
PowerSGD: Practical Low-Rank
Gradient Compression for Distributed Optimization

Thijs Vogels
EPFL

Lausanne, Switzerland
thijs.vogels@epfl.ch

Sai Praneeth Karimireddy
EPFL

Lausanne, Switzerland
sai.karimrieddy@epfl.ch

Martin Jaggi
EPFL

Lausanne, Switzerland
martin.jaggi@epfl.ch

Abstract

We study lossy gradient compression methods to alleviate the communication bot-
tleneck in data-parallel distributed optimization. Despite the significant attention
received, current compression schemes either do not scale well, or fail to achieve
the target test accuracy. We propose a new low-rank gradient compressor based
on power iteration that can i) compress gradients rapidly, ii) efficiently aggregate
the compressed gradients using all-reduce, and iii) achieve test performance on par
with SGD. The proposed algorithm is the only method evaluated that achieves con-
sistent wall-clock speedups when benchmarked against regular SGD using highly
optimized off-the-shelf tools for distributed communication. We demonstrate re-
duced training times for convolutional networks as well as LSTMs on common
datasets. Our code is available at https://github.com/epfml/powersgd.

1 Introduction

Synchronous data-parallel SGD is the most common method for accelerating training of deep learning
models (Dean et al., 2012; Iandola et al., 2015; Goyal et al., 2017). Because the gradient vectors
of such models can be large, the time required to share those gradients across workers limits the
scalability of deep learning training (Seide et al., 2014; Iandola et al., 2015; Lin et al., 2018).

Previous work proposes lossy gradient compression as a solution to this issue. Notable examples
include replacing the coordinates of the gradient with only their sign (Seide et al., 2014; Carlson et al.,
2015; Bernstein et al., 2018, 2019; Karimireddy et al., 2019), quantizing the individual coordinates
(Alistarh et al., 2017; Wen et al., 2017), and low-rank approximation of the gradient (Wang et al.,
2018). While these works demonstrate speedups over full-precision SGD in some settings, we find
that their speedups vanish with a fast network and highly optimized communication backend, even on
commodity hardware. Some prior work also suffers from degraded test accuracy compared to SGD.
We combine three observations to fix these issues: i) Linear compressor operators achieve scalability
by enabling aggregation using all-reduce. ii) Error feedback ensures convergence with general biased
compressors. iii) Low-rank updates enable aggressive compression without sacrificing quality.

First, we explore the properties of various gradient compression schemes for SGD and identify
which ones are crucial for high scalability. In particular, we note that currently proposed gradient
compressors are not linear. Their compressed messages cannot be added up hierarchically, unlike raw
gradients. This prevents current compressed SGD algorithms from aggregating gradients using an
efficient reduce operation and instead require a gather operation. Current deep learning frameworks
rely either solely or predominantly on all-reduce, which is key to why regular SGD scales well with
fast communication hardware (cf. Awan et al., 2018; Panda et al., 2019).

Secondly, it was recently shown that using error feedback (i.e. storing the difference between the
computed and compressed gradient, and reinserting it at the next iteration) improves both convergence
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Figure 1: Compression schemes compared in this paper. Left: Interpretation of a layer’s gradient
as a matrix. Coordinate values are color coded (positive, negative). Right: The output of various
compression schemeson the same input. Implementation details arein Appendix G.

and generalization for compression schemes (Karimireddy et al., 2019). This can enable general
biased gradient compression schemes to reach the target test accuracy.

Thirdly, there is growing evidence that the generalization ability of modern over-parameterized
deep learning models is related to low-rankedness (Arora et al., 2018; Martin & Mahoney, 2018;
Collins et al., 2018). Using a low-rank update (as we do) can be viewed as implicitly performing
spectral regularization (Gunasekar et al., 2018) and hence can be expected to have good generalization
properties (Yoshida & Miyato, 2017). Further, Wang et al. (2018) show that the eigenspectrum of the
stochastic gradients for deep learning models decays, suggesting that a rank-based schemes can get
away with aggressive compression without sacrificing convergence.

In this work, we design POWERSGD with the above observations in mind. POWERSGD computes
a low-rank approximation of the gradient using a generalized power iteration (known as subspace
iteration (Stewart & Miller, 1975)). The approximation is computationally light-weight, avoiding
any prohibitively expensive Singular Value Decomposition. To improve the quality of the efficient
approximation, we warm-start the power iteration by reusing the approximation from the previous op-
timization step. Using all-reduce gradient aggregation, we empirically demonstrate that POWERSGD
achieves wall-clock speedups over regular SGD in a 16-GPU setting, even with the optimized NCCL
communication backend on a fast network (and is the only algorithm to do so.) By compressing
gradients more than 120×, we reduce communication time (including coding and decoding) by 54%
for RESNET18 on CIFAR10 and by 90% for an LSTM on WIKITEXT-2. End-to-end wall-clock
training time to full test quality is reduced by 24% for RESNET18 and by 55% for the LSTM.

2 Related work

Gradient compression A variety of compression schemes (Figure 1) have been proposed: Alistarh
et al. (2017) and Wen et al. (2017) quantize each gradient coordinate; Seide et al. (2014); Carlson
et al. (2015); Bernstein et al. (2018, 2019) and Karimireddy et al. (2019) replace each coordinate of
the gradient with its sign; Lin et al. (2018); Stich et al. (2018) and Wangni et al. (2018) use the largest
few coordinates; and Konečnỳ et al. (2016) and Wang et al. (2018) use a low-rank approximation.

Spectral Atomo by Wang et al. (2018) is perhaps the closest to our work. It performs importance sam-
pling of the gradient’s singular vectors and is an unbiased compression scheme. It requires, however,
a full Singular Value Decomposition every iteration and is hence computationally impractical.

Commutative compression and addition Yu et al. (2018) stress that commutability of compres-
sion with gradient addition enables efficient aggregation with ring all-reduce. Most compressors,
however, lack this property. Yu et al. utilize temporally-consistent correlations between gradients
coordinates to compress them linearly. POWERSGD has a similar property that we call ‘linearity’.

