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Abstract

We study the problem of minimizing a strongly convex, smooth function when we
have noisy estimates of its gradient. We propose a novel multistage accelerated
algorithm that is universally optimal in the sense that it achieves the optimal rate
both in the deterministic and stochastic case and operates without knowledge of
noise characteristics. The algorithm consists of stages that use a stochastic version
of Nesterov’s method with a specific restart and parameters selected to achieve the
fastest reduction in the bias-variance terms in the convergence rate bounds.

1 Introduction

First order optimization methods play a key role in solving large scale machine learning problems due
to their low iteration complexity and scalability with large data sets. In several cases, these methods
operate with noisy first order information either because the gradient is estimated from draws or
subset of components of the underlying objective function [3, 8, 13, 16, 17, 21, 36, 9, 11] or noise is
injected intentionally due to privacy or algorithmic considerations [4, 25, 30, 14, 15]. A fundamental
question in this setting is to design fast algorithms with optimal convergence rate, matching the lower
bounds on the oracle complexity in terms of target accuracy and other important parameters both for
the deterministic and stochastic case (i.e., with or without gradient errors).

In this paper, we design an optimal first order method to solve the problem

f∗ , min
x∈Rd

f(x) such that f ∈ Sµ,L(Rd), (1)

where, for scalars 0 < µ ≤ L, Sµ,L(Rd) is the set of continuously differentiable functions f : Rd →
R that are strongly convex with modulus µ and have Lipschitz-continuous gradients with constant L,
which imply that for every x, y ∈ Rd, f satisfies (see e.g. [27])

µ

2
‖x− y‖2 ≤ f(x)− f(y)−∇f(y)>(x− y) ≤ L

2
‖x− y‖2. (2)

For f ∈ Sµ,L(Rd), the ratio κ , L
µ is called the condition number of f . Throughout the paper, we

denote the solution of problem (1) by f∗ which is achieved at the unique optimal point x∗.

∗The authors are in alphabetical order.
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We assume that the gradient information is available through a stochastic oracle, which at each
iteration n, given the current iterate xn ∈ Rd, provides the noisy gradient ∇̃f(xn, wn) where {wn}n
is a sequence of independent random variables such that for all n ≥ 0,

E[∇̃f(xn, wn)|xn] = ∇f(xn), E
[
‖∇̃f(xn, wn)−∇f(xn)‖2

∣∣∣xn] ≤ σ2. (3)

This oracle model is commonly considered in the literature (see e.g. [16, 17, 6]). In Appendix K, we
show how our analysis can be extended to the following more general noise setting, same as the one
studied in [3], where the variance of the noise is allowed to grow linearly with the squared distance to
the optimal solution:

E[∇̃f(xn, wn)|xn] = ∇f(xn), E
[
‖∇̃f(xn, wn)−∇f(xn)‖2

∣∣∣xn] ≤ σ2 + η2‖xn − x∗‖2. (4)

for some constant η ≥ 0.

Under noise setting in (3), the performance of many algorithms is characterized by the expected error
of the iterates (in terms of the suboptimality in function values) which admits a bound as a sum of two
terms: a bias term that shows the decay of initialization error f(x0)− f∗ and is independent of the
noise parameter σ2, and a variance term that depends on σ2 and is independent of the initial point x0.
A lower bound on the bias term follows from the seminal work of Nemirovsky and Yudin [26], which
showed that without noise (σ = 0) and after n iterations, E [f(xn)]− f∗ cannot be smaller than2

L‖x0 − x∗‖22 exp(−O(1)
n√
κ

). (5)

With noise, Raginsky and Rakhlin [31] provided the following (much larger) lower bound3 on
function suboptimality which also provides a lower bound on the variance term:

Ω

(
σ2

µn

)
for n sufficiently large. (6)

Several algorithms have been proposed in the recent literature attempting to achieve these lower
bounds.4 Xiao [38] obtains O(log(n)/n) performance guarantees in expected suboptimality for an
accelerated version of the dual averaging method. Dieuleveut et al. [12] consider quadratic objective
function and develop an algorithm with averaging to achieve the error bound O(σ

2

n + ‖x0−x∗‖2
n2 ). Hu

et al. [20] consider general strongly convex and smooth functions and achieve an error bound with
similar dependence under the assumption of bounded noise. Ghadimi and Lan [16] and Chen et al.
[7] extend this result to the noise model in (3) by introducing the accelerated stochastic approximation
algorithm (AC-SA) and optimal regularized dual averaging algorithm (ORDA), respectively. Both
AC-SA and ORDA have multistage versions presented in [17] and [7] where authors improve the
bias term of their single stage methods to the optimal exp(−O(1)n/

√
κ) by exploiting knowledge of

σ and the optimality gap ∆, i.e., an upper bound for f(x0)− f∗, in the operation of the algorithm.
Another closely related paper is [8] which proposed µAGD+ and showed under additive noise model
that it admits the error bound O(σ

2

n + ‖x0−x∗‖2
np ) for any p ≥ 1 where the constants grow with p, and

in particular, they achieve the bound O(σ
2 logn
n + ‖x0−x∗‖2 logn

nlogn ) for p = log n.

In this paper, we introduce the class of Multistage Accelerated Stochastic Gradient (M-ASG) methods
that are universally optimal, achieving the lower bound both in the noiseless deterministic case
and the noisy stochastic case up to some constants independent of µ and L. M-ASG proceeds in
stages that use a stochastic version of Nesterov’s accelerated method [27] with a specific restart and
parameterization. Given an arbitrary length and constant stepsize for the first stage together with
geometrically growing lengths and shrinking stepsizes for the following stages, we first provide a
general convergence rate result for M-ASG (see Theorem 3.4). Given the computational budget
n, a specific choice for the length of the first stage is shown to achieve the optimal error bound
without requiring knowledge of the noise bound σ2 and the initial optimality gap (See Corollary 3.8).

2This lower bound is shown with the additional assumption n ≤ d
3The authors show this result for µ = 1. Nonetheless, it can be generalized to any µ > 0 by scaling the

problem parameters properly.
4Here we review their error bounds after n iterations highlighting dependence on σ2, n, and initial point x0,

suppressing µ and L dependence.
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Table 1: Comparison of algorithms

Algorithm Requires Opt. Opt.
σ ∆ n or ε Bias Var.

AC-SA 7 7 7 7 3
Multi. AC-SA 3 3 7 3 3

ORDA 7 7 7 7 3
Multi. ORDA 3 3 7 3 3
Cohen et al. 7 7 7 7 3

M-ASG (With parameters in Corollary 3.7) 7 7 7 7 3
M-ASG (With parameters in Corollary 3.8) 7 7 3[n] 3 3
M-ASG (With parameters in Corollary 3.9) 7 3 3[ε] 3 3

To the best of our knowledge, this is the first algorithm that achieves such a lower bound under
such informational assumptions. In Table 1, we provide a comparison of our algorithm with other
algorithms in terms of required assumptions and optimality of their results in both bias and variance
terms. In particular, we consider ACSA [16], Multistage AC-SA [17], ORDA and Multistage ORDA
[7], and the algorithm proposed in [8].

Our paper builds on an analysis of Nesterov’s accelerated stochastic method with a specific momentum
parameter presented in Section 2 which may be of independent interest. This analysis follows from
a dynamical system representation and study of first order methods which has gained attention in
the literature recently [24, 19, 2]. In Section 3, we present the M-ASG algorithm, and characterize
its behavior under different assumptions as summarized in Table 1. In particular, we show that it
achieves the optimal convergence rate with the given budget of iterations n. In Section 4, we show
how additional information such as σ and ∆ can be leveraged in our framework to improve practical
performance. Finally, in Section 5, we provide numerical results on the comparison of our algorithm
with some of the other most recent methods in the literature.

