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Abstract

Bandit combinatorial optimization is a bandit framework in which a player chooses
an action within a given finite set A ⊆ {0, 1}d and incurs a loss that is the
inner product of the chosen action and an unobservable loss vector in Rd in each
round. In this paper, we aim to reveal the property, which makes the bandit
combinatorial optimization hard. Recently, Cohen et al. [8] obtained a lower
bound Ω(

√
dk3T/ log T ) of the regret, where k is the maximum `1-norm of

action vectors, and T is the number of rounds. This lower bound was achieved
by considering a continuous strongly-correlated distribution of losses. Our main
contribution is that we managed to improve this bound by Ω(

√
dk3T ) through

applying a factor of
√

log T , which can be done by means of strongly-correlated
losses with binary values. The bound derives better regret bounds for three specific
examples of the bandit combinatorial optimization: the multitask bandit, the bandit
ranking and the multiple-play bandit. In particular, the bound obtained for the
bandit ranking in the present study addresses an open problem raised in [8]. In
addition, we demonstrate that the problem becomes easier without considering
correlations among entries of loss vectors. In fact, if each entry of loss vectors is an
independent random variable, then, one can achieve a regret of Õ(

√
dk2T ), which

is
√
k times smaller than the lower bound shown above. The observed results

indicated that correlation among losses is the reason for observing a large regret.
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1 Introduction

This paper is aimed to investigate the bandit combinatorial optimization problem defined as follows:
A player is given a finite action set A ⊆ {a ∈ {0, 1}d | ‖a‖1 = k} and the number T of rounds for
decision-making. In each round t = 1, 2, . . . , T , the player chooses an action at from A. At the
same time, the environment privately chooses a loss vector `t = [`t1, . . . , `td]

> ∈ [0, 1]d, and the
player observes the loss `>t at incurred by the action at. The goal of the player is to minimize the
expected cumulative loss E[

∑T
t=1 `

>
t at], where the expectation is taken with respect to the player’s

internal randomization. The performance of the algorithm is measured in terms of the regret RT
defined by RT = maxa∈AE

[∑T
t=1 `

>
t at −

∑T
t=1 `

>
t a
]
.

In this study, we focus on the minimax regret, the worst-case regret attained by optimal algo-
rithms, which can be expressed as RT := minalgorithm max{`t}Tt=1⊆[0,1]d RT . The minimax re-
gret can be bounded from above by designing algorithms. The current best bound is RT =

O(
√
dk3T log(ed/k)), as reported in a number of papers [2; 6; 7; 10; 12]. However, lower bounds

of the minimax regret can be proven by constructing a probabilistic distribution of loss vectors for
which any algorithm incurs a certain degree of regret. To obtain a lower bound, Audibert et al. [2]
constructed a probabilistic distribution of loss vectors for which arbitrary algorithms incurred a regret
of Ω(

√
dk2T ), and they conjectured that this bound was tight, i.e., RT = Θ(

√
dk2T ). Recently,

however, Cohen et al. [8] presented the lower bound of RT = Ω(
√
dk3T/ log T ), which rejected

the above-mentioned conjecture, and thereby, they have decreased the gap between the upper and
lower bounds to O(

√
log(ed/k) log T ) consisting of logarithmic terms only.

The input distribution constructed by Cohen et al. [8] to derive the lower bound has the unique
characteristics that cannot be found in previous studies, such as lower bounds for a multi-armed
bandit [4], a combinatorial semi-bandit [6; 20; 23] and a combinatorial bandit [2]. In previous studies
on lower bounds, only binary inputs and an arm-wise independent distribution were considered,
i.e., `t1, . . . , `td are mutually independent {0, 1}-valued discrete random variables. Such inputs
were proved to result in tight lower bounds for multi-armed bandits [4] and combinatorial semi-
bandits [2; 20]. In contrast to these studies, Cohen et al. [8] introduced loss vectors following a
continuous distribution over [0, 1]d and having a strong correlation among d entries. Furthermore,
the lower bound obtained in Cohen et al. [8] includes a 1/

√
log T term, which does not appear in

the other lower bounds for bandit problems. In addition, they applied the obtained lower bounds to
special cases, such as the multitask bandit and the bandit ranking problem. However, their results
are restricted to the problems under certain parameter constraints, and consequently, the task of
identifying the tight bounds for some important special cases, including the problem referred to as
bandit ranking with full permutations, were left open.

Such characteristics corresponding to the input distribution defined by Cohen et al. [8] lead to the
following research questions:

Q. 1 Is the 1/
√

log T factor in the lower bound given by Cohen et al. [8] redundant or inevitable?
Q. 2 Does the continuous distribution of loss vectors make the problem essentially harder than the

discrete (binary) distribution? If we restrict our consideration to the loss vectors in {0, 1}d,
then the player can see the number of good arms (i ∈ [d] s.t. lti = 0) in the chosen arms St,
which may, or may not, be more informative than actual values.

Q. 3 Does the correlation of loss among different arms make the problem essentially harder than the
arm-wise independent loss?

Q. 4 Can we obtain tight lower bounds for the special cases such as the bandit ranking problem with
full permutations resolving the open question in [8]?

2 Main Results

Our main results can be interpreted to answer the above four questions. First, we improve the regret
lower bound obtained by [8] to Ω(

√
dk3T ), by applying a factor of

√
log T , as shown in Table 1.

These bounds can be proven by constructing a distribution of strongly-correlated losses using binary
values. We apply the bounds to the three specific examples of bandit combinatorial optimization
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Table 1: Regret boundsRT for bandit combinatorial optimization.

Assumption Upper bound by Algorithms Lower bound

No assumption
O(
√
dk2T log |A|)

= O(
√
dk3T log(ed/k))

([6] and [7])

Ω(
√
dk3T/ log T ) by `t ∈ [0, 1]d

([8]),

Ω(
√
dk3T ) by `t ∈ {0, 1}d

(Theorems 1 and 2)

Independent losses
O(
√
dkT log |A| log T )

= O(
√
dk2T log(ed/k) log T )

(Algorithm 1 and Theorem 3)

Ω(
√
dk2T ) by `t ∈ {0, 1}d

([2])

that have high practical importance: the multitask bandit problem, the bandit ranking problem
(Theorem 1), and the multiple-play bandit problem (Theorem 2). This result provides answers to
Q. 1 and Q. 2 outlined in Section 1: The 1/

√
log T factor in the lower bound is redundant, and the

difference between continuous-valued and discrete-valued losses does not have a large impact on the
hardness of the problem. This observation also addresses Q. 4, an open problem outlined in [8].

The multitask bandit problem [7; 8] is a bandit framework in which the player tries to solve k instances
of the n-armed bandit problem. This is a special case of the bandit combinatorial optimization with
d = kn and

A =

a ∈ {0, 1}d
∣∣∣∣∣∣

jn∑
i=(j−1)n+1

ai = 1 (j ∈ [k])

 . (1)

In the bandit ranking problem or online ranking problem [13] with bandit feedback problem, the goal
of the player is to find a maximum matching in the complete bipartite graph Kk,n with d = kn edges,
where k ∈ [n]. The set of all maximum matchings can be expressed as follows:

A =

a ∈ {0, 1}d
∣∣∣∣∣∣

jn∑
i=(j−1)n+1

ai = 1 (j ∈ [k]),

k∑
i=1

a(i−1)n+j ≤ 1 (j ∈ [n])

 . (2)

Considering these problems, we obtain the following regret lower bound.
Theorem 1 (multitask bandit, bandit ranking). Suppose that A is defined by (1) or (2) and n ≥ 2.
There is a probability distribution D over {0, 1}d for which the following statement holds: If `t
is drawn from D for t = 1, . . . , T independently, the regret for any algorithm satisfies E[RT ] =

Ω(min{
√
dk3T , k3/4T}), where the expectation is taken with respect to the randomness of `t.

Considering the bandit ranking problem, the previous work [8] demonstrated the lower bound of
Ω(
√
dk3T/ log T ) under the assumption of n ≥ 2k, and the full-permutation case (k = n) was left

as an open problem, as mentioned in the conclusion of this research work. Theorem 1 answers to this
open problem: Even if k = n, the minimax regret is of RT = Θ̃(

√
dk3T ) = Θ̃(

√
k5T ), ignoring

a
√

log k factor. Theorem 1 can also be extended to the online shortest path problem [5], by the
standard reduction from multitask bandit to the online shortest path. See e.g., [8] for details of the
reduction.

The multiple-play bandit problem [7; 16; 18; 23] is another bandit framework in which the player
can choose arbitrary k arms from a set of d arms in each round. This problem corresponds to
A =

(
[d]
k

)
:= {a ∈ {0, 1}d | ‖a‖1 = k}.