Error feedback First introduced in (Seide et al., 2014) and analyzed in (Stich et al., 2018) for the
convex case, error feedback involves computing the difference between a worker’s gradient and the
compressed gradient (i.e. error) and adding it back to the next gradient (feedback). Karimireddy
et al. (2019) and Stich & Karimireddy (2019) further develop and generalize the framework of error
feedback with improved rates. In the non-convex setting, Karimireddy et al. (2019) show that error
feedback is crucial both for convergence and generalization when using biased compressors (e.g. sign
or top-K). In general, biased compression schemes equipped with error feedback tend to out-perform
their unbiased counterparts. The practical algorithm by Lin et al. (2018) is also as an approximate
top-K compressor with error feedback.
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Low-rank methods Recent works argue that in modern over-parameterized deep networks, the final
model learnt has a ‘low stable rank’ (Martin & Mahoney, 2018; Li et al., 2018). This can partially
explain their impressive generalization properties despite being substantially overparameterized
(Arora et al., 2018). Adding explicit spectral regularization has shown to further improve the
performance of such models (Mazumder et al., 2010; Yoshida & Miyato, 2017). Using a low-rank
update (as we do) can be viewed as implicitly performing a similar regularization (Gunasekar et al.,
2018). If the target matrices are known to be exactly low-ranked (instead of just low stable rank),
Yurtsever et al. (2017) show that it is sometimes possible to converge to the optima using low rank
approximations of the gradients without the need for error feedback.

3 Method

In data-parallel optimization of machine learning models, a number of W workers share the same
model parameters x ∈ Rd. They iteratively update x by computing independent stochastic gradients,
aggregating these gradients by averaging1, and updating the model parameters based on this aggregate.

Algorithm 1 Rank-r POWERSGD compression

1: The update vector ∆w is treated as a list of tensors corresponding to individual model parameters.
Vector-shaped parameters (biases) are aggregated uncompressed. Other parameters are reshaped
into matrices. The functions below operate on such matrices independently. For each matrix
M ∈ Rn×m, a corresponding Q ∈ Rm×r is initialized from an i.i.d. standard normal distribution.

2: function COMPRESS+AGGREGATE(update matrix M ∈ Rn×m, previous Q ∈ Rm×r)
3: P ←MQ
4: P ← ALL REDUCE MEAN(P ) . Now, P = 1

W (M1 + . . .+MW )Q

5: P̂ ← ORTHOGONALIZE(P ) . Orthonormal columns
6: Q←M>P̂
7: Q← ALL REDUCE MEAN(Q) . Now, Q = 1

W (M1 + . . .+MW )>P̂

8: return the compressed representation (P̂ , Q).
9: end function

10: function DECOMPRESS(P̂ ∈ Rn×r, Q ∈ Rm×r)
11: return P̂Q>
12: end function

POWERSGD compression We approximate each layer in the model independently. The parame-
ters of fully-connected layers (dense matrix multiplication) and their gradients have an inherent matrix
structure. The parameters of convolutional layers can be naturally interpreted as fully-connected
layers applied repeatedly over a 2D grid of inputs. Practically, this amounts to flattening input and
kernel dimensions in the 4D gradient tensors. Neural networks also contain bias vectors, but these
typically constitute a tiny fraction of the parameter space and can be aggregated uncompressed.

For each parameter’s gradientM ∈ Rn×m, the aim of rank-r matrix approximation is to find matrices
P ∈ Rn×r and Q ∈ Rm×r such that PQ> approximates M well. POWERSGD uses a single step of
subspace iteration—power iteration generalized to r > 1—to compute such an approximation. This
involves performing one right multiplication, one left multiplication, and an orthogonalization. We
use the Gram-Schmidt procedure to orthogonalize our matrices since they have very few columns
(1–4), and this is the most expensive part of the compression procedure. Further, we ‘warm-start’ the
subspace iteration by reusing the approximation computed at the previous step. With the inclusion
of warm-start, a single step of subspace iteration yields a factorization M ∼ PQ> with the same
performance as the best rank-r approximation from an expensive Singular Value Decomposition.

Efficient aggregation between workers In data-parallel optimization, we want to approximate
the average of the worker’s gradients. Suppose POWERSGD operates on a list of corresponding
gradients [M1 . . .MW ] from W workers. Both occurrences of M in the algorithm are a (linear)
matrix multiplication followed by a (linear) mean reduction over workers. This introduces a practical
invariance: execution on 1 worker with batch size B ×W is equivalent to execution on W workers
with batch size B each. We call this property ‘linearity’. Refer to Appendix A.3 for more details.

1Bernstein et al. (2019) propose Signum which aggregates 1-bit gradients by majority voting instead of
averaging.
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(a) Gather (b) Reduce

An important benefit of the POWERSGD’s linearity
is that it can be implemented using the all-reduce
protocol as opposed to needing a gather operation.
To illustrate the difference, suppose that we want to
compute the sum of W matrices

∑W
i=1Mi for W = 4.

The all-reduce method can use associativity of addition
to rewrite the computation as (M1+M2)+(M3+M4).
This enables a divide-and-conquer approach and allows the summation task to be split over multiple
workers, as illustrated on the right. With W workers, both the computation and the communication
time scale as O(logW ) for all-reduce, compared to O(W ) for all-gather.

In addition to improved scaling, all-reduce communication is preferred over a parameter-server setting
because it avoids double compression. With a parameter server, both the ‘clients → server’ and
‘server→ clients’ communication have to be compressed (Caldas et al., 2018; Bernstein et al., 2019;
Seide et al., 2014). We avoid this by merging compression and aggregation into one step.

Error-feedback SGD Since the POWERSGD scheme is biased (i.e. compressing and decompress-
ing a random gradient does not yield the original in expectation), we use error feedback (Seide et al.,
2014; Karimireddy et al., 2019). Our version of error feedback (Algorithm 2) extends the original by
introducing post-compression momentum. This simple extension allows us to reuse the same learning
rate and hyper-parameters as those tuned for SGD with momentum.

Algorithm 2 Distributed Error-feedback SGD with Momentum

1: hyperparameters: learning rate γ, momentum parameter λ
2: initialize model parameters x ∈ Rd, momentum m← 0 ∈ Rd, replicated across workers
3: at each worker w = 1, . . . ,W do
4: initialize memory ew ← 0 ∈ Rd

5: for each iterate t = 0, . . . do
6: Compute a stochastic gradient gw ∈ Rd.
7: ∆w ← gw + ew . Incorporate error-feedback into update
8: C(∆w)← COMPRESS(∆w)
9: ew ← ∆w − DECOMPRESS(C(∆w)) . Memorize local errors

10: C(∆) ← AGGREGATE(C(∆1), . . . , C(∆W )) . Exchange gradients
11: ∆′ ← DECOMPRESS(C(∆)) . Reconstruct an update ∈ Rd

12: m ← λm + ∆′

13: x ← x− γ (∆′ + m)
14: end for
15: end at

4 Analysis of POWERSGD

In this section, we consider different aspects of POWERSGD in isolation and hope to empirically
understand: i) the effect of using error feedback, ii) the effect of ‘warm-start’, and iii) the trade-off
between test accuracy and compression rate with varying approximation rank.