Preliminaries and notation: Let Id and 0d represent the d × d identity and zero matrices. For
matrix A ∈ Rd×d, Tr(A) and det(A) denote the trace and determinant of A, respectively. Also, for
scalars 1 ≤ i ≤ j ≤ d and 1 ≤ k ≤ l ≤ d, we use A[i:j],[k:l] to show the submatrix formed by rows
i to j and columns k to l. We use the superscript > to denote the transpose of a vector or a matrix
depending on the context. Throughout this paper, all vectors are represented as column vectors. Let
Sm+ denote the set of all symmetric and positive semi-definite m ×m matrices. For two matrices
A ∈ Rm×n and B ∈ Rp×q, their Kronecker product is denoted by A⊗B. For scalars 0 < µ ≤ L,
Sµ,L(Rd) is the set of continuously differentiable functions f : Rd → R that are strongly convex
with modulus µ and have Lipschitz-continuous gradients with constant L. All logarithms throughout
the paper are in natural basis.

2 Modeling Accelerated Gradient method as a dynamical system

In this section we study Nesterov’s Accelerated Stochastic Gradient method (ASG) [27] with the
stochastic first-order oracle in (3):

yk = (1 + β)xk − βxk−1, xk+1 = yk − α∇̃f(yk, wk) (7)

where α ∈ (0, 1
L ] is the stepsize and β =

1−√αµ
1+
√
αµ is the momentum parameter. This choice of

momentum parameter has already been studied in the literature, e.g., [28, 37, 33]. In the next lemma,
we provide a new motivation for this choice by showing that for quadratic functions and in the
noiseless setting, this momentum parameter achieves the fastest asymptotic convergence rate for a
given fixed stepsize α ∈ (0, 1

L ]. The proof of this lemma is provided in Appendix A.

Lemma 2.1. Let f ∈ Sµ,L(Rd) be a strongly convex quadratic function such that f(x) = 1
2x
>Qx−

p>x+ r where Q is a d by d symmetric positive definite matrix with all its eigenvalues in the interval
[µ,L]. Consider the deterministic ASG iterations, i.e., σ = 0, as shown in (7), with constant stepsize
α ∈ (0, 1/L]. Then, the fastest asymptotic convergence rate, i.e. the smallest ρ ∈ (0, 1) that satisfies
the inequality

‖xk − x∗‖2 ≤ (ρ+ εk)2k‖x0 − x∗‖2, ∀x0 ∈ Rd,
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for some non-negative sequence {εk}k that goes to zero is ρ = 1 − √αµ5 and it is achieved by
β =

1−√αµ
1+
√
αµ . As a consequence, for this choice of β, there exists {εk} such that limk→∞ εk = 0 and

f(xk)− f∗ ≤ L(1−√αµ+ εk)2k‖x0 − x∗‖2.

Our analysis builds on the reformulation of a first-order optimization algorithm as a linear dynamical
system. Following [24, 19], we write ASG iterations as

ξk+1 = Aξk +B∇̃f(yk, wk), yk = Cξk, (8)

where ξk :=
[
x>k x>k−1

]> ∈ R2d is the state vector and A,B and C are matrices with appropriate
dimensions defined as the Kronecker products A = Ã⊗ Id, B = B̃ ⊗ Id and C = C̃ ⊗ Id with

Ã =

[
1 + β −β

1 0

]
, B̃ =

[
−α
0

]
, C̃ = [1 + β −β] . (9)

We can also relate the state ξk to the iterate xk in a linear fashion through the identity xk =
Tξk, T , [Id 0d]. We study the evolution of the ASG method through the following Lyapunov
function which also arises in the study of deterministic accelerated gradient methods:

VP (ξ) = (ξ − ξ∗)>P (ξ − ξ∗) + f(Tξ)− f∗ (10)

where P is a symmetric positive semi-definite matrix. We first state the following lemma which can
be derived by adapting the proof of Proposition 4.6 in [2] to our setting with less restrictive noise
assumption compared to the additive noise model of [2]. Its proof can be found in Appendix B.
Lemma 2.2. Let f ∈ Sµ,L(Rd) . Consider the ASG iterations given by (7). Assume there exist
ρ ∈ (0, 1) and P̃ ∈ S2

+, possibly depending on ρ, such that

ρ2X̃1 + (1− ρ2)X̃2 �
[
Ã>P̃ Ã− ρ2P̃ Ã>P̃ B̃

B̃>P̃ Ã B̃>P̃ B̃

]
(11)

where

X̃1 =
1

2

 β2µ −β2µ −β
−β2µ β2µ β
−β β α(2− Lα)

 , X̃2 =
1

2

 (1 + β)2µ −β(1 + β)µ −(1 + β)
−β(1 + β)µ β2µ β
−(1 + β) β α(2− Lα)

 .
Let P = P̃ ⊗ Id. Then, for every k ≥ 0,

E [VP (ξk+1)] ≤ ρ2E [VP (ξk)] + σ2α2(P̃1,1 +
L

2
). (12)

We use this lemma and derive the following theorem which characterize the behavior of ASG method
for when α ∈ (0, 1/L] and β =

1−√αµ
1+
√
αµ (see the proof in Appendix C).

Theorem 2.3. Let f ∈ Sµ,L(Rd) . Consider the ASG iterations given in (7) with α ∈ (0, 1
L ] and

β =
1−√αµ
1+
√
αµ . Then,

E [VPα(ξk+1)] ≤ (1−√αµ)E [VPα(ξk)] +
σ2α

2
(1 + αL) (13)

for every k ≥ 0, where Pα = P̃α ⊗ Id with P̃α =


√

1
2α√

µ
2 −

√
1

2α

[√ 1
2α

√
µ
2 −

√
1

2α

]
.

This result relies on the special structure of Pα which will also be key for our analysis in Section 3.

3 A class of multistage ASG algorithms

In this section, we introduce a class of multistage ASG algorithms, represented in Algorithm 1 which
we denote by M-ASG. The main idea is to run ASG with properly chosen parameters (αk, βk) at
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Algorithm 1: Multistage Accelerated Stochastic Gradient Algorithm (M-ASG)
1 Set n0 = −1;
2 for k = 1; k ≤ K; k = k + 1 do
3 Set xk0 = xk1 = xk−1

nk−1+1;
4 for m = 1; m ≤ nk; m = m+ 1 do
5 Set βk =

1−√µαk
1+
√
µαk

;

6 Set ykm = (1 + βk)xkm − βkxkm−1;
7 Set xkm+1 = ykm − αk∇̃f(ykm, w

k
m)

8 end
9 end

each stage k ∈ 1, . . . ,K for K ≥ 2 stages. In addition, each new stage is dependent on the previous
stage as the first two initial iterates of the new stage are set to the last iterate of the previous stage.

To analyze Algorithm 1, we first characterize the evolution of iterates in one specific stage through
the Lyapunov function in (10). The details of the proof is provided in Appendix D.

Theorem 3.1. Let f ∈ Sµ,L(Rd) . Consider running the ASG method given in (7) for n iterations
with α = c2

L and β =
1−√αµ
1+
√
αµ for some 0 < c ≤ 1. Then, for Pα given in Theorem 2.3,

E [VPα(ξn+1)] ≤ exp(−n c√
κ

)E [VPα(ξ1)] +
σ2
√
κc

L
. (14)

Given a computational budget of n iterations, we use this result to choose a stepsize that help us
achieve an approximately optimal decay in the variance term which yields the following corollary for
M-ASG algorithm with K = 1 stage, and its proof can be found in Appendix E.

Corollary 3.2. Let f ∈ Sµ,L(Rd) . Consider running M-ASG, i.e., Algorithm 1, for only one stage

with n1 = n iterations and stepsize α1 =
(
p
√
κ logn
n

)2
1
L for some scalar p ≥ 1. Then,

E
[
f(x1

n+1)
]
− f∗ ≤ 2

np
(f(x0

0)− f∗) +
pσ2 log n

nµ
(15)

provided that n ≥ p
√
κmax{2 log(p

√
κ), e}.

