε1(k)
)

= P
(1

k

k∑
i=1

X̃i ≤ cα(X)− ε1(k)
)

≤

{
exp
(
− kε21(k)

2b2+2bε1(k)/3

)
; k∗γ < k ≤ bnβc

1; k ≤ k∗γ
(a)
≤

{
exp
(
k (1−γ)2ε2

2(b−γε)2+2(1−γ)ε(b−γε)/3

)
; k∗γ < k ≤ bnβc

1; k ≤ k∗γ
(b)
≤

{
exp
(
− k(1−γ)2(ε/b)2

2+2(1−γ)ε/(3b)

)
; k∗γ < k ≤ bnβc

1; k ≤ k∗γ

(a) above follows because ε21(k)
2b2+2bε1(k)/3 is an increasing function of ε1(k) and ε1(k) ≥ b(1−γ)ε

b−γε .

(b) above follows because b− γε ≤ b
Now, we’ll bound I2:

I2 ≤
bnβc∑
k=0

P(Kn,β = k)P
(1

k

k∑
i=1

X̃i ≤ cα(X)− ε1(k)
)

≤
bk∗γc∑
k=0

(
n

k

)
βk(1− β)n−k︸ ︷︷ ︸
I2,a

+

bnβc∑
k=dk∗γe

(
n

k

)
βk(1− β)n−kexp

(
− k(1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

)
︸ ︷︷ ︸

I2,b

Let’s bound I2,a. This is very similar to Case 2.1.

I2,a =

bk∗γc∑
k=0

(
n

k

)
βk(1− β)n−k

= P
(
Kn,β ≤ (1− γε/b)nβ

)
≤ exp

(
− nβ (γε)2

2b2

)
If dk∗γe > bnβc, I2,b = 0.

When dk∗γe ≤ bnβc, let’s bound I2,b. This is very similar to bounding I1.

I2,b ≤
(

1− β
(

1− exp
(
− (1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

)))n
≤ exp

(
− nβ

(
1− exp

(
− (1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

)))
As 1− exp(−x) ≥ x− x2/2 for x ≥ 0

1− exp
(
− (1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

)
≥ (1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

(
1− 1

2

(1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

)
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Further,

1− 1

2

(1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)
≥ 1− 1

2

(1− γ)2

2 + 2(1− γ)/3
≥ 13

16

Hence, irrespective of whether dk∗γe ≤ bnβc or dk∗γe > bnβc:

I2,b ≤ exp
(
− nβ

(13

16

(1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

))
Now, we can bound I2

I2 ≤ I2,a + I2,b

≤ exp
(
− nβ γ

2(ε/b)2

2

)
+ exp

(
− nβ

(13

16

(1− γ)2(ε/b)2

2 + 2(1− γ)ε/(3b)

))
Now, γ2 = 13

16 (1− γ)2 if γ = 1/(1 + (16/13)0.5) ≈ 0.4740. Put γ = 0.4740.

I2 ≤ 2exp
(
− nβ 0.2247(ε/b)2

2 + 0.351ε/b

)
= 2exp

(
− nβ (ε/b)2

8.9 + 1.561ε/b

)
Comparing this bound of I2 with that of Case 2.1, it is not very difficult to see that the above bound
is loose.

Comparing this bound of I2 with that of Case 1, notice that the 8.9 + +1.561ε/b ≥ 8.9 whereas
5 + 5ε/3b ≤ 8.34. Hence, the above bound is the most general.

Finally, let’s bound I:

I ≤ I1 + I2

≤ exp
(
− βn

( (ε/b)2

5 + 5ε/(3b)

))
+ 2exp

(
− nβ (ε/b)2

8.9 + 1.561ε/b

)
≤ 3exp

(
− βn (ε/b)2

9 + 1.6ε/b

)
A.2 Proof of 3b

Let’s prove the second part of this theorem now which is the inequality 3b.