4.1 Effect of error feedback

Using error-feedback SGD as a base algorithm for POWERSGD has two advantages. First, it enables
our use of a biased compressor. Secondly, EF-SGD improves convergence and obtains better test
accuracy (Karimireddy et al., 2019).

To illustrate the improved test accuracy, we compare POWERSGD—a biased compressor with error
feedback—against an unbiased low-rank approximation. To approximate a matrix M ∈ Rn×m, the
unbiased rank-r approximator samples a random matrix U ∈ Rm×r such that E[UU>] = Im and
outputs (MU,U) as the low-rank approximation. This scheme is unbiased since

E[(MU)U>] = M E[UU>] = MI = M .

POWERSGD is the natural biased counterpart of this unbiased scheme. Table 1 demonstrates that our
biased approximator with error feedback outperforms the unbiased operator on image classification.
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Table 1: Rank-based compression with and without
error feedback. The biased POWERSGD outperforms
an unbiased linear rank-r compressor on test accuracy.

Algorithm Test accuracy Data/epoch

SGD 94.3% 1023 MB
Rank-1 POWERSGD 93.6% 4 MB
Rank-2 POWERSGD 94.4% 8 MB
Unbiased Rank 1 71.2% 3 MB
Unbiased Rank 2 75.9% 4 MB

Table 2: Best rank-2 approximation
vs. POWERSGD. Warm-start improves
test accuracy, even matching the perfor-
mance of the best rank-2 approximation.

Algorithm Test accuracy

Best approximation 94.4%
Warm start (default) 94.4%
Without warm start 94.0%

Table 3: POWERSGD with
varying rank. With suf-
ficient rank, POWERSGD
accelerates training of a
RESNET18 and an LSTM
by reducing communication,
achieving test quality on par
with regular SGD in the
same number of iterations.
The time per batch includes
the forward/backward pass
(constant). See Section 5 for
the experimental setup.

Image classification — RESNET18 on CIFAR10
Algorithm Test accuracy Data sent per epoch Time per batch

SGD 94.3% 1023 MB (1×) 312 ms +0%
Rank 1 93.6% 4 MB (243×) 229 ms −26%
Rank 2 94.4% 8 MB (136×) 239 ms −23%
Rank 4 94.5% 14 MB (72×) 260 ms −16%

Language modeling — LSTM on WIKITEXT-2
Algorithm Test perplexity Data sent per epoch Time per batch

SGD 91 7730 MB (1×) 300 ms +0%
Rank 1 102 25 MB (310×) 131 ms −56%
Rank 2 93 38 MB (203×) 141 ms −53%
Rank 4 91 64 MB (120×) 134 ms −55%

4.2 Effect of warm-start

POWERSGD does not compute the best rank-r approximation of a gradient matrix, but uses a cheaper,
low-fidelity approximation based on power iteration. Comparing the time per batch of POWERSGD
and Spectral Atomo in Table 6, we see the importance of avoiding a Singular Value Decomposition.
With gradients shaped as in POWERSGD, computing the SVD of a stochastic gradient takes 673ms,
the equivalent of computing 6 mini-batch gradients. In contrast, one full step of rank-2 POWERSGD,
including communication between 16 workers, takes only 105ms.

Given that we only use a single step of power iteration, the quality of the approximation suffers—
compare the test accuracy of ‘without warm start’ and ‘best approximation’ in Table 2. A key feature
of POWERSGD is the warm start strategy which reuses previously computed matrix approximations
to initialize the power iteration algorithm. If the matrix on which we perform power iteration remains
constant, then this recovers the best rank-r approximation (see Theorem I in the Appendix). We
argue that this strategy sometimes makes sense even if the underlying matrices are varying.

Suppose we approximate the sequence of gradient matrices {Mt} at timesteps t. At timestep t,
we leverage the previous factorization Mt−1 ≈ Pt−1Q

>
t−1. If Mt ≈ Mt−1 then we would benefit

from reusing Pt−1 and Qt−1 as our starting point. While this is unlikely to be true, if Mt and Mt−1
are stochastic approximations of the full gradient, we can expect that E[Mt] ≈ E[Mt−1] since the
function is smooth and we only take small update steps. The result is akin to Oja’s algorithm for
stochastic power iteration (Oja, 1982), and hence could result in an improved approximation quality.
As we show empirically in Table 2, this ‘warm starting’ strategy is sufficient to close the gap in test
accuracy between POWERSGD and the much more expensive best rank-r approximation.

4.3 Effect of varying the rank

POWERSGD allows users to choose the rank of its gradient approximations. The trade-off between
approximation quality and compression, decompression and transfer cost is explored in Table 3. In
both the image classification and language modeling tasks we explore, the test quality achieved by
POWERSGD grows with increasing rank. In both cases, it reaches a quality that is as good, or even
slightly better than regular SGD.
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Table 4: Comparing different compression operators for Error-feedback SGD in a unified setting;
running 300 epochs of Error-feedback SGD with Momentum (Algorithm 2) with a learning rate
tuned for full-precision SGD on 16 GPUs for CIFAR10. Note that the variations of POWERSGD with
ranks 2 and 7 strike the best balance between the achieved test accuracy and time per batch (total
time for forward, backward, compression, decompression, and gradient aggregation).

Test accuracy Sent/epoch All-reduce Time/batch

No compression 94.3% 1023 MB 3 312 ms

Medium Rank 7 94.6% 24 MB 3 285 ms
Random Block 93.3% 24 MB 3 243 ms
Random K 94.0% 24 MB 3 540 ms
Sign+Norm 93.9% 32 MB 7 429 ms
Top K 94.4% 32 MB 7 444 ms

High Rank 2 94.4% 8 MB 3 239 ms
Random Block 87.8% 8 MB 3 240 ms
Random K 92.6% 8 MB 3 534 ms
Top K 93.6% 8 MB 7 411 ms

5 Results
Default experimental setting

Dataset CIFAR10
Architecture RESNET18

Number of workers 16
Backend NCCL (fastest in PYTORCH)
Batch size 128× number of workers

Momentum 0.9
Learning rate Tuned for 16 workers — 0.1 ×

16 for SGD. Scaled linearly by the
number of workers

LR decay /10 at epoch 150 and 250
LR warmup Linearly within 5 epochs, starting

from the single-worker LR
# Epochs 300
Weight decay 10−4,

0 for BatchNorm parameters

Repetitions 3, with varying seeds
Error bars min — max

This section demonstrates the practicality of POW-
ERSGD for distributed optimization of deep neural
networks. We show that the compression scheme of
POWERSGD i) is fast and matches test performance
of SGD, ii) scales well with increasing workers even
with a sub-optimal communication backend, and iii)
significantly reduces training time for larger models.