Theorem 2 (multiple-play bandit). Suppose that A =
(

[d]
k

)
. There is a probability distribution D

over {0, 1}d for which the following holds: If `t is drawn from D for t = 1, . . . , T independently, the

regret for any algorithm will satisfy E[RT ] = Ω
(

min
{

(d−kd )2
√
dk3T , d−kd k3/4T

})
, where the

expectation is taken with respect to the randomness of `t.

The above lower bound means that RT = Ω(
√
dk3T ) for T = Ω(dk3/2) and d = Ω(k). It should

be noted that existing works [2; 8; 20] provided weaker lower bounds only for the case of d ≥ 2k,
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while those provided in the present study are valid for general d and k. The proof of Theorem 2 is
presented in Appendix C.

A basic idea for proving a nearly tight bound is to construct an environment, where all entries of `t
are strongly correlated between each other; this concept has been introduced by Cohen et al. [8]. If
losses are strongly correlated, the observed value `>t a has a larger variance. For example, the variance
is of order k if all entries are independent, while it can be of order k2 if all entries take the same value.
When the observed values `>t a have larger variance, the KL divergence among the values for different
actions a is small, which implies that no algorithm can detect “good” actions properly. Cohen et al.
[8] constructed such an environment by means of normal distributions, which improve the lower
bound by Õ(

√
k) factor. However, their proposed bound includes a redundant (log T )−1/2 factor

due to the unbounded support of normal distributions.1 We note that their technique has been used
recently for proving a lower bound for bandit PCA [17], which includes a redundant (log T )−1/2

factor too, for the same reason as the above.

To shave off the (log T )−1/2 factor, in this paper, we introduce a novel class of discrete distributions
over {0, 1}d, so that entries of loss vectors are bounded and strongly correlated. To make the losses
correlated, we consider d Bernoulli distributions that share the parameter, by which the observed value
has a large variance of O(k2). However, it is not a straightforward task to set “good” actions in this
approach. The previous work [8] simply decreases the mean parameter in the normal distribution to
set “good” actions, but it does not work as it causes large KL divergences between “good" actions and
the others in our distribution. In the present work, we adjust the parameter of Bernoulli distributions
carefully with the intention of ensuring small KL divergence, which allows improving the regret
lower bound successfully. The idea outlined in the present study can be used to improve the idea of
[8] even considering other problems.

Second, we show that the correlation among losses is the reason of observing a large regret. In fact,
if each entry of loss vectors is an independent random variable, then one can achieve a regret of
Õ(
√
dk2T ) as below, which is

√
k times smaller than the lower bounds in Theorems 1 and 2. This

provides the answer to Q. 3: The correlation among losses makes the problem essentially harder, as
the minimax regret bound becomes larger by a factor of Θ̃(

√
k).

Theorem 3 (smaller regret bound for the arm-wise independent loss). There exists an algorithm
that achieves E[RT ] = O(

√
dk2T log T log(ed/k)) for T = Ω(d3), under the assumption that `t

follows a distribution of mutually independent d random variables in [0, 1], i.i.d. for t = 1, 2, . . . , T .

This upper bound is nearly tight; Theorem 5 in [2] implies that any algorithm suffers E[RT ] =

Ω(
√
dk2T ) in the worst case under the same assumption as in Theorem 3.2 By combining this result

and Theorem 3, we obtain the following corollary:

Corollary 1. Under the same assumption as in Theorem 3, the minimax regret in the bandit combi-
natorial optimization is of order Θ̃(

√
dk2T ), where we ignore logarithmic factors in d and T .

To prove Theorem 3, we analyze regret upper bounds for stochastic linear bandits, which are
generalization of the bandit combinatorial optimization with stochastic environments. In stochastic
linear bandits, a player is given a finite set A ⊆ Rd of d-dimensional vectors. In each round, the
player chooses at ∈ A and receives loss Lt = `∗>at + ηt, where ηt is the noise, which is assumed to
be conditionally α-subgaussian. We also assume that supa,b∈A `

∗>(a − b) ≤ L. We observe that
bandit combinatorial optimization with the assumption defined in Theorem 3 is a special case of
stochastic linear bandits with α =

√
k/2 and L = k.

For stochastic linear bandits with α = 1 and L = 1, Lattimore and Szepesvári [19] provided an

algorithm that achieves RT = O(
√
dT log |A| log T

δ ).3 This upper bound, however, does not directly
lead to Theorem 3, because their bound holds only for the case of α = 1 and L = 1; If we directly

1 To keep `t in the bounded region [0, 1]d with high probability, the variances of normal distributions need to
be maintained sufficiently small, which makes the KL divergence large.

2 Although the original statement in [2] does not include the independence assumption, we can confirm that
it is satisfied in their proof.

3 In their book, the proof is left for the reader as an exercise.
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apply their result, we obtain RT = O(
√
dk2T log |A| log T

δ ) = Õ(
√
dk3T ) by multiplying losses by

1/k. This is Ω̃(
√
k) times larger than the bound provided in Theorem 3.

To mitigate this issue, we modify their algorithm, so that we can perform a more refined analysis for
the case of arbitrary α and L. The differences between our Algorithm 1 given in Appendix D.1 and
Algorithm 12 in [19] are summarized as follows:

• They deal with only the case in which the noise ηt has a bounded variance, i.e., α = 1. To
deal with the case for a general α, we modify the definition (31) of Tk in their algorithm.

• They assume that the suboptimality gap maxa,b∈A{`∗>(a− b)} is bounded by 1. To handle
properly the changing suboptimality gaps, we modify the definition of εt in their algorithm.

• They basically consider maximization problems, while we consider minimization (This doe
not result in essential differences).

We demonstrate that Algorithm 1 achieves the following regret bound:
Theorem 4. For any input parameters δ > 0 and ε1 > 0, with a probability of at least 1 − δ, the
output of Algorithm 1 satisfies

max
a∈A

T∑
t=1

`∗>(at − a) ≤ 9α

√
dT log

|A| log T

δ
+ L

2dα2

ε2
1

log
2|A|
δ

+ (L+ ε1)d2. (3)

Theorem 4 means that the upper bound L of `∗>at does not affect the leading term of the regret upper
bound, however, α does affect. By substituting α =

√
k/2 and L = k with the bound in Theorem 4,

we obtain Theorem 3.

3 Related Work

Bandit combinatorial optimization was first introduced by McMahan and Blum [21] and Awer-
buch and Kleinberg [5]. They proposed the algorithms achieving the regret of Õ(T 3/4) and
Õ(T 2/3), respectively, ignoring dependence on d and logarithmic factors in T . Algorithms with
improved regret bounds have been proposed in several papers [2; 6; 7; 10]. These algorithms achieve
RT = O(

√
dk3T log(ed/k)) in our problem setting. Recently, computationally efficient algorithms

achieving the sublinear regret have also been introduced in [7; 9; 12; 22; 14].

With regard to lower bounds in the bandit combinatorial optimization, Audibert et al. [2] showed that
RT = Ω(

√
dk2T ), and consequently, they conjectured that this lower bound was tight. However, the

recent work by Cohen et al. [8], rejected this conjecture showing that RT = Ω(
√
dk3T/ log T ).

Combinatorial semi-bandit optimization is a variant of bandit combinatorial optimization, in which
the player can observe not only the total loss `>t at, but also the entry `ti for each chosen arm i ∈ St.
This problem was introduced by György et al. [11] in the context of the online shortest path problem,
i.e., they considered the case in which A is a set of all subsets of edges constructing a path in a given
graph. For general action sets A ⊆

(
[d]
k

)
, Audibert et al. [2] proposed an algorithm achieving the

regret of O(
√
dkT ), and showed that it is minimax optimal, i.e., there is an action set A ⊆

(
[d]
k

)
such

that RT = Ω(
√
dkT ). With regard to the multiple-play bandit problem, i.e., the case of A =

(
[d]
k

)
,

with semi-bandit feedback, Uchiya et al. [23] showed that RT = Ω(
√
dT ), but it remained open

whether this bound was tight, until the recent work by Lattimore et al. [20] provided the proof that
RT = Ω(

√
dkT ).

The study on stochastic linear bandits was introduced in the work by Abe and Long [1]. They and
Auer [3] considered the case of finite action sets that can change every round. Bandit combinatorial
optimization with a stochastic environment can be seen as a special case of stochastic linear bandits
in which the action set is included in

(
[d]
k

)
and does not change in every round. Auer [3] introduced a

technique of dividing rounds to achieve RT = O(
√
dT (log(|A|T log T ))3) under the assumption

of bounded loss. We remark that a similar technique is used in Algorithm 1. Moreover, a similar
technique was used for spectral bandits considered by Valko et al. [24], in which they eliminated
inappropriate arms over several phases.
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4 Lower Bounds

In this section, we provide proofs for Theorems 1 and 2. First, we revisit the proofs presented in
the previous work: Theorem 5 in [2] and Lemma 4 in [8], which provide the regret lower bounds
of the order Ω(

√
dk2T ) and Ω(

√
dk3T/ log T ) for multitask bandits, respectively. From the proofs

provided in the related work, we can observe that regret lower bounds can be derived from upper
bounds on KL divergences determined by distributions of loss vectors. Second, we construct a
distribution of loss vectors, so that the corresponding KL divergence is small enough. Combining
these two results, we obtain Theorem 1, which provides an improved lower bound for multitask
bandits. Finally, we extend the proof for multitask bandit to prove Theorem 2 for multiple-play
bandits.