Again if ε ≥ 2b,
P(ĉn,α(X) ≥ cα(X) + ε) = 0

Hence, we’re interested in the case where ε ∈ [0, 2b). We’ll again condition on random variable
Kn,β . Remember that Kn,β follows a binomial distribution with parameters n and β.

The random variables {X̃i}ki=1 are distributed according to P(X ∈ · |X ∈ [vα(X), b]). By condi-
tioning of Kn,β = k distributions of 1

k

∑k
i=1X[i] and 1

k

∑k
i=1 X̃i are same by symmetry. The steps

are very similar to that for proving 3a.

P(ĉn,α(X) ≥ cα(X) + ε) =

n∑
k=0

P(Kn,β = k)P(A)

≤
bnβc∑
k=0

P(Kn,β = k)P(A)︸ ︷︷ ︸
I1

+

n∑
k=dnβe

P(Kn,β = k)P(A)

︸ ︷︷ ︸
I2

where P(A) = P(ĉn,α(X) ≥ cα(X) + ε|Kn,β = k). Notice that I1 and I2 got interchanged from
A.1
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Bounding I1
Note that k ≤ bnβc. Let’s bound P(A) for this case:

P(ĉn,α(X) ≥ cα(X) + ε|Kn,β = k) ≤ P
( 1

bnβc

bnβc∑
i=0

X[i] ≥ cα(X) + ε|Kn,β = k
)

(using 4b)

≤ P
(1

k

k∑
i=1

X[i] ≥ cα(X) + ε|Kn,β = k
)

(∵ f(·) is decreasing)

= P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ε
)

≤ exp
( k(ε/b)2

2 + 2ε/(3b)

)
(Using Bernstein’s Inequality)

Let’s bound I1 now:

I1 ≤
bnβc∑
k=0

(
n

k

)(
βexp

( (ε/b)2

2 + 2ε/(3b)

))k
(1− β)n−k

≤
(

1− β
(

1− exp
( (ε/b)2

2 + 2ε/(3b)

)))n
≤ exp

(
− nβ

(
1− exp

( (ε/b)2

2 + 2ε/(3b)

)))
(∵ ex ≥ 1 + x)

≤ exp
(
− nβ (ε/b)2

5 + 5ε/(3b)

)

The last step is the same as that used for bounding I1 in the previous proof.

Bounding I2:

Note that k ≥ dnβe. Let’s begin by bounding P(A):

P(ĉn,α(X) ≥ cα(X) + ε|Kn,β = k) ≤ P
( 1

nβ

dnβe∑
i=1

X[i] ≥ cα(X) + ε|Kn,β = k
)

(using 4a)

≤ P
( 1

nβ

k∑
i=1

X[i] ≥ cα(X) + ε|Kn,β = k
)

(∵ k ≥ dnβe)

= P
(1

k

k∑
i=1

X[i] ≥
nβ

k
(cα(X) + ε)|Kn,β = k

)
≤ P

(1

k

k∑
i=1

X[i] ≥ cα(X) +
nβε

k
−
(

1− nβ

k

)
b
∣∣∣Kn,β = k

)

Let ε1(k) = nβε
k −

(
1− nβ

k

)
b = b

(
(1 + ε

b )nβk − 1
)

. Notice that ε1(k) ≥ 0 if k ≤ (1 + ε
b )nβ.

Unlike A.1, we can consider the entire range ε ∈ [0, 2b].

Case 1.1 If ε is very small such that (1 + ε
b )nβ ≤ dnβe, then ε1(k) ≤ 0. Note that εb ≤ 2 and a

suitable form of Chernoff bound will be used ahead.
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Let’s bound I2 in this case:

I2 ≤
n∑

k=dnβe

P(Kn,β = k)

= P(Kn,β ≥ dnβe)

≤ P
(
Kn,β ≥ (1 + ε/b)nβ

)
= dnβe)

≤ exp
(
− nβ (ε/b)2

4

)
(Chernoff on Kn,β)

Case 1.2 (1 + ε
b )nβ > dnβe

We choose k∗γ = (1 + γε
b )nβ for some γ ∈ [0, 1]. Note that (1 + ε

b )nβ ≥ k∗γ ≥ nβ. Assume that
k∗γ > dnβe. The proof when k∗γ ≤ dnβe easily follows. We’ll also see that the bound on I2 is looser
when k∗γ > dnβe.