For subsequent analysis, given K ≥ 1, for all 1 ≤ k ≤ K, we define the state vector ξki =[
xki
>
, xki−1

>
]>

for 1 ≤ i ≤ nk + 1 –recall that xk0 = xk1 = xk−1
nk−1+1, where K is the number

of stages. We analyze the performance of each stage with respect to a stage-dependent Lyapunov
function VPαk . The following lemma relates the performance bounds with respect to consecutive
choice of Lyapunov functions, building on our specific restarting mechanism (The proof can be found
in Appendix F).

Lemma 3.3. Let f ∈ Sµ,L(Rd) . Consider M-ASG, i.e., Algorithm 1. Then, for every 1 ≤ k ≤ K−1,

E
[
VPαk+1

(ξk+1
1 )

]
≤ 2E

[
VPαk (ξknk+1)

]
. (16)

Now, we are ready to state and prove the main result of the paper (see proof in Appendix G):

Theorem 3.4. Let f ∈ Sµ,L(Rd) . Consider running M-ASG , i.e., Algorithm 1, with some n1 ≥ 1
and α1 = 1

L and fixing nk = 2kd
√
κ log(2p+2)e and αk = 1

22kL
for any k ≥ 2 and p ≥ 1. The last

iterate of each stage, i.e., xknk+1, satisfies the following bound for all k ≥ 1:

E
[
f(xknk+1)

]
− f∗ ≤ 2

2(p+1)(k−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
σ2
√
κ

L2k−1
. (17)

5Note that although this rate is asymptotic, its smaller than the non-asymptotic rate that we provide for
general strongly convex functions in Theorem 2.3, as there ρ =

√
1−√αµ.
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We next define NK(p, n1) as the number of iterations needed to run M-ASG for K ≥ 1 stages, i.e.,
NK(p, n1) ,

∑K
k=1 nk. Note for K ≥ 2 and with parameters given in Theorem 3.4,

NK(p, n1) = n1 + (2K+1 − 4)d
√
κ log(2p+2)e. (18)

We define {xn}n∈Z+ sequence such that xn is the iterate generated by M-ASG algorithm at the end
of n gradient steps for n ≥ 0, i.e., x0 = x0

0, xn = x1
n+1 for 1 ≤ n ≤ n1, and for n > n1 we set

xn = xkm where k = dlog2

(
n−n1

d
√
κ log(2p+2)e + 4

)
− 1e and m = n−Nk−1(p, n1).

Remark 3.5. In the absence of noise, i.e., σ = 0, the result of Theorem 3.4 recovers the linear
convergence rate of deterministic gradient methods as its special case. Indeed, running M-ASG
only for one stage with n iterations, i.e., K = 1 and n1 = n guarantees that E [f(xn)] − f∗ ≤
2 exp(−n/

√
κ)(f(x0

0)− f∗) for all n ≥ 1.

The next theorem remarks the behavior of M-ASG after running it for n iterations with the parameters
in the preceding theorem, and its proof is provided in Appendix H.
Theorem 3.6. Let f ∈ Sµ,L(Rd) . Consider running Algorithm 1 for n iterations and with parame-
ters given in Theorem 3.4 and n1 < n. Then the error is bounded by

E [f(xn)]− f∗

≤ O(1)

(
(8(p+ 1)

√
κ log(2))

p+1

(n− n1)p+1

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
(p+ 1)σ2

(n− n1)µ

)
.

(19)

Corollary 3.7. Under the premise of Theorem 3.6, choosing n1 = d(p + 1)
√
κ log (12(p+ 1)κ)e,

the suboptimality error of M-ASG after n ≥ 2n1 admits

E [f(xn)]− f∗ ≤ O(1)

(
1

np+1
(f(x0

0)− f∗) +
(p+ 1)σ2

nµ

)
.

Theorem 3.6 immediately yields the result in Corollary 3.7, (suboptimal with respect to dependence
on initial optimality gap); see Appendix I for the proof. Similar rate results have also been obtained
by AC-SA [16] and ORDA [7] algorithms.

We continue this section by pointing out some important special cases of our result. We first show
in the next corollary how our algorithm is universally optimal and capable of achieving the lower
bounds (5) and (6) simultaneously. The proof follows from (19) and n− n1 ≥ n

2 ≥
√
κ.

Corollary 3.8. Under the premise of Theorem 3.6, consider a computational budget of n ≥ 2
√
κ

iterations. By setting n1 = n
C for some positive constant C ≥ 2, we obtain a bound matching the

lower bounds in (5) and (6), i.e.,

E [f(xn)]− f∗ ≤ O(1)

(
exp(− n

C
√
κ

)(f(x0
0)− f∗) +

σ2

nµ

)
.

We note that achieving the lower bound through the M-ASG algorithm requires the knowledge or
estimation of the strong convexity constant µ. In some applications, µ may not be known a priori.
However, for regularized risk minimization problems, the regularization parameter is known and it
determines the strong convexity constant. It is also worth noting that, even for the deterministic case,
[1] has shown that for a wide class of algorithms including ASG, it is not possible to obtain the lower
bound (5) without knowing the strong convexity parameter. In addition, in Appendix L, we show
how our framework can be extended to obtain nearly optimal results in the merely convex setting; i.e.
when µ = 0. Finally, note that the Lipschitz constant L can be estimated from data using standard
line search techniques in practice, see [5] and [32, Alg. 2].

The lower bound can also be stated as the minimum number of iterations needed to find an ε−solution,
i.e, to find xε such that E[f(xε)]− f∗ ≤ ε, for any given ε > 0. In the following corollary, and with
the additional assumption of knowing the bound ∆ on the initial optimality gap f(x0

0)− f∗, we state
this version of lower bound. The proof is provided in Appendix J.
Corollary 3.9. Let f ∈ Sµ,L(Rd) . Given ∆ ≥ f(x0

0) − f∗, for any ε ∈ (0,∆), running M-ASG,
Algorithm 1, with parameters given in Theorem 3.4, p = 1, and n1 = d

√
κ log

(
4∆
ε

)
e, one can

compute ε−solution within nε iterations in total, where

nε = d
√
κ log

(
4∆

ε

)
e+ d16(1 + log(8))

σ2

µε
e. (20)
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Recall that we presented a comparison with other state-of-the-art algorithms in Table 1. In particular,
this table shows that Multistage AC-SA [17] and Multistage ORDA [7] also achieve the lower bounds
provided that noise parameters are known – note we do not make this extra assumption for M-ASG. It
is also worth noting that the idea of restart, which plays a key role in achieving the lower bounds,
has been studied before in the context of deterministic accelerated methods [29, 39]. However, a
naive extension of these restart methods to the stochastic setting leads to a two-stage algorithm which
switches from constant step-size to diminishing step-size when the variance term dominates the
bias term. Nevertheless, implementing this technique requires the knowledge of σ2 and optimality
gap to tune algorithms for achieving optimal rates in both bias and variance terms. M-ASG, on the
other hand, achieves the optimal rates using a specific multistage scheme that does not require the
knowledge of the parameter σ2. In the supplementary material, we also discuss how M-ASG is
related to AC-SA and Multistage AC-SA algorithms proposed in [16, 17].

4 M-ASG∗: An improved bias-variance trade-off

In section 3, we described a universal algorithm that do not require the knowledge of neither initial
suboptimality gap ∆ nor the noise magnitude σ2 to operate. However, as we will argue in this section,
our framework is flexible in the sense that additional information about the magnitude of ∆ or σ2 can
be leveraged to improve practical performance. We first note that several algorithms in the literature
assume that an upper bound on ∆ is known or can be estimated, as summarized in Table 1. This
assumption is reasonable in a variety of applications when there is a natural lower bound on f . For
example, in supervised learning scenarios such as support vector machines, regression or logistic
regression problems, the loss function f has non-negative values [35]. Similarly, the noise level σ2

may be known or estimated, e.g., in private risk minimization [4], the noise is added by the user to
ensure privacy; therefore, it is a known quantity.