4.1 Proof idea used in the previous work

This subsection revisits the proofs for regret lower bounds for multitask bandit, given in [2] and [8].
We note that, from Yao’s minimax principle, it suffices to construct a probabilistic distribution of `t,
such that in expectations, any deterministic algorithm suffers large regret.

In both proofs, the probabilistic distribution of the loss vectors is defined as follows. First, it is
necessary to set a parameter ε > 0, which is to be optimized later. For a∗ = [a∗1, . . . , a

∗
d]
> ∈ {0, 1}d,

a probabilistic distribution Da∗ over Rd is defined such that ` ∼ Da∗ satisfies

E
`∼Da∗

[`i] =
1

2
− εa∗i (4)

for each i ∈ [d]. More concretely, [2] define Da∗ such that the i-th entry of the vector follows the
Bernoulli distribution of parameter 1

2 − εa
∗
i , independently. Cohen et al. [8] define Da∗ such that

the i-th entry is equal to 1
2 − εa

∗
i + Z, where Z follows the normal distribution N(0, σ2). We can

confirm that these two definitions satisfy (4). The environment picks a∗ ∈ A uniformly at random
before the game begins, and then, in round t = 1, 2, . . . , T , generates a loss vector `t following Da∗

i.i.d. It should be noted that A is defined by (1) here.

We analyze the regret bounds for these loss vectors. Let S∗ = {i ∈ [d] | a∗i = 1}, and at be the
action chosen by the player in round t. Let us define Ni to be the number of rounds in [T ] in which
the player suffers a loss for the i-th entry of loss vectors, i.e., Ni = |{t ∈ [T ] | ati = 1}|. Then, from
(4), the regret RT satisfies

E
`1,...,`T∼Da∗

[RT ] ≥ E
`1,...,`T∼Da∗

[
T∑
t=1

`>t at −
T∑
t=1

`>t a
∗

]
= ε

(
kT −

∑
i∈S∗

E
`1,...,`T∼Da∗

[Ni]

)
.

(5)
From (5), to obtain a lower bound on RT , it suffices to bound

∑
i∈S∗ Ni. To obtain a bound on Ni,

we use the following lemma:
Lemma 1. Let D and D′ be the probability distributions over [0, 1]d. Then, we have∣∣∣∣ E

`1,...,`T∼D
[Ni]− E

`1,...,`T∼D′
[Ni]

∣∣∣∣ ≤ T
√√√√ T∑

t=1

E
at∼At(D)

[
KL

`∼D,`′∼D′
(a>t `||a>t `′)

]
(6)

for any deterministic algorithm, where At(D) represents the probability distribution of the outputs of
the algorithm in round t for the inputs `1, `2, . . . , `t−1 following D independently.

This lemma follows from Pinsker’s inequality and the chain rule for the KL divergence. For details,
see, e.g., Lemma A.1. in [4].

Lemma 1 defines a connection between bounds on Ni and upper bounds on KL divergences of
specific distributions. To provide a bound on Ni by means of Lemma 1, Audibert et al. [2] and Cohen
et al. [8] used specific properties of their distributions. We observe that their arguments are focused
on the fact that their distributions of loss vectors satisfy the following condition regarding the KL
divergence:

a ∈ A, a∗, â ∈ {0, 1}d, â>a− a∗>a = 1, `∗ ∼ Da∗ , ˆ̀∼ Dâ

=⇒ KL(`∗>a||ˆ̀>a) ≤ CDε2 for a constant CD depending on {Da}. (7)
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Intuitively, the precondition of (7) means that the discrepancy with respect to the expected loss is at
most ε. In fact, a∗>a in (7) corresponds to “goodness of action a" for the loss vector ` ∼ Da∗ , because
the expected loss for action a is equal to k/2 − εa∗>a from (4). Consequently, â>a − a∗>a = 1
means that the expected loss for Da∗ is smaller than one for Dâ by ε.

We can show that, if (7) is true, then Lemma 1 implies that if a∗ follows a uniform distribution over

A defined by (1), we obtain E
a∗,`1,...,`T∼Da∗

[∑
i∈S∗ Ni

]
≤ k

(
T
2 + Tε

√
kT
d CD

)
. Therefore, if we

set ε ≤
√
d/(16CDkT ), we obtain E

a∗,`1,...,`T∼Da∗

[∑
i∈S∗ Ni

]
≤ 3kT/4, and consequently, we

obtain E[RT ] ≥ εkT
4 from (5). The main observation of this subsection is summarized as follows:

Observation 1. Suppose a family {Da∗ | a∗ ∈ {0, 1}d} of distributions with a parameter ε ≤√
d/(16CDkT ) that satisfies (4) and (7). If A is given by (1) with n ≥ 2, then we have a regret

lower bound of E[RT ] = Ω(εkT ).

4.2 Construction of the probabilistic distribution

The goal of this subsection is to construct a family {Da∗ | a∗ ∈ {0, 1}d} of distributions such that (4)
and (7) are satisfied with CD = O(1/k2). From Observation 1, such construction leads to a regret
lower bound of E[RT ] = Ω(

√
dk3T ) for the multitask bandit problem, thereby, proving Theorem 1.

The proposed probabilistic distribution of loss vectors is defined as follows. Let us set a parameter
ε ∈ [0, 2−16], which is to be optimized later. For a∗ = [a∗1, . . . , a

∗
d]
> ∈ {0, 1}d, let Da∗ be a

distribution of ` = [`1, . . . , `d]
> ∈ [0, 1]d generated in the following way:

(i) Draw u0 from a uniform distribution over [0, 1]. (8)
(ii) Draw bi from a Bernoulli distribution of parameter (1/2 + 2εa∗i ).

(iii) For i ∈ [d], draw ui from a uniform distribution over
{

[0, 1/2] if bi = 1,
(1/2, 1] if bi = 0.

(iv) Let `i = 1 if ui ≥ u0, and otherwise, `i = 0.

We can confirm that (4) holds for this Da∗ . In fact, step (iv) means E[`i] = Prob[ui ≥ u0], and as
u0 follows the uniform distribution over [0, 1] and ui ∈ [0, 1], we obtain Prob[ui ≥ u0] = E[ui].
Moreover, from steps (ii) and (iii), we obtain E[ui] = 1

4 Prob[bi = 1] + 3
4 Prob[bi = 0] =

1
4 ( 1

2 + 2εa∗i ) + 3
4 ( 1

2 − 2εa∗i ) = 1
2 − εa

∗
i , which means that (4) holds.

Let us show that (7) is satisfied with CD = O(1/k2). As Da∗ is a distribution over {0, 1}d,
`∗>a takes values from {0, 1, . . . , k} for any a ∈ A and `∗ ∼ Da∗ . For i = 0, 1, . . . , k, define
P (i) = Prob[`∗>a = i] and P ′(i) = Prob[ˆ̀>a = i], where `∗ ∼ Da∗ and ˆ̀∼ Dâ. Then, from the
definition, the KL divergence can be expressed as follows:

KL(`∗>a||ˆ̀>a) = −
k∑
i=0

P (i) log
P ′(i)

P (i)
= −

k∑
i=0

P (i) log

(
1 +

P ′(i)− P (i)

P (i)

)

≤ −
k∑
i=0

P (i)

(
P ′(i)− P (i)

P (i)
− 2

(
P ′(i)− P (i)

P (i)

)2
)

= 2

k∑
i=0

(P ′(i)− P (i))
2

P (i)
,

where the inequality comes from the fact that log(1 + x) ≥ x − 2x2 for |x| ≤ 1/2 and
|P ′(i)− P (i)|/P (i) ≤ 1/2 holds,4 and the last equality holds, as we have

∑k
i=0 P (i)P

′(i)−P (i)
P (i) =∑k

i=0(P ′(i)− P (i)) = 1− 1 = 0. Thereby, it suffices to bound (P ′(i)− P (i))2/P (i) for deriving
an upper bound on the KL divergence. We can then show that P (i) = Ω(1/k) for all i. Indeed, if
ε = 0, then we have P (i) = 1/(k + 1); as Prob[`ti = 1] = Prob[ui ≥ u0] from the definition (8)
of Da, and as each ui is a uniform random variable over [0, 1] under the condition of ε = 0, we have