Note that ε1(k) decreases as k increases. Now,

P
(1

k

k∑
i=1

X[i] ≥ cα(X) + ε1(k)
)

= P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ε1(k)|Kn,β = k
)

≤

{
exp
(
− k (ε1(k)/b)2

2+2ε1(k)/(3b)

)
; dnβe ≤ k < k∗γ

1; k ≥ k∗γ
(a)
≤

{
exp
(
− k (1−γ)2(ε/b)2

2(1+γε/b)2+2(1+γε/b)(1−γ)ε/(3b)

)
; dnβe ≤ k < k∗γ

1; k ≥ k∗γ
(b)
≤

{
exp
(
− k (1−γ)2(ε/b)2

2(1+2γ)2+2(1+2γ)(1−γ)ε/(3b)

)
; dnβe ≤ k < k∗γ

1; k ≥ k∗γ
(a) above follows because (ε1(k)/b)2

2+2ε1(k)/(3b) is an increasing function of ε1(k) and ε1(k) decreases as k
increases.

(b) above follows because (1 + γε/b) ≤ (1 + 2γ).

Now, we’ll bound I2:

I2 ≤
n∑

k=dnβe

P(Kn,β = k)P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ε1(k)|Kn,β = k
)

≤
n∑

k=dk∗γe

(
n

k

)
βk(1− β)n−k

︸ ︷︷ ︸
I2,a

+

bk∗γc∑
k=dnβe

(
n

k

)
βkexp

(
− k (1− γ)2(ε/b)2

8(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

)
(1− β)n−k

︸ ︷︷ ︸
I2,b

Let’s bound I2,a first. This is very similar to Case 1.1. Here, γεb ≤ 2 and a suitable Chernoff bound
is used ahead.

I2,a = P(Kn,β ≥ k∗γ)

≤ P
(
Kn,β ≥ (1 + γε/b)nβ

)
≤ exp

(
− nβ γ

2(ε/b)2

4

)
(Chernoff on Kn,β)

If bk∗γc < dnβe, then I2,b = 0. When bk∗γc ≥ dnβe, let’s bound I2,b:

I2,b ≤
(

1− β
(

1− exp
(
− (1− γ)2(ε/b)2

2(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

)))
≤ exp

(
− nβ

(
1− exp

(
− (1− γ)2(ε/b)2

2(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

)))

17



We know 1− e−x ≥ x− x2/2 = x(1− x/2). Now,

g(ε, γ) = 1− 1

2

(1− γ)2(ε/b)2

2(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

(a)
≥ 1− 1

2

2(1− γ)2

(1 + 2γ)2 + 2(1 + 2γ)(1− γ)/3
(b)
≥ 2

5

(a) above follows because g(ε, γ) decreases with ε. We put ε = 2b.

(b) above follows because increase in γ increases the RHS of second step. Hence, we put γ = 0.
Irrespective of whether bk∗γc < dnβe or bk∗γc ≥ dnβe :

I2,b ≤ exp
(
− nβ 2

5

(1− γ)2(ε/b)2

2(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

)
Bounding I2 for this case, we get

I2 ≤ I2,a + I2,b

≤ exp
(
− nβ γ

2(ε/b)2

4

)
+ exp

(
− nβ 2

5

(1− γ)2(ε/b)2

2(1 + 2γ)2 + 2(1 + 2γ)(1− γ)ε/(3b)

)
Equate γ2

4 = 2
5

(1−γ)2

2(1+2γ)2 to get γ = 0.3458546.

