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Abstract

Strongly log-concave (SLC) distributions are a rich class of discrete probability
distributions over subsets of some ground set. They are strictly more general than
strongly Rayleigh (SR) distributions such as the well-known determinantal point
process. While SR distributions offer elegant models of diversity, they lack an easy
control over how they express diversity. We propose SLC as the right extension
of SR that enables easier, more intuitive control over diversity, illustrating this via
examples of practical importance. We develop two fundamental tools needed to
apply SLC distributions to learning and inference: sampling and mode finding.
For sampling we develop an MCMC sampler and give theoretical mixing time
bounds. For mode finding, we establish a weak log-submodularity property for
SLC functions and derive optimization guarantees for a distorted greedy algorithm.

1 Introduction
A variety of machine learning tasks involve selecting diverse subsets of items. How we model
diversity is, therefore, a key concern with possibly far-reaching consequences. Recently popular
probabilisitic models of diversity include determinantal point processes [32, 39], and more generally,
strongly Rayleigh (SR) distributions [8, 35]. These models have been successfully deployed for subset
selection in applications such as video summarization [44], fairness [13], model compression [46],
anomaly detection [49], the Nyström method [41], generative models [24, 40], and accelerated
coordinate descent [51]. While valuable and broadly applicable, SR distributions have one main
drawback: it is difficult to control the strength and nature of diversity they model.

We counter this drawback by leveraging strongly log-concave (SLC) distributions [3–5]. These
distributions are strictly more general than SR measures, and possess key properties that enable easier,
more intuitive control over diversity. They derive their name from SLC polynomials introduced by
Gurvits already a decade ago [30]. More recently they have shot into prominence due to their key
role in developing deep connections between discrete and continuous convexity, with subsequent
applications in combinatorics [1, 10, 33]. In particular, they lie at the heart of recent breakthrough
results such as a proof of Mason’s conjecture [4] and obtaining a fully polynomial-time approximation
scheme for counting the number of bases of arbitrary matroids [3, 5]. We remark that all these works
assume homogeneous SLC polynomials.

We build on this progress to develop fundamental tools for general SLC distributions, namely,
sampling and mode finding. We highlight the flexibility of SLC distributions through two settings of
importance in practice: (i) raising any SLC distribution to a power α ∈ [0, 1]; and (ii) incorporating a
constraint that allows sampling sets of any size up to a budget. In contrast to similar modifications
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to SR measures (see e.g., [49]), these settings retain the crucial SLC property. Setting (i) allows us
to conveniently tune the strength of diversity by varying a single parameter; while setting (ii) offers
greater flexibility than fixed cardinality distributions such as a k-determinantal point process [38].
This observation is simple yet important, especially since the “right” value of k is hard to fix a priori.

Contributions. We briefly summarize the main contributions of this work below.
� We introduce the class of strongly log-concave distributions to the machine learning community,

showing how it can offer a flexible discrete probabilistic model for distributions over subsets.
� We prove various closure properties of SLC distributions (Theorems 2-5), and show how to use

these properties for better controlling the distributions used for inference.
� We derive sampling algorithms for SLC and related distributions, and analyze their corresponding

mixing times both theoretically and empirically (Algorithm 1, Theorem 8).
� We study the negative dependence of SLC distributions by deriving a weak log-submodularity

property (Theorem 11). Optimization guarantees for a selection of greedy algorithms are obtained
as a consequence (Theorem 12).

As noted above, our results build on the remarkable recent progress in [3–5] and [10]. The biggest
difference between the previous work and this work is our focus on general non-homogeneous SLC
polynomials, corresponding to distributions over sets of varying cardinality, as opposed to purely
the homogeneous, i.e., fixed-cardinality, case. This broader focus necessitates development of some
new machinery, because unlike SR polynomials, the class of SLC polynomials is not closed under
homogenization. We summarize the related work below for additional context.

1.1 Related work

SR polynomials. Strongly Rayleigh distributions were introduced in [8] as a class of discrete
distributions possessing several strong negative dependence properties. It did not take long for their
potential in machine learning to be identified [39]. Particular attention has been paid to determinantal
point processes due to the intuitive way they capture negative dependence, and the fact that they
are parameterized by a single positive semi-definite kernel matrix. Convenient parameterization has
allowed an abundance of fast algorithms for learning the kernel matrix [23, 26, 45, 47], and sampling
[2, 42, 50]. SR distributions are a fascinating and elegant probabilistic family whose applicability in
machine learning is still an emerging topic [17, 35, 43, 48].

SLC polynomials. Gurvits introduced SLC polynomials a decade ago [30] and studied their con-
nection to discrete convex geometry. Recently this connection was significantly developed [10, 5]
by establishing that matroids, and more generally M-convex sets, are characterized by the strong
log-concavity of their generating polynomial. This is in contrast to SR, for which it is known that
some matroids have generating polynomials that are not SR [9].