Most of the analysis is performed on CIFAR10, in
the setting described in the table on the right. We
verify the generality of POWERSGD by an additional
evaluation of an LSTM for language modeling on
WIKITEXT-2. We use 16 GPUs on 8 machines, con-
nected through a fast (10Gbit/s) network. To obtain
meaningful timings, we have aimed to optimize all
compared optimizers to a similar level. We provide a
list of our performance optimizations in Appendix H. Throughout these results, we tune the learning
rate for full-precision SGD, and use the same parameters for POWERSGD and other compression
algorithms that use error feedback with momentum. Learning rates for the compared-to Spectral
Atomo (Wang et al., 2018) and Signum (Bernstein et al., 2019) were separately tuned cf. Appendix I.

5.1 Comparison with other compressors

Error feedback in compressed optimization enables the use of a multitude of compression schemes,
including biased ones. The potential compression operators illustrated in Figure 1 are compared in
Table 4. We evaluate compressors based on the test accuracy achieved and the total time taken to
process one mini-batch. The former is a holistic measure of the accuracy of the compression operator,
and the latter is the net time required for a forward pass, backward pass, gradient compression and
decompression and gradient communication. We study two compression regimes—medium and high.

At around 32× compression, achieved by sign-based methods, all compression schemes (other than
Random Block) achieve test accuracy close to full-precision SGD. This implies that all schemes in this
regime (other than Random Block) obtain a good-enough compression quality. At high compression
(128×), POWERSGD particularly stands out as the only method to achieve the target test accuracy.

In both the medium and high compression settings, the only schemes to be faster than full-precision
SGD are POWERSGD and Random Block. Note that both are simple linear schemes and hence
support all-reduce. While Random K also supports all-reduce, the overhead for random memory
access during both the compression and decompression stages is substantial, making it slower overall
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Table 5: Breakdown of time spent (in seconds) in one iteration of RESNET18 training. Because
POWERSGD (Rank 2) uses all-reduce, time spent encoding/decoding gradients is constant.

Forward pass, Backward pass, Gradient exchange, Encoding and decoding.

2 workers 4 workers 8 workers 16 workers
Rank 2
SGD
Signum

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

1 2 4 8 16

Number of workers

1×
2×

4×

8×
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GLOO backend

SGD
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Signum

1 2 4 8 16

Number of workers

NCCL backend

SGD
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Signum

Figure 3: Scaling of POWERSGD on CIFAR10 compared to full-precision SGD and Signum (Bern-
stein et al., 2019) on two communication backends. The batch size increases linearly with the number
of workers. We compare training time for one epoch to 1-worker SGD. Note that the faster NCCL
backend used throughout benefits the baselines more than our method.

than SGD. Thus, on modern GPU-enabled infrastructure, POWERSGD, which relies on matrix
multiplication, is faster and much more accurate than the other compression schemes.

5.2 Scalability of POWERSGD

Here we investigate how POWERSGD scales with an increasing number of workers, shedding light on
what we can expect if we use a significantly larger number of workers. Additionally, we investigate
how these results depend on the choice of communication backend. We benchmark POWERSGD
against SGD and Signum (signSGD with majority vote) from Bernstein et al. (2019) which we believe
is the current state-of-the-art for distributed algorithms.

Table 5 provides a detailed breakdown of the time spent for each mini-batch (i.e. one step) into the
forward pass, backward pass, gradient exchange (communication), and compression/decompression.
The time spent in the forward and backward pass is constant across all algorithms and numbers
of workers. Since both SGD and POWERSGD use all-reduce, the gradient communication time
(solid green in Table 5) scales gracefully with increasing number of workers. Signum—which uses
all-gather instead of all-reduce—has a steeper increase. It has comparable time to POWERSGD for 4
workers but becomes more expensive for 16 workers.

There is another, more subtle, consequence of all-reduce vs. all-gather on the decoding times. In
all-reduce, the aggregation step and the communication step happen simultaneously. Each worker
receives a pre-aggregated gradient, making the cost of decompression independent of the number of
workers. On the other hand, in all-gather, a worker receives W compressed gradients that need to be
individually decompressed and aggregated (either using majority vote or averaging). The time for
decompression with all-gather therefore scales linearly with number of workers. This shows when
comparing the hatcheted regions in Table 5. This observation speaks to the importance of the reduce
operation for scalability.

We next study two different backends—the more optimized NCCL and the slower GLOO. All three
methods scale reasonably well with the optimized NCCL backend, although Signum has a slope less
than 1 in the log-log plot, indicating sub-linear scaling. On the slower GLOO backend, POWERSGD
is notably the only method that retains excellent scaling due to its high compression rate.
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Table 6: Results on CIFAR10.
Contrary to rank-2 Spectral
Atomo (Wang et al., 2018) and
Signum (Bernstein et al., 2019),
POWERSGD achieves the same
test accuracy as full-precision
SGD within the default epoch
budget.

Algorithm Test accuracy Data/epoch Time per batch

SGD 94.3% 1023 MB 312 ms +0%
Atomo 92.6% 113 MB 948 ms +204%
Signum 93.6% 32 MB 301 ms −3%
Rank 2 94.4% 8 MB 239 ms −23%

Table 7: In language modeling,
rank-4 POWERSGD achieves the
target test accuracy and provides
a significant speedup over SGD.

Algorithm Test perplexity Data/epoch Time per batch

SGD 91 7730 MB 300 ms +0%
Signum 142 242 MB 424 ms +41%
Rank 4 91 64 MB 134 ms −55%

5.3 Other tasks and methods

In Table 6, we compare POWERSGD against the state-of-the-art compressed optimization algorithms
Signum and Spectral Atomo. The cost of performing a full SVD at each step renders Spectral
Atomo impractical in a high-performance setting, especially considering that it fails to match the test
accuracies of the other methods. Signum performs much better, proving a minor speedup over SGD.
POWERSGD is the fastest and most accurate of the compared methods.