I2 ≤ exp
(
− 0.0299nβ(ε/b)2

)
+ exp

(
− nβ 0.0299(ε/b)2

1 + 0.1289ε/b

)
≤ 2exp

(
− nβ 0.0299(ε/b)2

1 + 0.1289ε/b

)
= 2exp

(
− nβ (ε/b)2

33.44 + 4.311ε/b

)
The bound obtained on I2 in Case 1.1 is tighter than the above bound. But we need to take the looser
bound because our bound should be valid for all ε ∈ [0, 2b]. Hence, we take the above bound on I2.

Finally, we can bound I:

I ≤ I1 + I2

≤ exp
(
− nβ (ε/b)2

5 + 5ε/(3b)

)
+ 2exp

(
− nβ (ε/b)2

33.44 + 4.311ε/b

)
≤ 3exp

(
− nβ (ε/b)2

34 + 4.4ε/b

)

B CVaR Concentration for Heavy Tailed Random Variables (Proof of
Theorem 2)

We begin by bounding the bias in CVaR resulting from our truncation. It is important to note that so
long as b > |vα(X)|, vα(X) = vα(X(b)). Thus, for b > |vα(X)|,

|cα(X)− cα(X(b))|
= cα(X)− cα(X(b))

=
1

1− α

(
E[X1{X ≥ vα(X)}]− E[X(b)

1{X ≥ vα(X)}]
)

=
1

1− α
E[X1{|X| > b}1{X ≥ vα(X)}]

(a)
=

1

1− α
E[X1{X > b}]

(b)

≤ B

(1− α)bp−1
. (5)

18



Here, (a) is a consequence of b > |vα(X)|. The bound (b) follows from

E[X1{X > b}] ≤ E
[
Xp

Xp−1
1{X > b}

]
≤ 1

bp−1
E [|X|p] ≤ B

bp−1
.

It follows from (5) that for

b > max

(
|vα(X)|,

[
2B

∆(1−α)

] 1
p−1

, ∆
2

)
,

|cα(X)− cα(X(b))| ≤ ∆
2 . Thus, for b satisfying (2), we have

Pr
(
|cα(X)− ĉ(b)n,α(X)| ≥ ∆

)
≤ Pr

(
|cα(X)− cα(X(b))|+ |cα(X(b))− ĉn,α(X(b))| ≥ ∆

)
(a)

≤ Pr

(
|cα(X(b))− ĉn,α(X(b))| ≥ ∆

2

)
(b)

≤ 6exp
(
− n(1− α)

(∆/b)2

4(34 + 4.4∆/(2b))

)
(c)

≤ 6exp
(
− n(1− α)

(∆/b)2

154

)
.

Here, (a) follows the bound on |cα(X)−cα(X(b))| obtained earlier. To get (b), we invoke Theorem 1.
Finally, (c) follows since b > ∆/2. This completes the proof.

C Error Bounds for Generalized Successive Rejects (Proof of Theorem 3
and Theorem 4)

The probability of error of the generalized successive rejects algorithm can be upper bounded in the
following manner. During phase k, at least one of the k worst arms is surviving. If the optimal arm i∗

is dismissed at the end of phase k, it means:

ξ1µ
†
nk

(i∗) + ξ2ĉ
†
nk,α

(i∗) ≥ min
i∈{(K),(K−1),··· ,(K+1−k)}

ξ1µ
†
nk

[i] + ξ2ĉ
†
nk,α

[i]

By using the union bound, we get:

pe ≤
K−1∑
k=1

K∑
i=K+1−k

P(ξ1µ
†
nk

(i∗) + ξ2ĉ
†
nk,α

(i∗) ≥ ξ1µ†nk [i] + ξ2ĉ
†
nk,α

[i])

=

K−1∑
k=1

K∑
i=K+1−k

P
(
ξ1(µ†nk(i∗)− µ(i∗)− (µ†

nk
[i]− µ[i]))

+ξ2(ĉ†nk,α(i∗)− cα(i∗)− (ĉ†nk,α[i]− cα[i])) ≥ ∆[i]
)