P (i) = Prob

 k∑
j=1

`tj = i

 = Prob
[
u0 is the (i+ 1)-th smallest among {uj}kj=0

]
=

1

k + 1
,

4 The statement |P ′(i)− P (i)|/P (i) ≤ 1/2 comes from ε ≤ 2−16. See Appendix A for details.
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where the last equality comes from the fact that u0, u1, . . . , uk are i.i.d. random variables. Even
if ε > 0, we show in Appendix A that for ε ≤ 2−16, P (i) is sufficiently close to 1

k+1 to have an
order of Ω(1/k). Thus, we have P (i) = Ω(1/k) for all i = 1, . . . , k and ε ∈ [0, 2−16], and hence,
KL(`∗>a||ˆ̀>a) = O

(
k
∑k
i=0 (P ′(i)− P (i))

2
)

. Finally, by proving |P ′(i) − P (i)| = O(ε/k2),
we obtain the following lemma:

Lemma 2. Let a∗, â ∈ {0, 1}d and `∗ ∼ Da∗ , ˆ̀∼ Dâ. Then, for ε ∈ [0, 2−16] and a ∈ {0, 1}d
satisfying ‖a‖1 = k and â>a− â∗>a = 1, we have

KL(`∗>a||ˆ̀>a) = O

(
ε2

k2
+

ε4

k3/2

)
. (9)

The complete proof of this lemma is provided in Appendix A.

4.3 Improved lower bound for the multitask bandit problem

We obtain an improved lower bound for A defined as (1), by combining Observation 1 and Lemma 2.

From Lemma 2, if ε ≤ 2−16k−
1
4 , there is a global constant C for which (7) holds with CD =

(C/k)2. Consequently, setting ε = min{2−16k−
1
4 , 1

4C

√
dk
T }, we obtain E[RT ] = Ω(εkT ) =

Ω(min{k 3
4T,
√
dk3T}), which provides the lower bound in Theorem 1, for A given by (1), i.e., the

multitask bandit problem. The key point for shaving off the
√

log T factor is that our probabilistic
distribution presented in Section 4.2 satisfies (7) with CD = O(1/k2), while the previous work [8]
does not exceed CD = O(log T/k2).

4.4 Improved and extended lower bound for the bandit ranking problem

For the bandit ranking problem, Cohen et al. [8] have identified lower bounds by considering
`t ∼ Da∗ for a∗ ∈ A, similar to the multitask bandit problem. However, this approach does not
work well for the case of full permutations (i.e., with k = n), and has left an Ω(

√
n)-gap between the

lower and the upper bounds, as mentioned in the conclusion of this research work.

We can eliminate this Ω(
√
n)-gap by improving the lower bound by a surprisingly simple approach.

In contrast to the probability distribution considered by Cohen et al. [8] that has k good arms (i such
that a∗i = 1), we define the probability distribution with m = dk/2e good arms, i.e., we consider
a∗ ∈ A′ ⊆ {0, 1}d defined by

A′ =

a ∈ {0, 1}d
∣∣∣∣∣∣

jn∑
i=(j−1)n+1

ai =

{
1 (1 ≤ j ≤ m)
0 (m < j ≤ k)

,

k∑
i=1

a(i−1)n+j ≤ 1 (j ∈ [n])

 .

(10)

Lemma 3. Suppose a family {Da∗ | a∗ ∈ {0, 1}d} of distributions with a parameter ε ≤√
d/(32CDkT ) that satisfies (4) and (7). Suppose n ≥ 2 and 1 ≤ k ≤ n. If a∗ is chosen

from A′ defined by (10), and `t follows Da∗ for t = 1, 2, . . . , T , independently, then, for the bandit
ranking problem defined by (2), any algorithm suffers regret of E[RT ] = Ω(εkT ).

The proof of this lemma is provided in Appendix B.

The lower bound in Lemma 3 is valid even if k = n, while the approach of the previous work [8]
considering a∗ ∈ A is applicable only to the case of n ≥ 2k. Intuitively, this difference can be
explained as follows: the regret depends on the number of good arms (i ∈ [d] such that a∗i = 1)
in chosen arms (i ∈ [d] such that ati = 1). If a∗ and at are chosen from A with k = n, and if the
chosen arms (defined by at) include k − 1 good arms, then the chosen arms automatically include
the entire [k] good arms, because a∗ and at express edge sets of perfect matchings of the complete
bipartite graph Kk,k. This means that, in this setting, the probability of choosing several good arms
strongly affects that of choosing other good arms, which makes the analysis difficult. However, such
an effect can be reduced if a∗ is chosen from A′, i.e., a∗ has only m = dk/2e good arms.

The lower bound in Theorem 1 for the bandit ranking problem, i.e., A given by (2), can be derived in
the same way as in Section 4.3. This accomplishes the proof of Theorem 1.
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5 Conclusion

In this study, we considered the regret bounds of the bandit combinatorial optimization. As a result,
we managed to improve the regret lower regret bounds comparing with those presented in the existing
study [8] by applying a factor of

√
log T . The obtained lower bounds apply to three practically

important examples of the bandit combinatorial optimization, and are valid under the parameter
constraints milder than those outlined in the existing studies. In particular, the bound for the bandit
ranking obtained in the present study addresses an open problem outlined in [8]. To shave off

√
log T

factor, we have introduced a novel class of distributions, which could be potentially used to improve
regret lower bounds considering other problems. Moreover, by obtaining a lower regret bound under
the assumption of independent losses, we demonstrated that correlation among losses is the cause of
observing a large regret.

With respect to the bandit combinatorial optimization, we decreased the gap between the upper and
the lower bounds to O(log(ed/k)). We will consider this issue as an open question for the future
research, in which we will aim to improve the gap to a constant factor only.
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A Proof of Lemma 2

Proof. Let χ(S) ∈ {0, 1}d denote the indicator vector of subset S ⊆ [d]. Without loss of generality,
we suppose that a = χ([k]), â = χ([s]), and a∗ = χ([s] ∪ {k}) for some s ∈ {0, 1, . . . , k − 1}. We
then have ˆ̀>a =

∑k
i=1 `i and `∗>a =

∑k
i=1 `

′
i. It should be noted that ˆ̀>a and `∗>a take values in

{0, 1, . . . , k}. Let us denote

P (i) = Prob[ˆ̀>a = i], P ′(i) = Prob[`∗>a = i] (11)

for i = 0, 1, . . . , k. For j = 1, 2, . . . , k, we denote Bj =
∑j
i=1 bi and B′j =

∑j
i=1 b

′
i, where bi and

b′i stand for the values bi in (8) for generating `∗ and ˆ̀, respectively. Let us denote

Qj(i) = Prob[Bj = i], Q′j(i) = Prob[B′j = i] (12)

for i = 0, 1, . . . , j. Let us consider the conditional probability of `∗>a given Bk and u0 in (8). Given
Bk and u0 ∈ [0, 1

2 ], `∗>a follows a uniform distribution over {Bk, Bk+1, . . . , k}. Indeed, we obtain
`∗j = 1 for each j ∈ Ip := {j′ ∈ [k] | bj′ = 1}, as we have uj ≥ 1

2 ≥ u0. Because uj for j ∈ In :=

{j′ ∈ [k] | bj′ = 0}, and u0 follows a uniform distribution over [0, 1
2 ] independently,

∑
j∈In `

∗
j , the

number of j ∈ In with uj lager than u0, follows a uniform distribution over {0, 1, . . . , |In|}. As we
have |Ip| = Bk and |In| = k −Bk, it holds that `∗>a =

∑
j∈Ip `

∗
j +

∑
j∈In `

∗
j = Bk +

∑
j∈In `

∗
j

follows a uniform distribution over {Bk, Bk + 1, . . . , k}, given Bk and u0 ∈ [0, 1
2 ]. Similarly, given

Bk and u0 ∈ [ 1
2 , 1], `∗>a follows a uniform distribution over {0, 1, . . . , Bk}. Therefore, P (i) can be

expressed as

P (i) = Qk(0)
1

2
· 1

k + 1
+Qk(1)

1

2
· 1

k
+ · · ·+Qk(i− 1)

1

2
· 1

k − i+ 2
+Qk(i)

1

2
· 1

k − i+ 1

+Qk(i)
1

2
· 1

i+ 1
+Qk(i+ 1)

1

2
· 1

i+ 2
+ · · ·+Qk(k)

1

2
· 1

k + 1

=
1

2

i∑
j=0

Qk(j)

k − j + 1
+

1

2

k∑
j=i

Qk(j)

j + 1
(13)

for each i = 0, 1, . . . , k. Similarly, we obtain

P ′(i) =
1

2

i∑
j=0

Q′k(j)

k − j + 1
+

1

2

k∑
j=i

Q′k(j)

j + 1
. (14)