The advantage of POWERSGD truly shows when using really large models, i.e. where the commu-
nication actually becomes a bottleneck. To verify this, we run Signum, full-precision SGD, and
POWERSGD to train an LSTM on a language modeling task which has a substantially larger model
size than RESNET18 (see Appendix F). To match the test score of full-precision SGD, we needed
to use a rank-4 approximation (see Section 4.3). POWERSGD reduces communication by 90% and
the overall running time by 55%, while Signum becomes slower than full-precision SGD and also
obtains a worse test score.

Convergence curves on test accuracy corresponding to Tables 3, 6 and 7 are provided in Appendix C.
In those figures, you can read our improvements in time-to-accuracy for any target accuracy. We also
provide a case study on using PowerSGD for a novel task (language modeling with transformers on
WIKITEXT-2) and more workers (32) on the public cloud in Appendix D.

6 Conclusion

Gradient compression is a promising approach to tackling the communication bottleneck in syn-
chronous distributed optimization. Thus far, however, it has not found widespread adoption because
existing compression schemes either run slower than SGD with optimized all-reduce gradient aggre-
gation, or more importantly do not reach the same test performance. We see POWERSGD as the first
practical gradient compression method, and believe it is ready for adaptation in practice.

The key to the practicality of POWERSGD is its linear compression scheme that is cheap to compute
and allows for all-reduce gradient aggregation, while simultaneously matching the test performance of
full-precision SGD. This speedup gained over SGD actually increases for larger models such as those
commonly found in NLP. Further, as a result of our modifications to the error feedback algorithm,
POWERSGD is a plug-in replacement for SGD with momentum, avoiding the need for additional
hyper-parameter tuning. We expect that these properties of POWERSGD will enable training of even
larger models with even more workers than what is possible with full-precision SGD.

While POWERSGD enables faster training with larger batch sizes, increasing batch sizes are known
to eventually suffer from a ‘generalization gap’ (Shallue et al., 2018). This is an orthogonal issue that
we see as the next step towards solving large-scale training. In our experiments, we have observed
that POWERSGD can achieve higher test accuracy than SGD. Combined with the intriguing links
between low-rankedness and generalization, this indicates that POWERSGD may also be helpful for
closing the generalization gap in large batch training.
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Appendix
A Discussion of convergence

The proof of convergence of EF-SGD with momentum can be derived by incoporating a few key
changes to the proof of Karimireddy et al. (2019): i) we are in a multi-worker setting, and ii) we
incorporate the techniques introduced by Ghadimi & Lan (2016) to handle the additional momentum.
Further, ‖·‖2 unless otherwise specified is always the standard euclidean norm for vectors, and is the
Frobenius norm for matrices.

Suppose that we want to minimize a continuous (possibly) non-convex function f : Rd → R:

f? = min
x∈Rd

f(x) .

The classic stochastic gradient algorithm (SGD) Robbins & Monro (1951) when adapted to the
distributed optimization setting performs iterations of the form

xt+1 := xt − γ gt , where (1)

gt =
1

W

W∑
w=1

gt,w and E[gt] = ∇f(xt) .

Here γ ∈ R is the step-size (or learning-rate) and gt,w is the stochastic gradient computed by the wth
worker for w ∈ {1, . . . ,W} workers.

Now EF-SGD (Algorithm 2) when run on the W workers with step-size γ and momentum parameter
λ can be rewritten making the dependence on iteration t explicit as follows:

∆′t = DECOMPRESS(COMPRESS(gt + et)) ,

mt+1 = ∆′t + λmt ,

xt+1 = xt − γ(∆′t + mt+1) , and

et+1 = (gt + et)−∆′t .

(2)

A.1 Eigen compression

Assumption A (Eigen compression). Consider any matrix M = gt + et encountered during the
run of Algorithm 2 such that M is of rank R. Further, suppose that Cr(M) is the best rank-r
approximation of M i.e.

Cr(M) = arg min
C
‖M − C‖2 .

Then we assume that there exists a δe,r > 0 such that

‖M − Cr(M)‖2 ≤ (1− δe,r)‖M‖2 a.s.

We state the below standard fact from linear algebra.
Remark 1 (Best rank-r approximation). Suppose we are given a matrix M of rank n whose singular
value decomposition is

M =

n∑
i=1

σiuiv
>
i ,

where the singular-values (σi) are sorted in descending order. Then the best rank-r approximation of
M for r ≤ n is

Cr(M) = (

r∑
i=1

σiuiv
>
t )Q ,

where Q ∈ Rr×r is an orthogonal matrix, and further the quality of its approximation is bounded by

‖M − Cr(M)‖2 =

(
1−

∑r
i=1 σ

2
i∑n

i=1 σ
2
i

)
‖M‖2 .
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Thus if we used Algorithm 2 with exact rank-r approximation of the gradients, we would converge at
rate dictated by the eigen-spectrum of the gradients. If the singular values are ‘top-heavy’ i.e. the
largest r values are significantly larger than the rest, then a rank-r approximation is quite accurate.
As demonstrated in (Wang et al., 2018), the eigen-spectrum of stochastic gradients in common deep
learning tasks is indeed ‘top-heavy’. Thus we can expect δe,r to be bounded away from 0 even for
very small r (e.g. 1 or 2). Of course computing the actual top eigenvectors of the stochastic gradients
is very computationally expensive, and more-over is not linear (and hence does not support reduce).

A.2 Subspace iteration

The key innovation in POWERSGD is to use only a single step of subspace (or power) iteration to
give a fast low rank approximation (Stewart & Miller, 1975) to the given matrix, which in our case is
a stochastic gradient. However, a single step of subspace iteration in general does not result in an
adequate low-rank approximation of the input matrix. To combat this, and to at the same time reduce
the variance of the stochastic gradient approximation compared to the full (deterministic) gradient,
we propose the reuse of the low-rank approximation from the previous iteration as the starting point
for the current iteration. This is in spite of the target matrices which are trying to approximate are
changing, as the parameters evolve. Nevertheless, reuse here is justified because the full gradient does
not change very fast (the gradient is Lipschitz by assumption) and we only perform a tiny update at
each step, so can be assumed to be stationary within a small number of steps. Intuitively, by linearity
of the subspace operation, the sequence of subspace steps with the reuse then is converging to the
eigenvector of the averaged stochastic gradients over these steps, thus having a lower variance than
the analogue without re-use, which has no such averaging effect.