There is a natural well-known trade-off between constant and decaying stepsizes (decaying with
the number of iterations n) in stochastic gradient algorithms. Since the noise is multiplied with the
stepsize, a stepsize that is decaying with the number of iterations n leads to a decay in the variance
term; however, this will slow down the decay of the bias term, which is controlled essentially by
the behavior of the underlying deterministic accelerated gradient algorithm (AG) that will give the
best performance with the constant stepsize (note that when σ = 0, the bias term gives the known
performance bounds for the AG algorithm). The main idea behind the M-ASG algorithm (which
allows it to achieve the lower bounds) is to exploit this trade-off to decide on the right time, n1, to
switch to decaying stepsizes, i.e., when the bias term is sufficiently small so that the variance term
dominates and should be handled with the decaying stepsize. This insight is visible from the results
of Theorem 3.4 which gives further insights on the choice of the stepsize at every stage to achieve
the lower bounds. Theorem 3.4 shows that if M-ASG is run with a constant stepsize α1 = 1

L in the

first stage, then the variance term admits the bound σ2√κ
L which does not decay with the number of

iterations n1 in the first stage. However, in later stages, when n > n1, the stepsize αk is decreased as
the number of iterations grows and this results in a decay of the variance term. Overall, the choice
of the length of the first stage n1, has a major impact in practice which we will highlight in our
numerical experiments.

If an estimate of ∆ or σ2 is known, it is desirable to choose n1 as small as possible such that it
ensures the bias term becomes smaller than the variance term at the end of the first stage. More
specifically, applying Theorem 3.1 for c = 1, one can choose n1 to balance the variance σ2√κ

L and
the bias exp(−n1

1√
κ

)E
[
VPα1

(ξ1
1)
]

terms. The term E
[
VPα1

(ξ1
1)
]
, as shown in the proof of Lemma

3.3, can be bounded by E
[
VPα1

(ξ1
1)
]

= µ‖x0
0 − x∗‖22 + f(x0

0)− f∗ ≤ 2(f(x0
0)− f∗). Therefore,

by having an estimate of an upper bound for ∆, n1 can be set to be the smallest number such that
2∆ exp(−n1

1√
κ

) ≤ σ2√κ
L , i.e.,

n1 = d
√
κ log

( 2L∆

σ2
√
κ

)
e. (21)

This result allows one to fine-tune the switching point to start using the decaying stepsizes within
our framework as a function of σ2 and ∆. In scenarios, when the noise level σ is small or the initial
gap ∆ is large, n1 is chosen large enough to guarantee a fast decay in the bias term. We would like to
emphasize that this modified M-ASG algorithm only requires the knowledge of σ and ∆ for selecting
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Figure 1: Comparison on a quadratic function for n = 1000 iterations with different level of noise.
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Figure 2: Comparison on a quadratic function for n = 10000 iterations with different level of noise.

n1 and the rest of the parameters can be chosen as in Theorem 3.4 which are independent of both
σ and ∆. Finally, the following theorem provides theoretical guarantees of our framework for this
choice of n1. The proof is omitted as it is similar to the proofs of Theorems 3.4 and 3.6.

Theorem 4.1. Let f ∈ Sµ,L(Rd) . Consider running Algorithm 1 for n iterations and with parame-
ters given in Theorem 3.4, p = 1, and n1 set as (21). Then, the expected suboptimality in function
values admits the bound E [f(xn)]− f∗ ≤ 36(1 + log(8)) σ2

(n−n1)µ for all n ≥ n1.

5 Numerical experiments

In this section, we demonstrate the numerical performance of Algorithm 1 with parameters specified
by Corollary 3.7 (M-ASG) and Theorem 4.1 (M-ASG∗) and compare with other methods from
the literature. In our first experiment, we consider the strongly convex quadratic objective f(x) =
1
2x
>Qx− bx+λ‖x‖2 where Q is the Laplacian of a cycle graph6, b is a random vector and λ = 0.01

is a regularization parameter. We assume the gradients ∇f(x) are corrupted by additive noise with a
Gaussian distributionN (0, σ2

n) where σ2
n ∈ {10−6, 10−4, 10−2}. We note that this example has been

previously considered in the literature as a problem instance where Standard ASG (ASG iterations
with standard choice of parameters α = 1

L and β =
√
κ−1√
κ+1

) perform badly compared to Standard
GD (Gradient Descent with standard choice of the stepsize α = 1/L) [18]. In Figures 1 and 2,
we compare M-ASG and M-ASG∗ with Standard GD, Standard AG, µAGD+ [8], and Multistage
AC-SA [17]. We consider dimension d = 100 and initialize all the methods from x0

0 = 0. We run the
algorithms Multistage AC-SA, and M-ASG∗, having access to the same estimate of ∆. Figures 1-
2 show the average performance of all the algorithms along with the 95% confidence interval over
50 sample runs while the total number of iterations n = 1000 and n = 10000 respectively as the
noise level σ2 is varied. The simulation results reveal that both M-ASG and M-ASG∗ have typically
a faster decay of the error in the beginning and outperforms the other algorithms in general when

6All diagonal entries of Q are 2, Qi,j = −1 if |i− j| ≡ 1 (mod d), and the remaining entries are zero.
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fig1: b = 50 fig2: b = 100 fig3: b = 500

Figure 3: Comparison on logistic regression with n = 10000 iterations and with different batch sizes.

the number of iterations is small to moderate. In this case, the speed-up obtained by M-ASG and
M-ASG∗ is more prominent if the noise level σ2 is smaller. However, as the number of iterations
grows, the performance of the algorithms become similar as the variance term dominates. In addition,
we would like to highlight that when the noise is small, using n1 as suggested in (21), M-ASG∗ runs
stage one longer than M-ASG; hence, enjoys the linear rate of decay for more iterations before the
variance term becomes the dominant term.

For the second set of experiments, we consider a regularized logistic regression problem for binary
classification. In particular, we read 10000 images from the M-NIST [23] data-set, and our goal is to
distinguish the image of digit zero from that of digit eight.7 The number of samples is N = 1945, and
the size of each image is 20 by 20 after removing the margins (hence d = 400 after vectorizing the
images). At each iteration, we randomly choose a batch size b of images to compute an estimate of the
gradient.8 We choose the regularization parameter equal to 1√

N
following the standard practice (see

e.g. [34]). In Figure 3,we compare M-ASG with Standard GD, Standard AG, µAGD+ [8], and AC-SA
[17] for b ∈ {50, 100, 500}. The batch size controls the noise level, with larger batches leading to
smaller σ. We run each of these algorithms for 50 times, and plot their average performance and 95%
confidence intervals. It can be seen that M-ASG usually start faster, and achieves the asymptotic rate
of other algorithms for all different batch sizes.

6 Conclusion

In this work, we consider strongly convex smooth optimization problems where we have access to
noisy estimates of the gradients. We proposed a multistage method that adapts the choice of the
parameters of the Nesterov’s accelerated gradient at each stage to achieve the optimal rate. Our
method is universal in the sense that it does not require the knowledge of the noise characteristics
to operate and can achieve the optimal rate both in the deterministic and stochastic settings. We
provided numerical experiments that compare our method with existing approaches in the literature,
illustrating that our method performs well in practice.
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A Proof of Lemma 2.1

Let us denote the asymptotic convergence rate of the ASG method as a function of α and β by ρ(α, β).
It is well-known that ρ(α, β) has the following characterization (see e.g. [24], [29]):

ρ(α, β) = max{ρµ(α, β), ρL(α, β)}, (22)

where λ ∈ {µ,L} and ρλ is defined as:

ρλ(α, β) =

{
1
2 |(1 + β)(1− αλ)|+ 1

2

√
∆λ if ∆λ ≥ 0,√

β(1− αλ) otherwise,
(23)

with ∆λ = (1 + β)2(1 − αλ)2 − 4β(1 − αλ). Note that, since α ≤ 1
L , we have 1 − αλ ≥ 0

for λ ∈ {µ,L}; therefore, ∆λ ≥ 0 if and only if (1 + β)2(1 − αλ) ≥ 4β, which is equivalent to
1−
√
αλ

1+
√
αλ
≥ β.