Therefore, we obtain

P (i)− P ′(i) =
1

2

i∑
j=0

Qk(j)−Q′k(j)

k − j + 1
+

1

2

k∑
j=i

Qk(j)−Q′k(j)

j + 1
. (15)

From the assumption that â = χ([s]), and a∗ = χ([s] ∪ {k}) for s ≤ k − 1, we obtain Qk−1(j) =
Q′k−1(j) andQk(j) = 1

2Qk−1(j)+ 1
2Qk−1(j−1),Q′k(j) = (1

2 +2ε)Qk−1(j)+( 1
2−2ε)Qk−1(j−1),

and therefore, we have Qk(j) −Q′k(j) = 2ε(Qk−1(j − 1) −Qk−1(j)). By substituting this with
(15), we obtain

P (i)− P ′(i) = ε

i∑
j=0

Qk−1(j − 1)−Qk−1(j)

k − j + 1
+ ε

k∑
j=i

Qk−1(j − 1)−Qk−1(j)

j + 1

= ε

i−1∑
j=0

Qk−1(j)

(
1

k − j
− 1

k − j + 1

)
− Qk−1(i)

k − i+ 1

+
Qk−1(i− 1)

i+ 1
+

k−1∑
j=i

Qk−1(j)

(
1

j + 2
− 1

j + 1

)
= ε

Qk−1(i− 1)

i+ 1
− Qk−1(i)

k − i+ 1
+

i−1∑
j=0

Qk−1(j)

(k − j)(k − j + 1)
−
k−1∑
j=i

Qk−1(j)

(j + 1)(j + 2)

 .
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The last term
∑k−1
j=i

Qk−1(j)
(j+1)(j+2) can be bounded as follows:

k−1∑
j=i

Qk−1(j)

(j + 1)(j + 2)
≤
k−1∑
j=0

Qk−1(j)

(j + 1)(j + 2)
≤ Prob

[
Bk−1 <

⌊
k

4

⌋]
+

k−1∑
j=bk/4c

Qk−1(j)

(j + 1)(j + 2)

≤ Prob

[
Bk−1 −E[Bk−1] ≤ −k

8

]
+

k−1∑
j=bk/4c

Qk−1(j)

(k/4)(k/4 + 1)
≤ exp(− k

32
) +

16

k2
≤ 211

k2
,

where the third inequality comes from the fact that E[Bt−1] ≥ 3(k−1)
8 , and the fourth inequality comes

from Hoeffding’s inequality. In a similar way, we can demonstrate that
∑i−1
j=0

Qk−1(j)
(k−j)(k−j+1) ≤

211

k2 .
Therefore, we obtain

|P (i)− P ′(i)| ≤ ε
(∣∣∣∣Qk−1(i− 1)

i+ 1
− Qk−1(i)

k − i+ 1

∣∣∣∣+
212

k2

)
. (16)

Next, we show that
∣∣∣Qk−1(i−1)

i+1 − Qk−1(i)
k−i+1

∣∣∣ = O(1/k2 + ε/k) by outlining that Rj(i) :=
Qj(i)
Qj(i−1) ≈

j+1−i
i . Let us define β = 1+4ε

1−4ε . We show that it holds for all j = 1, 2, . . . , k − 1 and i = 1, . . . , j,
such that

1

β

j + 1− i
i

≤ Rj(i) ≤
j + 1− i

i
, (17)

by induction in j. For j = 1, (17) clearly holds. Because Qj corresponds to the probability
distribution of

∑j
i=1 bi, and bi for k ≤ k − 1 follows the Bernoulli distribution as defined in (8) with

a∗ = χ([s]), Rj+1 can be expressed as follows:

Rj+1(i) =
Qj+1(i+ 1)

Qj+1(i)
=
αjQj(i+ 1) +Qj(i)

αjQj(i) +Qj(i− 1)
=

1 + αjRj(i)

αj + 1/Rj(i− 1)
=

1

αj

1 + αjRj(i)

1 + 1/(αjRj(i− 1))

for j = 1, 2, . . . , k − 2, where αj = β for j ≤ s − 1 and αj = 1, otherwise. Assuming that (17)
holds for j = j′ and αj′ = β, we obtain

Rj′+1(i) =
1

β

1 + βRj′(i)

1 + 1/(βRj′(i− 1))
≤ 1

β

1 + β j
′+1−i
i

1 + 1
β

i−1
j′+2−i

=
i+ β(j′ + 1− i)

i− 1 + β(j′ + 2− i)
j′ + 2− i

i
≤ j′ + 2− i

i

Rj′+1(i) =
1

β

1 + βRj′(i)

1 + 1/(βRj′(i− 1))
≥ 1

β

1 + j′+1−i
i

1 + i−1
j′+2−i

=
1

β

j′ + 2− i
i

,

which means that (17) also holds for incremented j = j′ + 1. Similarly in the case of αj′ = 1, we
can demonstrate that (17) for j = j′ implies that (17) holds for j = j′ + 1. Consequently, (17) holds
for all j ∈ {1, 2, . . . , k − 1} and i ∈ {0, 1, . . . , i− 1}. As a result, we obtain∣∣∣∣Qk−1(i− 1)

i+ 1
− Qk−1(i)

k − i+ 1

∣∣∣∣ = Qk−1(i− 1)

∣∣∣∣ 1

i+ 1
− Rk−1(i− 1)

k − i+ 1

∣∣∣∣
≤ Qk−1(i− 1)

(∣∣∣∣ 1

i+ 1
− k − i− 1

(i− 1)(k − i+ 1)

∣∣∣∣+

∣∣∣∣(1− 1

β

)
k − i− 1

(i− 1)(k − i+ 1)

∣∣∣∣)
≤ Qk−1(i− 1)

(
2k

(i+ 1)(i− 1)(k − i+ 1)
+

8ε

i− 1

)
From Hoeffding’s inequality, it follows that for i < bk/4c, Qk−1(i− 1) ≤ exp(−k2/32) ≤ 210/k2.
For i ≥ bk/4c, 2k

(i+1)(i−1)(k−i+1) ≤ 210/k2. Therefore, the right-most-hand side above is bounded

by 210

k2 + 8εQk−1(i−1)
i−1 . From this and (16), we obtain that

|P (i)− P ′(i)| ≤ ε
(

213

k2
+

8εQk−1(i− 1)

i− 1

)
(18)
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Further, from (13), we obtain

P (i) =
1

2

i∑
j=0

Qk(j)

k − j + 1
+

1

2

k∑
j=i

Qk(j)

j + 1
≥ 1

2

k∑
j=0

Qk(j)

k + 1
=

1

2(k + 1)
(19)

From (18) and (19), |P (i)− P ′(i)|/P (i) ≤ 1/2 for ε ≤ 2−16. The KL divergence between P and
P ′ is bounded as follows:

KL(`∗>a||ˆ̀>a) = −
k∑
i=0

P (i) log

(
P ′(i)

P (i)

)
= −

k∑
i=0

P (i) log

(
1 +

P ′(i)− P (i)

P (i)

)

≤ −
k∑
i=0

P (i)

(
P ′(i)− P (i)

P (i)
− 2

(
P ′(i)− P (i)

P (i)

)2
)

≤ 2

k∑
i=0

(P ′(i)− P (i))2

P (i)

≤ 4(k + 1)ε2
k∑
i=0

(
213

k2
+

8εQk−1(i− 1)

i− 1

)2

≤ 8(k + 1)ε2

(
k∑
i=0

(
213

k2

)2

+

k∑
i=0

(
8εQk−1(i− 1)

i− 1

)2
)

≤ 8(k + 1)ε2

(
226(k + 1)

k4
+

216ε2

k5/2

)
≤ 251ε2

k2
+

216ε4

k3/2
,

where the first inequality comes from log(1 + x) ≥ x − 2x2 for |x| ≤ 1/2; the second inequality
comes from

∑
P (i) =

∑
P ′(i) = 1; the third inequality comes from (18) and (19); the forth

inequality comes from a standard inequality of (x+ y)2 ≤ 2(x2 + y2); and the fifth inequality comes
from Hoeffding’s inequality and Qk−1(i− 1) ≤ 210k−1/2.

B Proof of Lemma 3

We begin the proof with introducing notations: there is a one-to-one correspondence between A
defined by (2) and the set of all injection σ from [k] to [n]. In fact, given an injection σ : [k]→ [n],
the indicator vector χ(S) ∈ {0, 1}d of S for S = {(i − 1)n + j | i ∈ [k], j ∈ [n], σ(i) = j} is
an element of A. Conversely, for any a ∈ A, there is a unique injection σ : [k] → [n] such that
a(i−1)n+j = 1 if and only if j = σ(i). Therefore, we can regard each element in a ∈ A as an
injection from [k] to [n]. For outputs at from the algorithm, let us denote σt : [k] → [n] as the
corresponding injection. Similarly, there is a one-to-one correspondence between A′ and the set of
all injection σ from [m] to [n]. Let σ∗ : [m] → [n] denote the injection corresponding to a∗ ∈ A′.
Then we have a∗ = χ({(i− 1)n+ j | i ∈ [m], j ∈ [n], σ∗(i) = j}) =: b(σ∗). Let Σm,n denote the
set of all injections from [m] to [n].