≤
K−1∑
k=1

K∑
i=K+1−k

P(ξ1(µ†nk(i∗)− µ(i∗)) ≥ ∆[i]/4) + P(ξ1(µ[i]− µ†nk [i]) ≥ ∆[i]/4)

+P(ξ2(ĉ†nk,α(i∗)− cα(i∗)) ≥ ∆[i]/4) + P(ξ2(cα[i]− ĉ†nk,α[i]) ≥ ∆[i]/4)

We’ve assumed that all the arms satisfy C2. For each arm i, we have high probability bounds for
|µ†n(i)− µ(i)| and |ĉ†n,α(i)− cα(i)| in terms of arm independent parameters B and p, we can upper
bound pe as follows:

pe ≤
K−1∑
k=1

k
[
P(|µ†nk(·)− µ(·)| ≥ ∆[K + 1− k]/(4ξ1))

+P(|ĉ†nk,α(·)− cα(·)| ≥ ∆[K + 1− k]/(4ξ2))
]
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By bounding P(|µ†n(·)− µ(·)| ≥ ∆) and P(|ĉ†nk,α(·)− cα(·)| ≥ ∆), we can bound pe.

The statements of Theorem 3 and Theorem 4 follows easily from the following two lemmas:
Lemma 2. By setting the truncation parameter as b = nq where q > 0,

P(|µ(k)− µ̂†n(k)| ≥ ∆) ≤ 2exp
(
− n1−q∆

4

)
for n > n∗, where

n∗ =
(3B

∆

) 1
qmin(1,p−1)

Lemma 3. By setting the truncation parameter as b = nq where q > 0,

P(|cα(X)− ĉ†n,α(X)| ≥ ∆) ≤ 6exp
(
− n1−2q β∆2

154

)
for n > n∗, where

n∗ = max

(( 2B

β∆

) 1
q(p−1)

,
( B

min(α, β)

) 1
qp

,
(∆

2

) 1
q

)
C.1 Proof of Lemma 2

We’ll use the following lemma to prove results for mean minimization
Lemma 4. Assume that {Xi}ni=1 be n I.I.D. samples drawn from the distribution ofX which satisfies
condition C2, then with probability at least 1− δ,

|µ(k)− µ̂†n(k)| ≤


∑n
i=1 B/b

p−1
i

n + 2bnlog(2/δ)
n + B

2bp−1
n

; p ∈ (1, 2]∑n
i=1 B/b

p−1
i

n + 2bnlog(2/δ)
n + B2/p

2bn
; p ∈ (2,∞)

It is adapted from proof of Lemma 1 in Yu et al. [2018].

Case 1 p ∈ (1, 2] Using Lemma 4, if p ∈ (1, 2]:

|µ(k)− µ̂†n(k)| ≤
∑n
i=1B/b

p−1
i

n
+

2bn log(2/δ)

n
+

B

2bp−1
n

≤ 3B

2nq(p−1)
+

2

n1−q log(2/δ)

We want to find n∗ such that for all n > n∗:
3B

2nq(p−1)︸ ︷︷ ︸
T1

+
2

n1−q log(2/δ)︸ ︷︷ ︸
T2

< ∆

Sufficient condition to ensure the above inequality is to make the T1 < ∆/2 and T2 ≤ ∆/2.

T1 ≤ ∆/2 if:

n >
(3B

∆

) 1
q(p−1)

Equating T2 = ∆/2, we get:

δ = 2exp
(
− n1−q∆

4

)
Case 2 p ∈ (2,∞)

Using Lemma 4, if p ∈ (2,∞):

|µ(k)− µ̂†n(k)| ≤
∑n
i=1B/b

p−1
i

n
+

2bn log(2/δ)

n
+
B2/p

2bn

≤ B

nq(p−1)
+

B

2nq
+

2 log(2/δ)

n1−q

≤ 3B

2nq
+

2 log(2/δ)

n1−q
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We want to find n∗ such that for all n > n∗:

3B

2nq︸︷︷︸
T1

+
2 log(2/δ)

n1−q︸ ︷︷ ︸
T2

< ∆

Sufficient condition to ensure the above inequality is to make the T1 < ∆/2 and T2 ≤ ∆/2.