Using the fact that µ ≤ L and 1−
√
αλ

1+
√
αλ

is decreasing in λ > 0, we obtain 1−√αµ
1+
√
αµ ≥

1−
√
αL

1+
√
αL

; hence,

for β >
1−√αµ
1+
√
αµ , we have both ∆µ < 0 and ∆L < 0. As a consequence, (22) implies that for

β >
1−√αµ
1+
√
αµ , we have

ρ(α, β) = max{
√
β(1− αµ),

√
β(1− αL)} =

√
β(1− αµ). (24)

Moreover, for β =
1−√αµ
1+
√
αµ , the two branches in (23) take the same value for λ = µ and α ∈ (0, 1/L];

therefore, when β is set to this critical value, we also get ρ(α, β) =
√
β(1− αµ) for α ∈ (0, 1/L].

Note (24) is an increasing function of β for any α ∈ (0, 1/L]; thus, given α ∈ (0, 1/L], the smallest
rate possible is equal to inf{ρ(α, β) : β ≥ 1−√αµ

1+
√
αµ} = 1 − √αµ, which is the rate given in the

statement of the lemma and it is achieved by β =
1−√αµ
1+
√
αµ .

Now, we consider the case β ≤ 1−√αµ
1+
√
αµ . From (22), if ρµ(α, β) ≥ 1 − √αµ, then we also have

ρ(α, β) ≥ 1 − √αµ. Thus, showing ρµ(α, β) ≥ 1 − √αµ suffices us to claim that for any
α ∈ (0, 1/L], the best possible rate is 1 − √αµ and this can be achieved by setting β =

1−√αµ
1+
√
αµ .

Indeed, as we discussed above, for the case β ≤ 1−√αµ
1+
√
αµ , we have ∆µ ≥ 0; thus,

ρµ(α, β) =
1

2
(1 + β)(1− αµ) +

1

2

√
∆µ

=
1−√αµ

2

(
(1 + β)(1 +

√
αµ) +

√
(1 + β)2(1 +

√
αµ)2 −

4β(1 +
√
αµ)

1−√αµ

)
.

Therefore, to show ρµ(α, β) ≥ 1−√αµ, we just need to prove√
(1 + β)2(1 +

√
αµ)2 −

4β(1 +
√
αµ)

1−√αµ
≥ 2− (1 + β)(1 +

√
αµ). (25)

Taking the square of both sides of (25), it follows that (25) is equivalent to

(1 + β)(1 +
√
αµ) ≥ 1 +

β(1 +
√
αµ)

1−√αµ

and this holds when β ≤ 1−√αµ
1+
√
αµ . Therefore, for any α ∈ (0, 1/L], we have ρµ(α, β) ≥ 1−√αµ

for β ≤ 1−√αµ
1+
√
αµ . which completes the proof.

B Proof of Lemma 2.2

We first state the following lemma which is an extension of Lemma 4.1 in [2] for ASG.
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Lemma B.1. Let P = P̃⊗Id where P̃ ∈ S2
+ and consider the functionWP (ξ) = (ξ−ξ∗)>P (ξ−ξ∗).

Then we have

E[WP (ξk+1)] ≤ E

[[
ξk − ξ∗
∇f(yk)

]> [
A>PA A>PB
B>PA B>PB

] [
ξk − ξ∗
∇f(yk)

]]
+ σ2α2P̃11. (26)

Proof. Let ξ̃k = ξk − ξ∗ for any k ≥ 0. Since ξ∗ = Aξ∗, (8) implies ξ̃k+1 = Aξ̃k +B(∇̃f(yk, wk))

for k ≥ 0. Note that, for any k ≥ 1, ξ̃k and yk are deterministic functions of ξ0, {wi}k−1
i=0 . Using this

fact, along with knowing that wk is independent of ξ0, {wi}k−1
i=0 , implies that

E[WP (ξk+1)] = E[ξ̃>k+1P ξ̃k+1]

= E
[
(Aξ̃k +B∇̃f(yk, wk))>P (Aξ̃k +B∇̃f(yk, wk))

]
= E

[
E
[
(Aξ̃k +B∇̃f(yk, wk))>P (Aξ̃k +B∇̃f(yk, wk))

∣∣∣ξ0, {wi}k−1
i=0

]]
= E

[
(Aξ̃k +B∇f(yk))>P (Aξ̃k +B∇f(yk))

]
+ E

[
E
[
∇̃f(yk, wk)>B>PB∇̃f(yk, wk)

∣∣∣yk]−∇f(yk)>B>PB∇f(yk)
]
(27)

= E
[
(Aξ̃k +B∇f(yk))>P (Aξ̃k +B∇f(yk))

]
+ α2P̃11E

[
E
[
∇̃f(yk, wk)>∇̃f(yk, wk)

∣∣∣yk]−∇f(yk)>∇f(yk)
]

(28)

≤ E
[
(Aξ̃k +B∇f(yk))>P (Aξ̃k +B∇f(yk))

]
+ σ2α2P̃11 (29)

= E

[[
ξ̃k

∇f(yk)

]> [
A>PA A>PB
B>PA B>PB

] [
ξ̃k

∇f(yk)

]]
+ σ2α2P̃11. (30)

where in (27) we used the equality in (3) and the facts that we mentioned above. Also, (28) comes
from the fact that B>PB = α2P̃11Id which can be shown by substituting B from (9) and using the
assumption P = P̃ ⊗ Id. Finally (29) follows from the inequality in (3), and (30) is obtained by
writing the first term of (29) in matrix format.

Similarly, by extending Lemma 4.5 in [2] to the noise setting (3), for every k ≥ 0 we obtain

E

[[
ξk − ξ∗
∇f(yk)

]> (
ρ2X1 + (1− ρ2)X2

) [ξk − ξ∗
∇f(yk)

]]
≤ρ2E[f(xk)− f∗]− E[f(xk+1)− f∗]

+
Lα2

2
σ2

where X1 = X̃1 ⊗ Id and X2 = X̃2 ⊗ Id. The rest of the proof of Lemma 2.2 is very similar to
the proof of Theorem 4.6 in [2], and we just need to use the fact that the Kronecker product of two
positive semidefinite matrices is positive semidefinite [10].

C Proof of Theorem 2.3

Let

Γ , ρ2X̃1 + (1− ρ2)X̃2 −
[
Ã>P̃ Ã− ρ2P̃ Ã>P̃ B̃

B̃>P̃ Ã B̃>P̃ B̃

]
with ρ2 = 1 −√αµ and P = P̃α ⊗ Id. According to Lemma 2.2, it suffices to show that Γ � 03.
Using the Symbolic toolbox in MATLAB, we see that Γ has the following properties

(i) Γ3,3 =
α(1− Lα)

2
,

(ii) Γ2,3 = Γ3,2 = 0,
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(iii) Γ2,2 =
µ
√
µα(1−√µα)2

2(1 +
√
µα)2

+
µ(1−√µα)3

2(1 +
√
µα)2

−
(1−√µα)2

2α(1 +
√
µα)2

+
(1−√µα)3

2α

=
(1−√µα)2

2α(1 +
√
µα)2

(
α
(
µ
√
µα+ µ(1−√µα)

)
− 1 + (1−√µα)(1 +

√
µα)2

)
=

(1−√αµ)3√µ
2
√
α(1 +

√
αµ)

≥ 0

(iv) det(Γ) = 0.

In fact, if α = 1
L , then

Γ =
(1−√αµ)3√µ
2
√
α(1 +

√
αµ)

[
1 −1 0
−1 1 0
0 0 0

]
,

which is positive semidefinite. Now, consider the case that α < 1
L . For any ε > 0, let

Γε , Γ + ε

[
1 0 0
0 0 0
0 0 0

]
.

Note that, for any ε > 0, (i) implies Γε3,3 > 0. This fact, along with (ii) and (iii), indicates that
det(Γε[2:3],[2:3]) > 0. Hence,

det(Γε) = det(Γ) + εdet(Γε[2:3],[2:3]) = εdet(Γε[2:3],[2:3]) > 0

where the second equality comes from (iv). Therefore, the determinant of Γε, itself, and two
submatrices Γε3,3 and Γε[2:3],[2:3] are all positive. Thus, by Sylvester’s criterion, Γε is positive definite
for any ε > 0. As a consequence, since Γ = limε→0 Γε, Γ is positive semidefinite.