As we have E
`t∼Da∗

[ˆ̀>t a] = k
2 − ε

∑m
i=1 a(i−1)n+σ∗(i) from (4), the expectation of the regret can be

expressed as follows:

E[RT ] =

T∑
t=1

m∑
i=1

ε
(
1−E[at,(i−1)n+σ∗(i)]

)
= ε

(
mT −

m∑
i=1

E
[
N(i−1)n+σ∗(i)

])
, (20)

where the expectation is taken with respect to `t ∼ Da∗ = Db(σ∗) for t ∈ [T ]. We consider
bounding E

[
N(i−1)n+σ∗(i)

]
by means of Lemma 1. For σ∗ : [k] → [n], let us define b′(σ∗) :=
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χ({(i− 1)n+ j | i ∈ [m− 1], j ∈ [n], σ∗(i) = j}). From Lemma 1, we obtain∣∣∣∣∣ E
σ∗∼U(Σm,n)

E
`t∼Db(σ∗)

[N(m−1)n+σ(m)]− E
σ∗∼U(Σm,n)

E
`t∼Db′(σ∗)

[N(m−1)n+σ(m)]

∣∣∣∣∣
≤ E
σ∗∼U(Σm,n)

∣∣∣∣∣ E
`t∼Db(σ∗)

[N(m−1)n+σ(m)]− E
`t∼Db′(σ∗)

[N(m−1)n+σ(m)]

∣∣∣∣∣
≤ T E

σ∗∼U(Σm,n)

√√√√ T∑
t=1

E
at∼At(Db′(σ∗))

[
KL

`∼Db′(σ∗),`′∼Db(σ∗)
(a>t `||a>t `′)

]

≤ T

√√√√ E
σ∗∼U(Σm,n)

T∑
t=1

E
at∼At(Db′(σ∗))

[
KL

`∼Db′(σ∗),`′∼Db(σ∗)
(a>t `||a>t `′)

]
, (21)

where the first and the third inequalities follow from Jensen’s inequality, and the second inequality
follows from Lemma 1. Let us consider KL(a>t `||a>t `′) for ` ∼ Db′(σ∗) and `′ ∼ Db(σ∗), having
fixed σ∗ ∈ Σm,n and fixed at ∈ A. If at,(m−1)n+σ(m) = 1, from the assumption of (7), we
obtain KL(a>t `||a>t `′) ≤ CDε2. Otherwise, we have KL(a>t `||a>t `′) = 0 because the probabilistic
distribution of a>t ` is equal to that of a>t `

′. Consequently, we obtain

T∑
t=1

E
at∼At(Db′(σ∗))

[
KL

`∼Db′(σ∗),`′∼Db(σ∗)
(a>t `||a>t `′)

]

≤
T∑
t=1

Prob
at∼At(Db′(σ∗))

[at,(m−1)n+σ(m) = 1]CDε
2 = E

`t∼Db′(σ∗)
[N(m−1)n+σ(m)]CDε

2 (22)

Let us define S ∈ R by

S := E
σ∗∼U(Σm,n)

E
`t∼Db′(σ∗)

[N(m−1)n+σ(m)] (23)

Combining the above two inequalities (21) and (22), we obtain

E
σ∗∼U(Σm,n)

E
`t∼Db(σ∗)

[N(m−1)n+σ(m)] ≤ S + T
√
CDε2S. (24)

Then we evaluate S defined by (23). Let σ∗|[m−1] denote the restriction of σ∗ : [m]→ [n] to [m− 1],
i.e., σ∗|[m−1] : [m− 1]→ [n] is defined by σ∗|[m−1](i) = σ∗(i) for i ∈ [m− 1]. Let R′(σ∗) denote
the range of σ∗|[m−1]. From the definition of b′, b′(σ∗) does not depend on σ∗, but is determined by
σ∗|[m−1]. If σ∗ follows a uniform distribution over Σm,n, the posterior probability of σ∗(m) given
σ∗|[m−1] is a uniform distribution over [n] \R′(σ∗). Consequently, S can be evaluated as follows:

S = E
σ∗|[m−1]

E
`t∼Db′(σ∗)

E
σ∗(m)∼U([n]\R′(σ∗))

[N(m−1)n+σ(m)]

= E
σ∗|[m−1]

E
`t∼Db′(σ∗)

 1

|[n] \R′(σ∗)|
∑

j∈[n]\R′(σ∗)

N(m−1)n+j


= E
σ∗|[m−1]

E
`t∼Db′(σ∗)

 1

|[n] \R′(σ∗)|

T∑
t=1

∑
j∈[n]\R′(σ∗)

at,(m−1)n+j

 ≤ T

n−m+ 1
, (25)

where the last inequality comes from |R′(σ∗)| = m − 1, and from at ∈ A being defined by (2).
Combining (24) and (25), we obtain

E
σ∗∼U(Σm,n)

E
`t∼Db(σ∗)

[N(m−1)n+σ(m)] ≤
T

n−m+ 1
+ T

√
CDε2T

n−m+ 1
.
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As we assume k ≤ n and n ≥ 2, we have n−m+1 = n−dk/2e+1 ≥ n−dn/2e+1 ≥ max{2, n/2}.
Thereby, by setting ε =

√
n

32CDT
, we obtain

E
σ∗∼U(Σm,n)

E
`t∼Db(σ∗)

[N(m−1)n+σ(m)] ≤
T

2
+ T

√
2CDε2T

n
=
T

2
+
T

4
=

3T

4
.

For each i ∈ [m] besides m, we can show E[N(i−1)n+σ(i)] ≤ 3T
4 in a similar way. Then, from this

and (20), we obtain

E[RT ] ≥ ε

(
mT −

m∑
i=1

3T

4

)
=
εmT

4
=
m

4

√
nT

32CD
≥ k

8

√
nT

32CD
=

1

8

√
dkT

32CD
.

where the inequality comes from m = dk/2e ≥ k/2, and the last inequality comes from d = kn.

C Lower Bound for the Multiple-play Bandit Problem (Proof of Theorem 2)

For the multiple-play bandit problem, i.e., for A =
(

[d]
k

)
, Observation 1 does not allow deriving

directly a regret lower bound. In this subsection, we extend the observation to multiple-play bandit
problems.

Let U(Σd) denote a uniform distribution over all permutations of [d]. For a permutation σ : [d]→ [d],
let σ([i]) denote the element of {0, 1}d such that the σ(j)-th component is 1 if j ∈ [i], and 0,
otherwise; i.e., σ([i]) is the indicator vector of {σ(j) | j ∈ [i]}. If σ ∼ U(Σd), then σ([k]) follows a

uniform distribution U(A) over A =
(

[d]
k

)
. Consequently, we obtain E

a∗∼U(A)

[
E

`1,...,`T∼Da∗
[RT ]

]
=

E
σ∼U(Σd)

[
E

`1,...,`T∼Dσ([k])
[RT ]

]
. Let us define M(k, i) ∈ R by

M(k, i) = E
σ∼U(Σd)

[
E

`1,...,`T∼Dσ([k])
[Nσ(i)]

]
.

Then, we obtain M(k, 1) = M(k, 2) = · · · = M(k, k) and M(k, k + 1) = M(k, k + 2) = · · · =
M(k, d). From (5), the expectation of the regret can be expressed as follows:

E
σ∼U(Σd)

[
E

`1,...,`T∼Dσ([k])
[RT ]

]
= ε

(
kT −

k∑
i=1

M(k, i)

)
= ε(kT − kM(k, k)) = εk(T −M(k, k)).

(26)

Let us evaluate M(k, k) considering the difference between M(k, k) and M(k − 1, k). From
Lemma 1, we have∣∣∣∣∣ E

`1,...,`T∼Dσ([k−1])

[Nσ(k)]− E
`1,...,`T∼Dσ([k])

[Nσ(k)]

∣∣∣∣∣
≤ T

√√√√ T∑
t=1

E
at∼At(Dσ([k−1]))

[
KL

`∼Dσ([k−1]),`′∼Dσ([k])
(a>t `||a>t `′)

]
. (27)

Let us consider KL(a>t `||a>t `′) for ` ∼ Dσ([k−1]) and `′ ∼ Dσ([k]), having fixed σ ∈ Σd and fixed
at ∈ A. If at,σ(k) = 1, we obtain KL(a>t `||a>t `′) = O( ε

2

k2 + ε4

k3/2
) from Lemma 2. Otherwise, we

obtain KL(a>t `||a>t `′) = 0, because the probabilistic distribution of a>t ` is equal to that of a>t `
′.