For simplicity, we assume all matrices to be square and symmetric in this sub-section. These insights
can be generalized to arbitrary matrices but with a substantial increase in complexity of exposition.
Here, we simply note that for any non-square matrix A, we can instead consider

Ã =

[
0 A
A> 0

]
which is symmetric and has the same eigenvectors and eigenvalues as the original matrix A—see
Stewart (1976) for more details on handling such cases.

We can now state an informal theorem about the convergence of subspace iteration.

Theorem I. Suppose that we run subspace iteration as in (3) on a fixed matrix At = M . Also let
M =

∑n
i=1 σiuiu

>
i be the eigen decomposition of M with σ1 ≥ . . . σr > σr+1 ≥ · · · ≥ σn. Then

there exists an orthogonal matrix Q ∈ Rr×r such that

lim
t=∞

Xt = [u1, . . . ,ur]Q .

In other words, (3) recovers the best rank-r approximation of M as long as there is a gap between
the σr and σr+1 eigenvalues.

Suppose that at each iteration we receive a matrix At ∈ Rn×n whose expectation is the same fixed
matrix M ∈ Rn×n. Starting from an orthonormalized X0 ∈ Rn×r (i.e. X>0 X0 = Ir), the rank-r
subspace iteration algorithm performs the following update:

Xt+1 = ORTHOGONALIZE(AtXt) . (3)

The final output of the algorithm (i.e.) the matrix approximation is (AT+1XT )X>T . This closely
resembles the method of POWERSGD as outlines in Algorithm 1. We recommend (Arbenz, 2016)
for an in-depth analysis of the (non-varying) subspace iteration algorithm.

Remark 2 (Orthogonalization is a linear operation). We recall some more facts from linear algebra.
For any square matrix B, there exists an orthogonal matrix Q and a triangular matrix R such that
QQ> = I and B = QR. This is true e.g. if we use Gram–Schmidt procedure to ortho-normalize B:
Suppose ORTHOGONALIZE(B) uses the Gram–Schmidt procedure to orthogonalize B. Then there
exists a triangular matrix R such that

ORTHOGONALIZE(B) = BR−1 .
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Proof. It is easy to see that for any orthogonal matrix Q, the matrix [u1, . . . ,ur]Q is also orthogonal,
and further is the fixed point of (3). In fact all rank-r matrices which are fixed points of (3) are of this
form.

We will use the observation in Remark 2 to rewrite the update (3) in a more convient fashion. There
exist tringular matrices R0, . . . , Rt such that

Xt+1 = ORTHOGONALIZE(AtXt) = AtXtR
−1
t = (AtAt−1 · · ·A0)X0(R−10 R−11 · · ·R−1t ) .

Thus Xt+1 can alternatively be written as

Xt+1 = ORTHOGONALIZE((AtAt−1 · · ·A0)X0) = ORTHOGONALIZE(M t+1X0) .

Here we assumed that the matrix was fixed i.e. At = M . Let us further assume that X0 has a
non-zero support on the first r eigenvectors of M . Then, a gap in the eigenvalues σr > σr+1 implies
that ORTHOGONALIZE(M t+1X0) converges to [u1, . . . ,ur]Q. We refer to Chapter 7.2 of Arbenz
(2016) for the actual proof of this fact.

A.3 Single/multi worker equivalence

The difference between the update as written in (2) and Algorithm 2 is that the error computation
and compression is performed on the aggregated gradient gt instead of on the individual workers’
gradients gt,w. While in general these are not equivalent, the linearity of POWERSGD ensures that
these are indeed equivalent. This implies that POWERSGD has the neat property that the algorithm is
equivalent if run on W workers or a single worker with a larger batch-size. This does not hold for
most other schemes (e.g. sign based compression schemes, QSGD, etc.).
Lemma 3 (Equivalence of single worker and multi worker updates). The updates in POWERSGD
(i.e. Algorithm 2 using Compressor 1) are equivalent to the updates (2).

Proof. Consider the update performed by POWERSGD for abrtiary vectors {vw}. Let C(vw) be
the compressed version of vw for w ∈ {1, . . . ,W}. Then by design of POWERSGD , the following
holds:

DECOMPRESS(AGGREGATE(C(v1), . . . , C(vW ))) = DECOMPRESS(C( 1

W

∑
w

vw)) .

This implies that running the algorithm on multiple workers, or running it on a single worker with a
larger batch-size is identical. In particular,

DECOMPRESS(AGGREGATE(C(gt,1 + et,1), . . . , C(gt,W + et,W )))

= DECOMPRESS(C( 1

W

∑
w

gt,w + et,w))

= DECOMPRESS(
1

W
C(gt + et)) .
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B Cluster specifications

• 8 nodes
• GPUs: 2× Nvidia GeForce GTX Titan X with 12 GB memory per node
• GPU connection: traversing PCIe and the SMP interconnect between NUMA nodes
• CPU: Intel Xeon E5-2680 v3 @ 2.50Ghz, 48 cores
• System memory: 251GiB
• Ethernet: 10Gbit/s SFI/SFP+
• Fat tree network topology
• Runing PYTORCH 1.1 on Anaconda Python 3.7

Timings of collective communication operations

The figure below shows timings for the NCCL backend, which is the default in our experiments, and
the GLOO backend. Note that NCCL does not support the ‘gather’ operation in PYTORCHat the
time of writing.
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C Convergence curves

Image classification on CIFAR10
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Figure 4: Convergence curves of POWERSGD with varying rank. This figure is meant to give
context to the final results and timings presented in Table 3. In two different tasks, POWERSGD
with high enough rank can achieve the test quality of full-precision SGD with lower wall-clock
duration. Contrary to Table 3, these timings include testing overhead at the end of each epoch,
checkpointing, and other bookkeeping. Shaded areas show the min—max values over 3 replications
of the experiments.
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Figure 5: Convergence curves comparing POWERSGD to the Signum optimizer Bernstein et al. (2019)
(with tuned learning rate). Out of the compared methods, Signum came out as the most competitive.
This figure is meant to give context to the final results and timings presented in Table 6. Contrary to
Table 3, these timings include testing overhead at the end of each epoch, checkpointing, and other
bookkeeping. Shaded areas show the min—max values over 3 replications of the experiments.
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D Language Modeling with Transformers

In this case study, we assess PowerSGD’s universality and ease of tuning. We implemented PowerSGD
communication in Facebook AI Research’s fairseq library (Ott et al., 2019). We trained fairseq’s
language modeling example2 with transformers (Baevski & Auli, 2019) on Google’s public cloud.
The communication infrastructure, hardware, number of workers (32), and model architecture are all
different from any experiments we have conducted before. See Table 8 for details.