Log-submodular distributions. Distributions over subsets that are log-submodular (or supermod-
ular) are amenable to mode finding and variational inference with approximation guarantees, by
exploiting the optimization properties of submodular functions [20–22]. Theoretical bounds on
sampling time require additional assumptions [29]. Iyer and Bilmes [34] analyze inference for
submodular distributions, establishing polynomial approximation bounds.

MCMC samplers and mixing time. The seminal works [18, 19] offer two tools for obtaining
mixing time bounds for Markov chains: lower bounding the spectral gap, or log-Sobolev constant.
These techniques have been successfully deployed to obtain mixing time bounds for homogenous SR
distributions [2], general SR distributions [42], and recently homogenous SLC distributions [5].

2 Background and setup

Notation. We write [n] = {1, . . . , n}, and denote by 2[n] the power set {S | S ⊆ [n]}. For any
variable u, write ∂u to denote ∂

∂u ; in case u = zi, we often abbreviate further by writing ∂i instead
of ∂zi . For S ⊆ [n] and α ∈ Nn let 1S ∈ {0, 1}n denote the binary indicator vector of S, and
define |α| =

∑n
i=1 αi. We also write variously ∂Sz =

∏
i∈S ∂i and ∂αz =

∏
i∈[n] ∂

αi
i where αi = 0

means we do not take any derivatives with respect to zi. We let zS and zα denote the monomials∏
i∈S zi and

∏n
i=1 z

αi
i respectively. For K = R or R+ we write K[z1, . . . , zn] to denote the set of

all polynomials in the variables z = (z1, . . . , zn) whose coefficients belong to K. A polynomial is
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said to be d-homogeneous if it is the sum of monomials all of which are of degree d. Finally, for a set
X we shall minimize clutter by using X ∪ i and X \ i to denote X ∪ {i} and X \ {i} respectively.

SLC distributions. We consider distributions π : 2[n] → [0, 1] on the subsets of a ground set [n].
There is a one-to-one correspondence between such distributions, and their generating polynomials

fπ(z) :=
∑

S⊆[n]
π(S)

∏
i∈S

zi =
∑

S⊆[n]
π(S)zS . (1)

The central object of interest in this paper is the class of strongly log-concave distributions, which is
defined by imposing certain log-concavity requirements on the corresponding generating polynomials.
Definition 1. A polynomial f ∈ R+[z1, . . . , zn] is strongly log-concave (SLC) if every derivative of
f is log-concave. That is, for any α ∈ Nn either ∂αf = 0, or the function log(∂αf(z)) is concave
at all z ∈ Rn+. We say a distribution π is strongly log-concave if its generating polynomial fπ is
strongly log-concave; we also say π is d-homogeneous if fπ is d-homogeneous.

There are many examples of SLC distributions; we note a few important ones below.
– Determinantal point processes [39, 27, 38, 41], and more generally, Strongly Rayleigh (SR)

distributions [8, 17, 43, 35].
– Exponentiated (for exponents in [0, 1]) homogeneous SR distributions [49, 5].
– The uniform distribution on the independent sets of a matroid [4].

SR distributions satisfy several strong negative dependence properties (e.g., log-submodularity and
negative association). The fact that SLC is a strict superset of SR suggests that SLC distributions
possess some weaker negative dependence properties. These properties will play a crucial role in the
two fundamental tasks that we study in this paper: sampling and mode finding.

Sampling. Our first task is to efficiently draw samples from an SLC distribution π. To that end, we
seek to develop Markov Chain Monte Carlo (MCMC) samplers whose mixing time (see Section 4 for
definition) can be well-controlled. For homogeneous π, the breakthrough work of Anari et al. [5]
provides the first analysis of fast-mixing for a simple Markov chain called Base Exchange Walk;
this analysis is further refined in [15]. Base Exchange Walk is defined as follows: if currently
at state S ⊆ [n], remove an element i ∈ S uniformly at random. Then move to R ⊃ S \ {i} with
probability proportional to π(R). This describes a transition kernel Q(S,R) for moving from S to R.
We build on these works to obtain the first mixing time bounds for sampling from general (i.e., not
necessarily homogeneous) SLC distributions (Section 4).

Mode finding. Our second main goal is optimization, where we consider the more general task of
finding a mode of an SLC distribution subject to a cardinality constraint. This task involves solving
max|S|≤d π(S). This task is known to be NP-hard even for SR distributions; indeed, the maximum
volume subdeterminant problem [14] is a special case. We consider a more practical approach based
on observing that SLC distributions satisfy a relaxed notion of log-submodularity, which enables us
to adapt simple greedy algorithms.

Before presenting the details about sampling and optimization, we need to first establish some key
theoretical properties of general SLC distributions. This is the subject of the next section.