D Proof of Theorem 3.1

Using Theorem 2.3, for every k ≥ 1, we have

E [VPα(ξk+1)] ≤ (1− c√
κ

)E [VPα(ξk)] +
σ2

2L
c2(1 + c2)

≤ (1− c√
κ

)E [VPα(ξk)] +
σ2

L
c2

where in the last inequality we used the fact that c2 ≤ 1. Using this bound recursively for n times,
we obtain

E [VPα(ξn+1)] ≤ (1− c√
κ

)nE [VPα(ξ1)] +
σ2

L
c2

n∑
i=1

(1− c√
κ

)n−i

≤ exp(−n c√
κ

)E [VPα(ξ1)] +
σ2

L
c2

1− (1− c√
κ

)n

1− (1− c√
κ

)

≤ exp(−n c√
κ

)E [VPα(ξ1)] +
σ2

L
c
√
κ

where the second inequality follows from the inequality that 1− t ≤ exp(−t) for every t ≥ 0, and
the third inequality is obtained by replacing 1− (1− c√

κ
)n by 1.

E Proof of Corollary 3.2

We first show α1 ≤ 1
L . Note that, by assumption, n can be written as p

√
κn0 where n0 ≥ 2 log(p

√
κ)

and n0 ≥ e. This assumption, along with the fact that logn
n is a decreasing function of n as n ≥ e,
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implies

p
√
κ log n

n
=
p
√
κ log(p

√
κn0)

p
√
κn0

=
log(p

√
κ) + log n0

n0

≤ 1

2
+

log n0

n0
(31)

≤ 1 (32)

where in (31) we used the assumption n0 ≥ 2 log(p
√
κ), and (32) follows from the fact that n0 ≥ e,

and therefore, logn0

n0
≤ 1/e ≤ 1/2.

Next, using Theorem 3.1 with c = p
√
κ logn
n immediately gives the desired bound.

F Proof of Lemma 3.3

First, note that ξk+1
1 =

[
xknk+1

>
, xknk+1

>
]>

, and therefore,

(ξk+1
1 − ξ∗)>Pαk+1

(ξk+1
1 − ξ∗)

= (ξk+1
1 − ξ∗)>

 √
1

2αk+1√
µ
2 −

√
1

2αk+1

[√ 1
2αk+1

√
µ
2 −

√
1

2αk+1

]
(ξk+1

1 − ξ∗)

= ‖xknk+1 − x∗‖2
(

1

2αk+1
+ (

√
µ

2
−

√
1

2αk+1
)2 +

√
2

√
αk+1

(

√
µ

2
−

√
1

2αk+1
)

)
=
µ

2
‖xknk+1 − x∗‖2. (33)

Plugging (33) into (10) for VPαk+1
(ξk+1

1 ) yields

VPαk+1
(ξk+1

1 ) = (ξk+1
1 − ξ∗)>Pαk+1

(ξk+1
1 − ξ∗) + f(xknk+1)− f∗

=
µ

2
‖xknk+1 − x∗‖2 + f(xknk+1)− f∗

≤ 2(f(xknk+1)− f∗) (34)

≤ 2VPαk (ξknk+1) (35)

where (34) follows from (2) with x = xknk+1 and y = x∗. Finally, taking expectation from (35)
completes the proof.

G Proof of Theorem 3.4

We claim that for every k ≥ 1

E
[
VPαk (ξknk+1)

]
≤ 2

2(p+1)(k−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
σ2
√
κ

L2k−1
. (36)

which implies (17) as VPαk (ξknk+1) ≥ f(xknk+1)− f∗. We show (36) by induction on k. For k = 1,
using Theorem 3.1, we obtain

E
[
VPα1

(ξ1
n1+1)

]
≤ exp(− n1√

κ
)E
[
VPα1

(ξ1)
]

+
σ2
√
κ

L

≤ 2 exp(− n1√
κ

)(f(x0
0)− f∗) +

σ2
√
κ

L
(37)
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where the second inequality comes from the inequality VPα1
(ξ1) ≤ 2(f(x0

0) − f∗) which can be
derived similar to (34).

Next, we assume (36) holds for k and show it also holds for k + 1. Note that

E
[
VPαk+1

(ξk+1
nk+1+1)

]
≤ exp

(
−nk+1

√
αk+1L

κ

)
E
[
VPαk+1

(ξk+1
1 )

]
+
σ2
√
κ
√
αk+1L

L
(38)

= exp
(
− log(2p+2)

)
E
[
VPαk+1

(ξk+1
1 )

]
+
σ2
√
κ

2k+1L

≤ 2

2p+2
E
[
VPαk (ξknk+1)

]
+
σ2
√
κ

2k+1L
(39)

≤ 1

2p+1
· 2

2(p+1)(k−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
σ2
√
κ

L
(

1

2k+1
+

1

2p+k
) (40)

≤ 2

2(p+1)k

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
σ2
√
κ

L2k
(41)

where, (38) and (39) are obtained by using Theorem 3.1 and Lemma 3.3, respectively, and in (40) we
used the assumption that (36) holds for k.

H Proof of Theorem 3.6

First, we will show that for every k ≥ 1 and 0 ≤ m ≤ nk + 1, we have

E
[
f(xk+1

m )
]
− f∗ ≤ 4

2(p+1)(k−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
9σ2
√
κ

4L2k−1
. (42)

Indeed,

E
[
f(xk+1

m )
]
− f∗ ≤ E

[
VPαk+1

(ξk+1
m )

]
≤ exp

(
−m

√
αk+1L

κ

)
E
[
VPαk+1

(ξk+1
1 )

]
+
σ2
√
κ
√
αk+1L

L
(43)

≤ 2E
[
VPαk (ξknk+1)

]
+
σ2
√
κ

2k+1L
(44)

≤ 4

2(p+1)(k−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
9σ2
√
κ

4L2k−1
(45)

where, (43) and (44) follows again from Theorem 3.1 and Lemma 3.3, and we obtain (45) using (36).

Recall the definition NK(p, n1) ,
∑K
k=1 nk which denotes the total number of stochastic gradient

iterations required to complete K stages of M-ASG for parameter p and first-stage iteration number
n1 fixed. Given the computational budget of n iterations such that n ≥ n1, let K be the largest
number such that n ≥ NK , NK(p, n1). As a result, at iteration n we are in stage K + 1. Note that
(18) implies 2K−1 ≥ NK−n1+Ψ

Ψ with Ψ = 4d(p+ 2)
√
κ log(2)e; therefore

1

2K−1
≤ Ψ

NK − n1 + Ψ
. (46)

Thus, we get the following upper bound on the suboptimality:
E [f(xn)]− f∗ = E

[
f(xK+1

n−NK )
]
− f∗

≤ 4

2(p+1)(K−1)

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
9σ2
√
κ

4L2K−1
, (47)

and by substituting (46) in (47) we obtain the bound
E [f(xn)]− f∗

≤ O(1)

(
(4(p+ 1)

√
κ log(2))

p+1

(NK − n1 + Ψ)p+1

(
exp(−n1/

√
κ)(f(x0

0)− f∗)
)

+
(p+ 1)σ2

(NK − n1 + Ψ)µ

)
.

(48)
Next, by (18), NK+1 − n1 ≤ 2(NK − n1 + Ψ), and thus, n− n1 ≤ 2(NK − n1 + Ψ). Replacing

1
NK−n1+Ψ by 2

n−n1
in (48) completes the proof of (19).
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I Proof of Corollary 3.7

Note that by setting n1 = d(p + 1)
√
κ log (12(p+ 1)κ)e, we have exp(−n1/

√
κ) ≤

1

(16 log(2)(p+1)
√
κ)
p+1 ; hence, plugging n1 = d(p + 1)

√
κ log (12(p+ 1)κ)e in (19) implies the

following bound with an O(1) constant that does not depend on µ, L and x0
0:

O(1)

(
2−(p+1)

(n− n1)p+1
(f(x0)− f∗) +

(p+ 1)σ2

(n− n1)µ

)
. (49)

Finally, note that n ≥ 2n1; therefore, n− n1 ≥ n/2 and using it in (49) completes the proof.