The results of our experiments for various ranks are shown in Figure 6 and Table 9. For this task, we
need a higher rank than previously (32 vs 4) to achieve a validation loss comptetitive to uncompressed
SGD. We hypothesize this may be due differences in architecture to the cosine learning rate schedule.
Nevertheless, even at this higher rank, we achieve a time-to-accuracy (to loss = 5) of around 1.5×
and a compression ratio of 14×. These numbers could probably be further improved by re-tuning
learning-rate-related hyperparameters.

Table 8: Experimental setting for the experiments in Appendix D

Dataset WikiText-103
Architecture Transformer-based (Baevski & Auli, 2019)
Framework & defaults https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/

examples/language_model

Number of workers 32
Backend NCCL (fastest in PYTORCH)
Hardware n1-standard-8 nodes on Google Cloud with 1 Nvidia Tesla K80 GPU

Hyperparameters Taken from the example, not re-tuned,
with minor changes for the higher number of workers and different GPU memory:

lr period updates 16875
max update 17875
max tokens (valid) 1536 (to fit on a K80 gpu)
tokens per sample 1536 (to fit on a K80 gpu)
warmup updates 1000
update freq [1] — don’t aggregate multiple mini-batches locally

Optimizer original: Nesterov accelerated gradient, we just added PowerSGD for communication
Learning rate original cosine schedule from the example

Float precision 32-bit (16-bit is unavailable on the K80)

Repetitions 1

Wall-clock time

5 10 15 20

Training time (hours)

4

5

6

7

8

9

10

V
al

id
at

io
n

lo
ss

Uncompressed

Rank 4

Rank 8

Rank 16

Update steps

2500 5000 7500 10000 12500 15000 17500

# model updates

4

5

6

7

8

9

10

V
al

id
at

io
n

lo
ss

Uncompressed

Rank 4

Rank 8

Rank 16

Rank 32

Figure 6: Language Modeling on WIKITEXT-2 with Transformers. With a large enough rank,
POWERSGD can roughly match the validation loss of full-precision SGD in the same number of
iterations. A speedup of 1.5× in time-to-accuracy (loss=5) is achieved with a rank of 16.

2https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/
examples/language_model
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Table 9: POWERSGD for Language Modeling with Transformers. With rank 32, POWERSGD
achieves similar validation loss to uncompressed SGD in the same number of update steps. At this
rank, the compression ratio is 14× and we can train the model in 12h compared to 20h for the
baseline.

Compression Total training time Compression ratio Validation loss
for 17875 updates at 17875 updates

Uncompressed 20h 1× 4.92
Rank 4 11h 105× 5.58
Rank 8 11h 55× 5.19
Rank 16 12h 28× 5.03
Rank 32 13h 14× 4.97

4h 8h 12h 16h 20h

Forward pass Backward pass Gradient exchange including computation

E The need for error feedback
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Figure 7: PowerSGD with and without error feedback compared. While rank-4 POWERSGD achieves
the same test accuracy as full-precision SGD, the same method without error feedback does not
converge to a good accuracy at all. Both experiments use the same learning rate that was tuned for
full-precision SGD.
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F Network parameters

See Table 10 and Table 11 for an overview of parameters in the models used.

Table 10: Parameters in the ResNet18 architecture and their shapes. The table shows the per-tensor
compression ratio achieved by rank-r POWERSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

layer4.1.conv2 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.0.conv2 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.1.conv1 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.0.conv1 512× 256× 3× 3 512× 2304 4608 KB 419/r ×
layer3.1.conv2 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.1.conv1 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.0.conv2 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.0.conv1 256× 128× 3× 3 256× 1152 1152 KB 209/r ×
layer2.1.conv2 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer2.1.conv1 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer2.0.conv2 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 512 KB 171/r ×
layer2.0.conv1 128× 64× 3× 3 128× 576 288 KB 105/r ×
layer1.1.conv1 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.1.conv2 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.0.conv2 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.0.conv1 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 128 KB 85/r ×
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 32 KB 43/r ×
linear 10× 512 10× 512 20 KB 10/r ×
conv1 64× 3× 3× 3 64× 27 7 KB 19/r ×
Bias vectors (total) 38 KB None

Total 43 MB 243/r ×

Table 11: Parameters in the LSTM architecture and their shapes. The table shows the per-tensor
compression ratio achieved by rank-r POWERSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

encoder 28869× 650 28869× 650 73300 KB 636/r ×
rnn-ih-l0 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l0 2600× 650 2600× 650 6602 KB 520/r ×
rnn-ih-l1 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l1 2600× 650 2600× 650 6602 KB 520/r ×
rnn-ih-l2 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l2 2600× 650 2600× 650 6602 KB 520/r ×
Bias vectors (total) 174 KB None

Total 110 MB 310/r ×
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G Compressor implementation details

G.1 Random Block

This implements compression for error-feedback with momentum (Algorithm 2).

Algorithm 3 Random Block compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: Sample an index s uniformly between 0 and nm− 1, using the same seed on all workers.
4: The block length b is set to (m+ n)r to match rank-r POWERSGD.
5: return A consequtive memory slice S = M(s : s+ b).
6: end function
7: function AGGREGATE+DECOMPRESS(worker’s slices S1 . . . SW )
8: M̂ ← 0 ∈ Rn×m

9: M̂(s : s+ b)← 1
W

∑W
i=1 Si . using all-reduce

10: return M̂
11: end function

G.2 Random K

This implements compression for error-feedback with momentum (Algorithm 2).

Algorithm 4 Random K compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to (m+ n)r to match rank-r POWERSGD.
4: Sample a set of b indices I without replacement, using the same seed on all workers.
5: return Looked up values S = M(I).
6: end function
7: function AGGREGATE+DECOMPRESS(worker’s values S1 . . . SW )
8: M̂ ← 0 ∈ Rn×m

9: M̂(I)← 1
W

∑W
i=1 Si . using all-reduce

10: return M̂
11: end function

Sampling of indices We sample random indices on the CPU using Numpy. This operation is
relatively expensive. Together with the many random lookups, this explains why Random K
compression is significantly slower than Random Block compression.

G.3 Sign+Norm

This implements compression for error-feedback with momentum (Algorithm 2).