T1 < ∆/2 if:

n >
(3B

∆

) 1
q

Equating T2 = ∆/2, we get:

δ = 2exp
(
− n1−q∆

4

)
C.2 Bounding Magnitude of VaR

Before we prove Lemma 3, we’ll first bound |vα(X)| in terms of B, p and α.
Lemma 5.

|vα(X)| ≤
( B

min(α, β)

) 1
p

Proof. If vα(X) > 0, by definition:

1− α =

∫ ∞
vα(X)

dFX(x)

=

∫ ∞
vα(X)

|x|p/|x|pdFX(x)

≤B/|vα(X)|p

Hence, |vα(X)| ≤ (Bβ )
1
p .

If vα(X) < 0, by definition:

α =

∫ vα(X)

−∞
dFX(x)

=

∫ vα(X)

−∞
|x|p/|x|pdFX(x)

≤B/|vα(X)|p

Hence, |vα(X)| ≤ (Bα )
1
p .

C.3 Proof of Lemma 3

The proof follows from Theorem 2 and Lemma 5. We’re growing our truncation parameter as nq.
Therefore,

b = nq > max

(
∆

2
,
( B

min(α, β)

) 1
p

,

[
2B

∆(1− α)

] 1
p−1

)

D Error Bounds for Non-oblivious Algorithms

In the non-oblivious setting, error bounds for the generalized successive rejects algorithm follow
from the following two lemmas.
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Lemma 6. By setting the truncation parameter b >
(

3B
∆

) 1
min(1,p−1)

,

P(|µ(k)− µ̂†n(k)| ≥ ∆) ≤ 2exp
(
− n∆

4b

)
.

Lemma 7. By setting the truncation parameter b > max

(
∆
2 ,
(

B
min(α,β)

) 1
p

,
[

2B
∆(1−α)

] 1
p−1

)
,

Pr
(
|cα(k)− ĉ(b)n,α(k)| ≥ ∆

)
≤ 6exp

(
− n(1− α)

∆2

154b2

)
.

Note that the truncation parameters here are not a function of n and therefore we get an exponentially
decaying bound.

D.1 Proof of Lemma 6

Lemma 8. By setting the truncation parameter b >
(

3B
∆

) 1
min(1,p−1)

where q > 0,

P(|µ(k)− µ̂†n(k)| ≥ ∆) ≤ 2exp
(
− n∆

4b

)
Proof. Using Lemma 4, by fixing the truncation parameter as b, and making simplifications, with
probability 1− δ, we have:

|µ(k)− µ̂†n(k)| ≤

{
3B

2bp−1 + 2blog(2/δ)
n ; p ∈ (1, 2]

3B
2b + 2blog(2/δ)

n ; p ∈ (2,∞)

Case 1 p ∈ (1, 2] We’re interested to find b and δ such that for all values of n:

3B

2bp−1︸ ︷︷ ︸
T1

+
2b log(2/δ)

n︸ ︷︷ ︸
T2

< ∆

A sufficient condition for the above equation to be valid is T1 < ∆/2 and T2 = ∆/2.

To ensure T1 < ∆/2, take b >
(

3B
∆

) 1
p−1

.

By equating T2 = ∆/2, we get δ = 2exp
(
− n∆

4b

)
where b is what we found above.

Case 2 p ∈ (2,∞) We’re interested to find b and δ such that for all values of n:

3B

2b︸︷︷︸
T1

+
2b log(2/δ)

n︸ ︷︷ ︸
T2

< ∆

A sufficient condition for the above equation to be valid is T1 < ∆/2 and T2 = ∆/2.

To ensure T1 = ∆/2, take b > 3B
∆ .

By equating T2 = ∆/2, we get δ = 2exp
(
− n∆

4b

)
where b is what we found above.

D.2 Proof of Lemma 7

Lemma 7 follows from Theorem 2 and Lemma 5.
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