
Response to comments of Reviewer 1:1

1. C1 is not essential to our analysis. All our technical statements hold even without C1; this assumption simply makes2

the VaR and CVaR easier to express. On the other hand, C2 (finiteness (1 + ε)th moment for some ε > 0) is essential to3

our analysis, though it is only slightly more restrictive than assuming that the MAB problem is well- posed (which4

corresponds to ε = 0). Note that our algorithms do not know this ε.5

2. It turns out that the regret minimization framework is much harder to work within a distribution oblivious setting.6

Indeed, to the best of our knowledge, none of the current algorithms for regret analysis are distribution oblivious.7

3. We agree that it makes sense to include a brief review of various risk-aware statistical approaches in the literature –8

we will do so if the paper is accepted. However, we think the Bayesian risk framework may not be directly suited to our9

distribution oblivious setting, since it involves assigning a prior distribution over the unknown parameter space.10

4. Linear combinations of the mean and a risk metric are analytically tractable, and therefore ubiquitous in the literature11

(for example, in modern portfolio theory). Of course, linear combinations also come up naturally in Lagrange relaxations12

of constrained optimization, such as minimizing expected loss subject to a given risk constraint.13

5. Note that we only provide upper bounds on the misidentification probability in oblivious and non-oblivious settings.14

We observe that the actual performance is often better than the bounds, as depicted in the figure.15

Response to comments of Reviewer 2:16

The reviewer correctly notes that SR-type algorithms are distribution oblivious with standard empirical estimators for17

mean/CVaR, though these perform very poorly if reward distributions are heavy-tailed. This can be formalized via18

lower bounds for these algorithms. If accepted, we will elaborate on this aspect in the final version of this paper. We19

apologize for omitting the line numbers. Thank you for pointing out the typos; these will be fixed.20

Response to comments of Reviewer 3:21

1. Note that any SR-type algorithm requires apriori information about the time horizon. However, our uniform22

exploration (UE) algorithm can be made any-time using the doubling trick.23

2. We submit that the proposed algorithms do not require all rewards to be stored. For SR, since the truncation24

parameters in each phase are known ahead of time, summary statistics of prior pulls can be stored for future rounds,25

leading to an O(K2) memory requirement (rather than O(T )). For UE, O(K) memory suffices, even for the any-time26

modification.27

3. On applicability: Heavy tailed distributions are ubiquitous, and are used to model financial rewards, losses due to28

natural calamities, wealth, Internet file sizes, social media followers, etc. Our formulations can, therefore, be applied to29

online learning problems in networking, economics, and finance. Of course, our CVaR concentration inequalities are of30

independent value, even beyond the MAB framework.31

4. On experimental comparisons between the conventional CVaR estimator and the oblivious truncation-based CVaR32

estimator: Consider two pure exploration CVaR minimization scenarios. (a) Light-tailed setting: We have two33

exponentially distributed arms with the means such that the arms have CVaRs 1.0 and 0.98 at confidence 0.95. (b)34

Heavy-tailed setting: We have two Lomax distributed arms with shape parameter 2 and scale parameter set so that the35

arms have CVaRs 1.0 and 0.9 at confidence 0.95. For each value of T , we run the SR algorithm 50000 times. In the36

light-tailed setting (see Fig. 1a), the conventional empirical estimator works well, and truncation-aided bias-variance37

tradeoff does not help. But in the heavy-tailed setting (see Fig. 1b), the conventional empirical estimator performs38

poorly because of its considerable variance.39

(a) Light Tailed Losses (b) Heavy Tailed Losses

Figure 1: Comparison of conventional and truncation-based CVaR estimators