J Proof of Corrolary 3.9

By plugging p = 1 and n1 = d
√
κ log

(
4∆
ε

)
e in (17), it is straightforward to check the bias

term is bounded by ε
2 . Next, consider running M-ASG with given parameters, possibly without

knowing and/or specifying the exact number of stages. Consider the end of the K-th stage, where
K , dlog2(σ

2√κ
Lε )e+ 2. Since 1

2K−1 ≤ Lε
2σ2
√
κ

, the variance term in (17) is also bounded by ε
2 , and

as a result xKnK+1 is an ε−solution.

Now, by using (18), we can bound the number of iterations for completing K stages:

NK = n1 + (2K+1 − 4)d
√
κ log(8)e ≤ n1 + 2(1 + log(8))

(
2K
√
κ
)

(50)

≤ d
√
κ log

(
4∆

ε

)
e+ 16(1 + log(8))

σ2

µε
(51)

where in (50) we used the fact that d
√
κ log(8)e ≤ (1 + 1

log(8) )
√
κ log(8) since κ ≥ 1, and (51)

follows from the bound K ≤ 3 + log2(σ
2√κ
Lε ).

K Results for More General Noise Setting

In this section, we show how our analysis can be extended to a more general noise setting where the
bound on the variance can depend on the distance to the optimal solution. More formally, we assume
that at x ∈ Rd, we have access to the noisy gradient ∇̃f(x,w) such that for some σ, η ≥ 0,

E[∇̃f(x,w)|x] = ∇f(x)

E
[
‖∇̃f(x,w)−∇f(x)‖2

∣∣∣x] ≤ σ2 + η2‖x− x∗‖2,
(52)

where w is a random variable independent of previous iterates.

In what follows, we first show how the results of Theorem 2.3 and Lemma 3.3 extends to this setting,
and then briefly discuss the results of our multistage scheme for this noise setting.

Theorem K.1. Let f ∈ Sµ,L(Rd) with κ ≥ 4. Consider the ASG iterations given in (7) under noise
model in (52). For α ∈ (0, ᾱ] and β =

1−√αµ
1+
√
αµ with

ᾱ :=

{
min{ 1

L ,
µ3

(60η2)2 } if η > 0,
1
L if η = 0,

(53)

it follows that
E [VQα(ξk+1)] ≤ (1−√αµ/3)E [VQα(ξk)] + 2σ2α, (54)

for every k ≥ 0, where Qα = Q̃α ⊗ Id with

Q̃α = P̃α + 2αη2C̃>C̃ =


√

1
2α√

µ
2 −

√
1

2α

[√ 1
2α

√
µ
2 −

√
1

2α

]
+ 2αη2

[
1 + β
−β

]
[1 + β −β].
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Proof. First, note that similar to the proof of Lemma 2.2 and by using αL ≤ 1, we can show
E [VPα(ξk+1)] ≤ (1−√αµ)E [VPα(ξk)] + ασ2 + αη2E

[
‖yk − x∗‖2

]
. (55)

Using yk = Cξk, we can substitute ‖yk − x∗‖2 by (ξk − ξ∗)>C>C(ξk − ξ∗) in (55); hence,

E [VPα(ξk+1)] ≤ (1−√αµ)E [VPα(ξk)] +
1

2
E
[
(ξk − ξ∗)>2αη2C>C(ξk − ξ∗)

]
+ ασ2

≤ (1−√αµ)E [VQα(ξk)] + ασ2,
(56)

where the last inequality follows from 1−√αµ ≥ 1/2 which is true since α ≤ 1/L and κ ≥ 4. Also
note that

(ξk − ξ∗)>C>C(ξk − ξ∗) = ‖(1 + β)(xk+1 − x∗)− β(xk − x∗)‖2

≤ 2(1 + β)2‖xk+1 − x∗‖2 + 2β2‖xk − x∗‖2 (57)

≤ 16

µ
(f(xk+1)− f∗) +

4

µ
(f(xk)− f∗) (58)

≤ 16

µ
VPα(ξk+1) +

4

µ
VQα(ξk). (59)

where (57) follows from (a + b)2 ≤ 2a2 + 2b2 and (58) follows from β ≤ 1 and the
strong convexity assumption, i.e., f(x) − f∗ ≥ µ

2 ‖x − x∗‖2. Finally, (59) is obtained using
min{VPα(ξk), VQα(ξk)} ≥ f(xk)− f∗. Plugging (59) into the definition of VQα(ξk+1) implies

E [VQα(ξk+1)] =E [VPα(ξk+1)] + 2αη2E
[
(ξk − ξ∗)>C>C(ξk − ξ∗)

]
≤ (1 +

32αη2

µ
)E [VPα(ξk+1)] +

8αη2

µ
VQα(ξk). (60)

Using this result along with (56) yields

E [VQα(ξk+1)] ≤
(

(1−√αµ)(1 +
32αη2

µ
) +

8αη2

µ

)
E [VQα(ξk)] + α(1 +

32αη2

µ
)σ2

≤
(

1−√αµ+
40αη2

µ

)
E [VQα(ξk)] + α(1 +

32αη2

µ
)σ2

≤ (1−√αµ/3)E [VQα(ξk)] + (1 +
32αη2

µ
)ασ2 (61)

where the last inequality follows from the assumption α ≤ µ3

(60η2)2 which implies

2

3

√
αµ ≥ 40αη2

µ
. (62)

Finally, note that, (62) along with α ≤ 1/L also implies 1 ≥ 60αη2/µ; thus, we can bound
1 + 32αη2/µ in (61) by 2 which gives us the desired result.

Next, note that we can also extend Lemma 3.3 to the new Lyapunov function E [VQα(ξk)] as well:
Lemma K.2. Let f ∈ Sµ,L(Rd) . Consider M-ASG, i.e., Algorithm 1, assuming the noise model
in (52), with α ∈ (0, ᾱ], where ᾱ is defined by (53). Then, for every 1 ≤ k ≤ K − 1,

E
[
VQαk+1

(ξk+1
1 )

]
≤ 3E

[
VQαk (ξknk+1)

]
. (63)

Proof. The proof is very similar to the arguments in Appendix F. In particular,

VQαk+1
(ξk+1

1 ) = (ξk+1
1 − ξ∗)>Qαk+1

(ξk+1
1 − ξ∗) + f(xknk+1)− f∗

=
µ

2
‖xknk+1 − x∗‖2 + 2αη2(ξk+1

1 − ξ∗)>C>C(ξk+1
1 − ξ∗) + f(xknk+1)− f∗

= (
µ

2
+ 2αη2)‖xknk+1 − x∗‖2 + f(xknk+1)− f∗

≤ (2 +
4αη2

µ
)(f(xknk+1)− f∗) (64)

≤ 3VQαk (ξknk+1) (65)
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where (64) follows from (2) with x = xknk+1 and y = x∗. Finally, (65) follows from 1/60 ≥ αη2/µ,
which holds due to (62) and α ≤ 1

L , along with VQαk (ξknk+1) ≥ f(xknk+1)−f∗. Taking expectations
of both sides of (65) completes the proof.

Using the results in Theorem K.1 and Lemma K.2, we can analyze M-ASG for this more general
noise setting in (52) as well and extend our complexity result in Corollary 3.8 as follows:

E [f(xn)]− f∗ ≤ O(1)

(
exp

(
−n/

(
Θ(1)(

√
κ+ η2/µ2)

))
(f(x0

0)− f∗) +
σ2

nµ

)
for n sufficiently large and known in advance. It is worth noting that we can also derive similar results
to Theorems 3.4 and 3.6 when n is not known. We skip the details as all the arguments follow very
similar to our analysis in Section 3.