Therefore,
T∑
t=1

E
at∼At(Dσ([k−1]))

[
KL

`∼Dσ([k−1]),`′∼Dσ([k])
(a>t `||a>t `′)

]

≤
T∑
t=1

Prob
at∼At(Dσ([k−1]))

[at,σ(k) = 1]

(
Cε

k

)2

= E
`1,...,`T∼Dσ([k−1])

[Nσ(k)]

(
Cε

k

)2

.
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From this observation and (27), we obtain∣∣∣∣∣ E
`1,...,`T∼Dσ([k−1])

[Nσ(k)]− E
`1,...,`T∼Dσ([k])

[Nσ(k)]

∣∣∣∣∣ ≤ CεT

k

√
E

`1,...,`T∼Dσ([k−1])

[
Nσ(k)

]
.

Using this inequality, we obtain

|M(k − 1, k)−M(k, k)| ≤ E
σ

[∣∣∣∣∣ E
`1,...,`T∼Dσ([k−1])

[Nσ(k)]− E
`1,...,`T∼Dσ([k])

[Nσ(k)]

∣∣∣∣∣
]

≤ CεT

k
E
σ

√
E

`1,...,`T∼Dσ([k−1])

[
Nσ(k)

]
≤ CεT

k

√√√√E
σ

[
E

`1,...,`T∼Dσ([k−1])

[
Nσ(k)

]]
=
CεT

k

√
M(k − 1, k),

where the first and the last inequalities come from Jensen’s inequality. Consequently, M(k, k)

is bounded as M(k, k) ≤ M(k − 1, k) + CεT
k

√
M(k − 1, k). Similarly, we can also show that

M(k, 1) ≤ M(k − 1, 1) + CεT
k

√
M(k − 1, 1). Considering that M(k, 1) = M(k, k), we obtain

M(k, k) ≤ β + CεT
k

√
β for β = min{M(k − 1, k),M(k − 1, 1)}. As we have M(k − 1, 1) =

M(k − 1, 2) = · · · = M(k − 1, k − 1) and M(k − 1, k) = · · · = M(k − 1, d), and
∑d
i=1M(k −

1, i) = E
σ∼U(Σd),`1,...,`T∼Dσ([k−1])

[∑d
i=1Ni

]
= kT , we have β ≤ kT

d . Therefore, we obtain

M(k, k) ≤ kT
d + CεT

k

√
kT
d = T

(
k
d + C

√
T
dkε
)

. By setting ε = 2−16 min

{
k−1/4, d−k2Cd

√
dk
T

}
,

we obtain M(k, k) ≤ T (kd + d−k
2d ) = T (d+k)

2d . From (26), we have E[RT ] ≥ εk(T −M(k, k)) ≥
εkT

(
1− d+k

2d

)
= εkT (d−k)

2d = 2−16 min
{

1
C

(
d−k
d

)2√
dk3T , d−k

2d k
3
4T
}
.

D Upper Bounds

In this section, we provide the proof of Theorems 3. We consider the generalization of the bandit
combinatorial optimization called stochastic linear bandit with the finite number of arms. In this
problem, a player is given a finite decision set A before the game starts. In each round t ∈
[T ], the player chooses action at ∈ A. Subsequently, observe loss Lt = `∗>at + ηt, where
ηt is conditionally α-subgaussian given a1, L1, a2, L2, . . . , at−1, Lt−1 and at, i.e., E[exp(ληt) |
Ft] ≤ exp(α2λ2/2) almost surely, for Ft = σ(a1, L1, . . . , at−1, Lt−1, at), which is the σ-algebra
generated by {a1, L1, . . . , at−1, Lt−1, at}. We suppose that the suboptimality gap maxa,b∈A `

∗>(a−
b) is at most L. Considering this problem, we define the regret R′T as follows:

R′T = max
a∈A

T∑
t=1

`∗>(at − a) =

T∑
t=1

`∗>at −min
a∈A

T∑
t=1

`∗>a =

T∑
t=1

`∗>(at − a∗), (28)

where we define that a∗ ∈ arg min
a∈A

{
`∗>a

}
.

D.1 Algorithm for Stochastic Linear Bandit for the Fixed Finite Number of Arms

We analyze R′T considering the output of Algorithm 1, which is obtained modifying Algorithm 12
in Section 22 of the preprint book by Lattimore and Szepesvári [19]. The differences between
Algorithm 1 defined in the present study and Algorithm 12 in [19] are the following:

• In the related research, they deal only with the case in which the noise ηt has a bounded
variance, i.e., α = 1. To deal with the case of general α, we modify the definition (31) of
Tk in their algorithm.

• They assume that the suboptimality gap maxa,b∈A{`∗>(a− b)} is bounded by 1. To cope
with changing suboptimality gaps, we modify the definition of εt in their algorithm.
• They basically consider maximization problems, while we consider minimization (it does

not result in essential differences).
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Algorithm 1 is controlled by parameters ε1 > 0 and δ > 0. The algorithm divides rounds into phases:
the k-th phase consists of Tk rounds, where Tk will be defined later. In each phase, a subset Ak of
action set A is maintained. The algorithm chooses actions from Ak in the k-th phase, and Ak does
not change over all rounds in this phase. At the beginning of each phase, the algorithm constructs a
probabilistic measure πk over Ak satisfying the following condition:

max
b∈Ak

b>
(∑
a∈Ak

πk(a)aa>

)−1

b

 ≤ d, ‖πk‖0 ≤
d(d+ 1)

2
+ 1. (29)

This measure always exists for all k. Indeed, as showed by Kiefer and Wolfowitz [15], if span(A) =
Rd, a maximizer π∗ of det(

∑
a∈A π(a)aa>) satisfies the following condition:

max
b∈A

b>
(∑
a∈A

π∗(a)aa>

)−1

b

 = d. (30)

Even if span(A) is not equal to Rd, equivalently, if d′ = dim(span(A)) is smaller than d, we can ob-
tain π∗ for which the left-hand side of (30) is equal to d′, by maximizing det(

∑
a∈A π(a)(Ba)(Ba)>)

for an appropriate matrix B ∈ Rd′×d. Consequently, the left inequality of (29) can be satisfied. Fur-
ther, Carathéodory’s theorem implies that for arbitrary π ∈ ∆A := {π : A → R≥0 |

∑
a∈A π(a) =

1}, there exists π′ ∈ ∆A such that∑
a∈A

π(a)aa> =
∑
a∈A

π′(a)aa>, ‖π′‖0 ≤ dim(span{aa> | a ∈ A}) + 1.

The dimensionality of span{aa> | a ∈ A} is at most d(d+ 1)/2, which is the dimensionality of the
linear space of all symmetric matrices of size d. Consequently, the right inequality of (29) can be
satisfied.

The k-th phase consists of Tk rounds from the (tk + 1)-th round to the tk+1-th round, in which the
algorithm chooses action a ∈ Ak in exactly Tk(a) rounds for each a ∈ Ak. Here, Tk(a) (a ∈ Ak),
Tk, and tk are defined as follows:

Tk(a) =

⌈
2dα2πk(a)

ε2
k

log
2|A|k(k + 1)

δ

⌉
, Tk =

∑
a∈Ak

Tk(a), tk =

k−1∑
j=1

Tj , (31)

where εk = 2−k+1ε1. At the end of the k-th phase, the algorithm calculates the least squares
estimator ˆ̀

k of `∗ by

ˆ̀
k = V −1

k

tk+Tk∑
t=tk+1

rtat with Vk =
∑
a∈Ak

Tk(a)aa> =

tk+Tk∑
t=tk+1

ata
>
t . (32)

Moreover, Ak+1 is defined by eliminating actions that are not promising as follows:

Ak+1 =

{
a ∈ Ak

∣∣∣∣ min
b∈Ak

ˆ̀>
k (b− a) ≥ −2εk

}
. (33)

The outputs of Algorithm 1 correspond to the regret upper bound in Theorem 4. The proof is provided
in Appendix E.