Algorithm 5 Sign+Norm compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: Compute the signs S ∈ {−1, 1}n×m of M
3: Compute the L1 norm ` of M .
4: return (`, S)
5: end function
6: function AGGREGATE+DECOMPRESS(worker’s norms `1 . . . `W and signs S1 . . . SW )
7: return 1

W

∑W
i=1

`i
nmSi . Executed on all workers using NCCL’s all-gather

8: end function
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Because PYTORCH does not natively support data types smaller than 8 bits per scalar, we use a
C++ extension (Bernstein et al., 2019) to actually send single bits to other workers. The employed
all-gather operation from NCCL is faster than aggregation using a parameter server using GLOO.
We cannot implement a parameter server in NCCL due to lack of a ‘gather’ operation.

G.4 Top K

This implements compression for error-feedback with momentum (Algorithm 2).

Algorithm 6 Top K compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to (m+ n)r to match rank-r POWERSGD.
4: Construct a list of b indices I corresponding to the top absolute values in M .
5: return Looked up values S = M(I) and indices I .
6: end function
7: function AGGREGATE+DECOMPRESS(worker’s values S1 . . . SW and indices I1 . . . IW )
8: M̂ ← 0 ∈ Rn×m

9: for worker index i in 1, . . . ,W do
10: M̂(Ii)← 1

W Si . using all-gather in NCCL
11: end for
12: return M̂
13: end function

The employed all-gather operation from NCCL is faster than aggregation using a parameter server
using GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’ operation.

G.5 Signum

This is our implementation of the Signum compression algorithm by Bernstein et al. (2019). We run
it in its original form, without error feedback, with momentum of 0.9, and a learning rate tuned based
on 5 experiments in the 16-worker setting.

Algorithm 7 Signum compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: Compute the signs S ∈ {−1, 1}n×m of M
3: return S
4: end function
5: function AGGREGATE+DECOMPRESS(worker’s signs S1 . . . SW )
6: return SIGN(

∑W
i=1 Si) . Majority vote, on all workers using NCCL’s all-gather

7: end function

Because PYTORCH does not natively support data types smaller than 8 bits per number, we use a
C++ extension Zhao (2019) to actually send single bits to other workers. The employed all-gather
operation from NCCL is faster than aggregation using a parameter server using GLOO. We cannot
implement a parameter server in NCCL due to lack of a ‘gather’ operation.

G.6 Atomo

This is our implementation of the Spectral Atomo algorithm presented by Wang et al. (2018). We run
it in its original form, without error feedback, with momentum of 0.9, and a learning rate tuned based
on 4 experiments in the 16-worker setting.

Matix shape Atomo differs from POWERSGD in how it treats tensors as matrices. This results in
lower compression at the same rank.
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Number of sampled components Atomo decomposes gradient matricesM using a Singular Value
Decomposition into M ∼∑i Ui:SiiV

>
i: and importance-samples components from this summation

based on probabilities derived from the absolute singular values Sii. The probabilities are such, that
the expected number of samples components is equal to the target rank r, but there is no guarantee.
We modify the algorithm to always use exactly r components, to allow for faster communication. We
achieve this by repeating the sampling procedure until the number of selected components is r. This
has no significant impact on the runtime performance.

Algorithm 8 Rank-r Spectral-Atomo compression

1: function COMPRESS(update matrix M ∈ Rn×m)
2: U, S, V ← SVD(M). . on CPU using Numpy, faster than PYTORCH
3: Compute Atomo probabilities p1 . . . pk from S11, . . . Skk. . see Wang et al. (2018).
4: Sampling: include index i independently with probability pi.
5: Repeat sampling until a set of r indices C is selected. . our modification (see above)
6: return {(Ui: · Sii/pi, Vi:) | i ∈ C} as two matrices U ′ ∈ Rn×r and V ′ ∈ Rm×r.
7: end function
8: function AGGREGATE+DECOMPRESS(rank-r approximations (U ′1, V

′
1) . . . (U ′W , V ′W ) for each

worker)
9: return

∑W
i=1 U

′
iV
′>
i . using all-gather in NCCL

10: end function

The employed all-gather operation from NCCL is faster than aggregation using a parameter server
using GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’ operation.

G.7 Best-approximation POWERSGD

This variant is the same as POWERSGD (Algorithm 1), but with more steps of subspace iteration, and
without reuse of previous steps. We find that 4 steps of subspace iterations (8 matrix multiplications)
is enough to converge to the best low-rank approximation of gradient matrices, when measuring final
test accuracy achieved by POWERSGD.
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H Performance optimizations

Because we compare timings, we have aimed to optimize all compared optimizers to a similar level.
For sign-based methods, we used a publicly available C++ library by Bernstein et al. (2019) to
efficiently pack the signs into bitmaps, an operation which is not supported by PYTORCH natively.
For Atomo, we have benchmarked the SVD operation on the GPU and CPU, and chose the faster
CPU implementation. For all methods, we pack all gradient tensors into one flat buffer to reduce
the number of communications. Where possible, we overlay communication with computation.
Algorithms that do not support all-reduce are implemented using NCCL’s all-gather, which is faster
than a parameter server with GLOO.3

I Learning rate tuning

For each task and each optimization algorithm without error feedback, learning rates were tuned
separately. For algorithms based on error feedback with momentum, we use the learning rate tuned
for SGD.

Learning rates are defined as rates for 1 worker, and scaled linearly with 5-epoch warmup to the
number of workers (16 by default). We tune them in the 16-worker setting.

We determine the best learning rate by comparing test accuracy of one replication after running the
full number of epochs. We start training with 3 different learning rates, a factor 2 apart, based on
commonly used rates for the optimizer, and if the best learning rate is either the lower or higher end,
we extended the range.

For CIFAR10, the rates considered for SGD were [0.05, 0.1, 0.2], we chose 0.1. For rank-2 Spectral
Atomo, we considered [0.025, 0.05, 0.1, 0.2] and chose 0.1. For Signum, we considered [2e-5, 5e-5,
1e-4, 2e-4] and chose 5e-5.

For WIKITEXT-2, the rates considered for SGD were [0.6, 1.25, 2.5, 5, 10], we chose 1.25. For
Signum, we considered [2e-4, 1e-1, 5e-5, 1e-5, 1e-6], and chose 1e-5.

We have not tuned the momentum parameter or L2, weight decay parameters or learning rate schedule
for any experiment.

3‘reduce’+‘gather’ (parameter server communication) with GLOO takes longer than all-gather with NCCL,
as shown in Appendix B. NCCL in PYTORCH currently lacks support for a ‘gather’ operator.
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