L M-ASG for Convex Objective Functions

For merely convex objective functions, as discussed in [22], the suboptimality E [f(xn)]− f∗ admits
the lower bound given below:

Θ(1)

(
L

n2
‖x0 − x∗‖22 +

σ2

√
n

)
. (66)

The author of [22] obtains this lower bound for the case of compact domain with the additional
knowledge of noise parameter σ. For unconstrained optimization, and without using the information
on the noise parameter, σ2, it is shown in [8] that one can achieve the rate O( 1√

n
) in both bias and

variance terms (see last part of Corollary 3.9 and also Corollary 4.1 in [8]). As we state below, a
direct application of our current results recovers a similar result up to a log factor.
Theorem L.1. Let f be a merely convex function, i.e., f ∈ S0,L(Rd) with µ = 0, and let n ≥ 2

be the given iteration budget. Define fλ(x),f(x) + λ
2 ‖x − x0‖2 with λ,L/(

√
n − 1). Consider

running ASG, given in (7), with stepsize α = (logn)2

n3/2L
for solving minx fλ(x). Then,

E [f(xn+1)]− f∗ ≤ 2

n
(f(x0)− f∗) +

L√
n
‖x0 − x∗‖2 +

σ2 log n√
nL

. (67)

Proof. Define f∗λ , minx fλ(x). Note fλ ∈ Sλ,L+λ(Rd); thus, using Theorem 3.1 with c =

log n/n3/4 and κ = (L+ λ)/λ =
√
n implies

E
[
fλ(x1

n+1)
]
− f∗λ ≤ E [VPα(ξn+1)]

≤ exp(−n c√
κ

)E [VPα(ξ1)] +
σ2
√
κc

L+ λ

≤ 1

n
E [VPα(ξ1)] +

σ2 log n√
nL

. (68)

Now, using the fact that x0 = x−1, and similar to the proof of Lemma 3.3, we can show

E[VPα(ξ1)] ≤ 2(fλ(x0)− f∗λ) = 2(f(x0)− f∗λ).

Therefore, plugging this into (68), we obtain

E [fλ(xn+1)]− f∗λ ≤
2

n
(f(x0)− f∗λ) +

σ2 log n√
nL

, (69)

which is equivalent to

E [fλ(xn+1)]− (1− 2

n
)f∗λ ≤

2

n
f(x0) +

σ2 log n√
nL

. (70)

This result along with f(xn+1) ≤ fλ(xn+1) implies

E[f(xn+1)]− (1− 2

n
)f∗λ ≤

2

n
f(x0) +

σ2 log n√
nL

. (71)
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Finally, using the bound

f∗λ ≤ fλ(x∗) = f∗ +
λ

2
‖x0 − x∗‖2

completes the proof.

M AC-SA from the perspective of Nesterov’s Accelerated Method

Recall that AC-SA [16] with initial point x0 and sequence of stepsize parameters {ηt}t≥1 and {γt}t≥1

has the following update rule:

(i) Set xag0 = x0 and t = 1;

(ii) Set xmdt =
(1−ηt)(µ+γt)x

ag
t−1+ηt[(1−ηt)µ+γt]xt−1

γt+(1−η2t )µ
;

(iii) Set xt =
ηtµx

md
t +[(1−ηt)µ+γt]xt−1−ηtGt

µ+γt
where Gt = ∇̃f(xmdt , wt);

(iv) Set xagt = ηtxt + (1− ηt)xagt−1;

(v) Set t← t+ 1 and go to step (ii).

We claim that this algorithm can be cast as an ASG method in (7) with a specific varying stepsize
rule. In fact, we show it can be represented as

xmdt = (1 + β̃t)x
ag
t−1 − β̃tx

ag
t−2 (72a)

xagt = xmdt − α̃t∇̃f(xmdt , wt). (72b)

with

α̃t =
η2
t

µ+ γt
, β̃t =

ηt(1− ηt−1)[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

.

To show this, first, multiplying both sides of ((ii)) by γt+(1−η2t )µ
µ+γt

implies

γt + (1− η2
t )µ

µ+ γt
xmdt = (1− ηt)xagt−1 +

ηt[(1− ηt)µ+ γt]

µ+ γt
xt−1, (73)

and by substituting (1− ηt)xagt−1 by xagt − ηtxt from ((iv)) we obtain

xagt = ηt

(
xt −

(1− ηt)µ+ γt
µ+ γt

xt−1

)
+
γt + (1− η2

t )µ

µ+ γt
xmdt . (74)

Note that, by ((iii)), we have

xt −
(1− ηt)µ+ γt

µ+ γt
xt−1 =

ηtµ

µ+ γt
xmdt − ηt

µ+ γt
Gt, (75)

and therefore, (74) and (75) yield

xagt = ηt

(
ηtµ

µ+ γt
xmdt − ηt

µ+ γt
Gt

)
+
γt + (1− η2

t )µ

µ+ γt
xmdt

=

(
η2
t µ

µ+ γt
+
γt + (1− η2

t )µ

µ+ γt

)
xmdt − η2

t

µ+ γt
Gt

= xmdt − η2
t

µ+ γt
Gt

which implies (72b).
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fig1: σ2
n = 10−2 fig2: σ2

n = 10−4 fig3: σ2
n = 10−6

Figure 4: Comparison of GD, AGD, µAGD+, and MASG for logistic regression with n = 1000
iterations with different level of noise.

fig1: σ2
n = 10−2 fig2: σ2

n = 10−4 fig3: σ2
n = 10−6

Figure 5: Comparison of GD, AGD, µAGD+, and MASG for logistic regression with n = 10000
iterations with different level of noise.

To show (72a), first note that by ((iv)) for t − 1, we obtain xt−1 = 1
ηt−1

(xagt−1 − (1 − ηt−1)xagt−2).
Plugging in this in ((ii)), leads to

xmdt =
(1− ηt)(µ+ γt)

γt + (1− η2
t )µ

xagt−1 +
ηt[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

(
xagt−1 − (1− ηt−1)xagt−2

)
=

(
(1− ηt)(µ+ γt)

γt + (1− η2
t )µ

+
ηt[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

)
xagt−1 −

ηt(1− ηt−1)[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

xagt−2

=
ηt−1(1− ηt)(µ+ γt) + ηt[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

xagt−1 − β̃tx
ag
t−2

=
ηt−1(1− ηt)(µ+ γt) + ηtηt−1[(1− ηt)µ+ γt]

ηt−1[γt + (1− η2
t )µ]

xagt−1 + β̃t(x
ag
t−1 − x

ag
t−2)

= xagt−1 + β̃t(x
ag
t−1 − x

ag
t−2)

which is (72a) and the proof is complete.

As a consequence, Multistage AC-SA is a variant of M-ASG Algorithm that has a different length nk
for each stage k ≥ 1 and employs a specific varying stepsize rule together with a different selection
for the momentum parameter at each stage.

N Additional Numerical Experiments

In this section, we study another classification problem using logistic regression, but with a syn-
thesized data. In particular, we generate a random matrix M ∈ R2000×100 and a random vector
w ∈ R100 and compute y = sign(Mw) which is the vector that contains the sign of the inner product
with the rows of M and the vector w. Our goal is to recover w by optimizing a regularized logistic
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objective when the gradient of the loss function is corrupted with additive Gaussian noise. We
compare M-ASG and M-ASG∗ with Standard GD, Standard AG, µAGD+ [8], and Multistage AC-SA
[17]. We note that the condition number of the problem κ ∼ 1000 for this problem. Figures 4– 5
illustrate the behavior of the algorithms for n = 1000 and n = 10000 iterations for the noise level
σ2
n ∈ {10−6, 10−4, 10−2} as before. It can be seen that both M-ASG and M-ASG∗ usually start faster,

and do not perform worse than other algorithms in different scenarios; moreover, they outperform
other algorithms when the iteration budget is limited or the noise level is small. Furthermore, note
that in the setting where the noise is large, M-ASG∗ behaves better than M-ASG, as it terminates the
first stage earlier, which is helpful as the noise is large; hence, the variance becomes term dominant
in the first stage just after a few iterations.
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