D.2 Proof of Theorem 3

In this subsection, we prove Theorem 3 by means of Theorem 4. Suppose that `t follows an arm-
wise independent distribution D∗, i.i.d. Then, the bandit combinatorial optimization for {`t} is
a special case of the stochastic linear bandits with `∗ = E

`∼D∗
[`] and ηt = (`t − η∗)>at. In this

problem, the suboptimality gap L = maxa,b∈A `
∗>(a − b) is at most k because `∗ ∈ [0, 1] and

A ⊆ {a ∈ {0, 1}d | ‖a‖0 = k}. Further, ηt is
√
k/2-subgaussian from Hoeffding’s Lemma, as
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Algorithm 1 Algorithm for stochastic linear bandits with the finite arms
Require: A ⊆ Rd, α, δ, ε1

1: Set A1 = A, t1 = 0.
2: for k = 1, . . . do
3: Let πk ∈ ∆Ak be a probabilistic measure over Ak such that (29) is satisfied.
4: Define Tk(a), Tk and tk+1 by (31)
5: Choose action a ∈ Ak exactly Tk(a) times, from the (tk + 1)-th round to the tk+1-th round.
6: Calculate empirical estimate ˆ̀

k of `∗ by (32).
7: Eliminate arms with a high estimated loss based on (33).
8: end for

`t1, `t2, . . . , `td are independent and [0, 1]-valued random variables. Thereby, applying Algorithm 1
with L = k, α =

√
k/2 and δ = δ′/2, we obtain

R′T =

T∑
t=1

`∗>(at − a∗) ≤ 64

√
dkT log

2|A| log T

δ′
+
dk2

ε2
1

log
2|A|
δ′

+ (k + 16ε1)d2 (34)

with probability 1− δ′/2. Moreover, we obtain RT −R′T = O(
√
kT log(|A|/δ′)) with probability

1 − δ′/2. In fact, we have
∑T
t=1 `

>
t (at − a) − R′T ≤

∑T
t=1 ηt −

∑T
t=1(`t − `∗)>a for all a ∈ A,

and from the Azuma-Hoeffding inequality, we have

Prob

[
T∑
t=1

ηt ≥
√
kT

2
log

4|A|
δ′

]
≤ δ′

4|A|
, Prob

[
T∑
t=1

(`∗ − `t)>a ≥
√
kT

2
log

4|A|
δ′

]
≤ δ′

4|A|
.

From the second inequality, the probability that there exists a ∈ A such that
∑T
t=1(`∗ − `t)>a ≥√

kT
2 log 4|A|

δ′ is at most δ′/4. Combining this observation and the aforementioned first inequality,

we obtain RT −R′T ≤
√

2kT log 4|A|
δ′ with probability 1− δ′/2. From this statement and (34), with

probability 1− δ′, we have RT ≤ R′T +
√

2kT log 4|A|
δ′ ≤ 66

√
dkT log 2|A| log T

δ′ + dk2

ε21
log 2|A|

δ′ +

(k + 16ε1)d2 ≤ 66
√
dk2T log 2ed log T

kδ′ + dk3

ε21
log 2ed

kδ′ + (k + 16ε1)d2. By setting ε1 = Θ(k) and

δ′ = Θ(
√
dT ), we obtain RT = O(

√
dk2T log(ed log T/kδ′) + d2k) with probability 1− δ′, and

RT = O(kT ) with probability δ′. Consequently, we obtain E[RT ] = O(
√
dk2T log(ed log T/kδ′)+

d2k + δ′kT ) = O(
√
dk2T log T log(ed/k)) for T = Ω(d3).

E Analysis of the Regret for Algorithm 1

In this section, we provide a proof of Theorems 4. To derive an upper bound of the regret defined by
(28), we first consider a confidence bound for ˆ̀>

k a. From the standard analysis of confidence bounds
for least squares estimators (see, e.g., [19]), for all b ∈ Rd, we have

Prob

[
|(ˆ̀

k − `∗)>b| ≥ α
√

2b>V −1
k b log

2|A|k(k + 1)

δ

∣∣∣∣∣Ftk−1

]

≤ exp

(
− log

2|A|k(k + 1)

δ

)
=

δ

|A|k(k + 1)
. (35)

From the definitions of Vk, Tk and πk, it holds for all b ∈ Ak that

b>V −1
k b = b>

(∑
a∈Ak

Tk(a)aa>

)−1

b

≤
(

2dα2

ε2
k

log
2|A|k(k + 1)

δ

)−1

b>

(∑
a∈Ak

πk(a)aa>

)−1

b ≤
(

2α2

ε2
k

log
2|A|k(k + 1)

δ

)−1

,
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where the first equality comes from (32), and the first and the second inequalities come from (31) and
(29), respectively. Combining the above and (35), we obtain

Prob[|(`∗ − ˆ̀
k)>b| ≥ εk|Ftk−1

] ≤ δ

|A|k(k + 1)

for all k and b ∈ Ak. Therefore, we obtain

Prob
[
∃k, ∃b ∈ Ak, |(`∗ − ˆ̀

k)>b| > εk

]
≤
∞∑
k=1

|Ak|δ
|A|k(k + 1)

≤ δ
∞∑
k=1

1

k(k + 1)
= δ.

In the discussion, hereinafter, we assume that

|(`∗ − ˆ̀
k)>a| ≤ εk for all k ∈ {1, 2, . . .} and a ∈ Ak. (36)

Then, for all k = 1, 2, . . ., we have a∗ ∈ Ak because a∗ ∈ A1 = A and ˆ̀>
k (b − a∗) ≥ `∗>(b −

a∗)− 2εk ≥ −2ε for all k. Further, we obtain

`∗>(a− a∗) ≤ 8εk for all k ∈ {2, 3, 4, . . .} and a ∈ Ak. (37)

Indeed, if `∗>(a − a∗) > 8εk, we can see that a /∈ Ak in both cases of (i) a /∈ Ak−1 and
a ∈ Ak−1: (i)asAk ⊆ Ak−1 from the definition (33) ofAk, a /∈ Ak−1 implies a /∈ Ak; (ii)assuming
a, a∗ ∈ Ak−1, `∗>(a−a∗) > 8εk = 4εk−1 and (36), we obtain ˆ̀>

k−1(b−a) ≥ `∗>(b−a)−2εk−1 ≥
`∗>(a∗ − a)− 2εk−1 > 2εk−1 for all b ∈ Ak−1, which implies a /∈ Ak from the definition (33) of
Ak.

Let us define k(t) to be k ∈ {1, 2, . . .} such that tk < t ≤ tk+1. Because tk < t ≤ tk+1 means
at ∈ Ak, we have at ∈ Ak(t) for all t. Consequently, from (37), we have `∗>(at − a∗) ≤ 8εk(t) for
t > T1. Therefore, for T ≥ T1, we have

T∑
t=1

`∗>(at − a∗) ≤ LT1 +

T∑
t=t2

`∗>(at − a∗) ≤ LT1 + 8

T∑
t=t2

εk(t)

≤ LT1 + 8

tk(T )+1∑
t=t2

εk(t) ≤ LT1 + 8

k(T )∑
k=2

Tkεk. (38)

Let us evaluate Tk and tk =
∑k−1
j=1 Tj . From the definition (31) of Tk, we have

2dα2

ε2
k

log
2|A|k(k + 1)

δ
≤ Tk <

2dα2

ε2
k

log
2|A|k(k + 1)

δ
+
d(d+ 1)

2
+ 1, (39)

as Tk(a)− 2dα2πk(a)
ε2k

log 2|A|k(k+1)
δ ∈ [0, 1) for at most d(d+1)/2+1 actions a ∈ A and Tk(a) = 0

for the other actions. From the left inequality of (39), for T > T1, we have

T > tk(T ) ≥ Tk(T )−1 ≥
2dα2

ε2
k(T )−1

log
2|A|k(T )(k(T )− 1)

δ
≥ dα222k(T )

8ε2
1

log
2|A|k(T )

δ
,

which implies that

2k(T ) ≤ ε1

α

√
8T

d

(
log

2|A|k(T )

δ

)−1/2

, k(T ) ≤ log2

(
ε1

α

√
8T

d

)
≤ log T. (40)
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From this inequality and (37), we have

k(T )∑
m=2

Tmεm ≤
k(T )∑
m=2

(
2dα2

εm
log

2|A|m(m+ 1)

δ
+
εm(d+ 2)2

2

)

≤
k(T )∑
m=2

(
2dα2

ε12−m+1
log

2|A|k(T )(k(T ) + 1)

δ
+
ε12−m+1(d+ 2)2

2

)
≤ 2dα22k(T )

ε1
log

2|A|k(T )(k(T ) + 1)

δ
+ 2ε1d

2

≤ 2α
√

8dT

(
log

2|A|k(T )

δ

)−1/2

· 2 log
2|A|k(T )

δ
+ 2ε1d

2

≤ 4α

√
8dT log

2|A|k(T )

δ
+ 2ε1d

2 ≤ 16α

√
dT log

|A|k(T )

δ
+ 2ε1d

2,

where the first inequality comes from the right inequality of (39), the fourth inequality comes from
the left inequality of (39) and the fact that 2|A|k(T )(k(T ) + 1) ≤ (2|A|k(T ))2. From the above
inequality and (38), we obtain

T∑
t=1

`∗>(at − a∗) ≤ LT1 + 128α

√
dT log

|A| log T

δ
+ 16ε1d

2

≤ 128α

√
dT log

|A| log T

δ
+

4dLα2

ε2
1

log
|A|
δ

+ (L+ 16ε1)d2.
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