3 Theoretical tools for general SLC polynomials

In this technical section we develop the theory of strong log-concavity by detailing several transfor-
mations of an SLC polynomial f that preserve strong log-concavity. Such closure properties can be
essential for proving the SLC property, or for developing algorithmic results. Due to the correspon-
dence between distributions on 2[n] and their generating polynomials, each statement concerning
polynomials can be translated into a statement about probability distributions. The forthcoming
results assume polynomials that are supported on the independent sets of a matroid. This can be
viewed as a minor technical assumption since, to the best of our knowledge, all known SLC polyno-
mials are supported on the independent sets of a matroid. A fundamental correspondence between
homogenous SLC distributions and bases of a matroid was observed in [10], however it remains an
open question to precisely understand this relationship for non-homogenous SLC polynomials. The
following theorem is a crucial stepping stone to sampling from non-homogeneous SLC distributions,
and to sampling with cardinality constraints.
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Theorem 2. Let f =
∑
S⊆[n] cSz

S ∈ R+[z1, . . . , zn] be SLC, and suppose the support of the sum is
the collection of independent sets of a rank d matroid. Then for any k ≤ d the following polynomial
is SLC:

Hkf(z, y) =
∑
|S|≤k

cS
(k −|S|)!

zSyk−|S|.

The above operation is also referred to as scaled homogenization, since the resulting polynomial
is homogeneous and there is an added 1/(k −|S|)! factor. In fact, we may extend Theorem 2 to
allowing the user to add an additional exponentiating factor:

Theorem 3. Let f =
∑
S⊆[n] cSz

S ∈ R+[z1, . . . , zn] be SLC, and suppose the support of the sum
is the collection of independent sets of a rank d matroid. Then for 0 ≤ α ≤ 1 and any k ≤ d the
following polynomial is SLC:

Hk,αf(z, y) =
∑
|S|≤k

cαS
(k −|S|)!

zSyk−|S|.

Notably, Theorem 3 fails for all α > 1. For a proof of this see Appendix A.2.

Next, we show that polarization preserves strong log-concavity. Polarization essentially means to
replace a variable with a higher power by multiple “copies”, each occurring only with power one, in
a way that the resulting polynomial is symmetric (or permutation-invariant) in those copies. This is
achieved by averaging over elementary symmetric polynomials. Formally, the polarization of the
polynomial f =

∑
|S|≤d cSz

Syd−|S| ∈ R[z1, . . . , zn, y] is defined to be

Πf(z1, . . . , zn, y1, . . . , yd) =
∑
|S|≤d

cSz
S

(
d

|S|

)−1
ed−|S|(y1, . . . , yd)

where ek(y1, . . . , yd) is the kth elementary symmetric polynomial in d variables. The polarization
Πf has the following three properties:

1. It is symmetric in the variables y1, . . . , yd;
2. Setting y1 = . . . = yd = y recovers f ;

3. Πf is multiaffine, and hence the generating polynomial of a distribution on 2[n+d].

Closure under polarization, combined with the homogenization results (Theorems 2 and 3) allows
non-homogeneous distributions to be transformed into homogenous ones. This allows general SLC
distributions to be transformed into homogenous SLC distributions for which fast mixing results are
known [5]. How to work backwards to obtain samples from the original distribution will be the topic
of the next section.

Theorem 4. 1 Let f =
∑
S⊆[n] cSz

Syd−|S| ∈ R+[z1, . . . , zn, y] be SLC, and the support of the sum
is the collection of independent sets of a rank d matroid. Then the polarization Πf is SLC.

Putting all of the preceding results together we obtain the following important corollary. It is this
observation that will allow us to do mode finding for SLC distributions and exponentiated, cardinality
constrained SLC distributions.

Corollary 5. Let f =
∑
S⊆[n] cSz

S ∈ R+[z1, . . . , zn] be SLC, and suppose the support of the sum
is the collection of independent sets of a rank d matroid. Then Π(Hk,αf) is SLC for any k ≤ d and
0 ≤ α ≤ 1.

In Appendix A.4 we also show that SLC distributions are closed under conditioning on a fixed set
size. We mention those results since they may be of independent interest, but omit them from the
main text since we do not use them further in this paper.

1This result was independently discovered by Brändén and Huh [10].
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4 Sampling from strongly log-concave distributions

In this section we outline how to use the SLC closure results from Section 3 to build a sampling
algorithm for general SLC distributions and prove mixing time bounds. Recall that we are considering
a probability distribution π : 2[n] → [0, 1] that is strongly log-concave. The mixing time of a Markov
chain (Q, π) started at S0 is tS0

(ε) = min{t ∈ N |
∥∥Qt(S0, ·)− π

∥∥
1
≤ ε} where Qt is the

t-step transition kernel. For the remainder of this section we consider the distribution ν where
ν(S) ∝ π(S)α1{|S| ≤ d} for 0 ≤ α ≤ 1, and d ∈ [n]. In particular, this includes π itself. The power
α allows to vary the degree of diversity induced by the distribution: α < 1 smooths ν, making it less
diverse. Indeed, as α → 0, ν converges to the uniform distribution, which promotes no diversity.
Meanwhile α > 1 (although outside the scope of our results) makes ν more pointy, with ν collapsing
to a point mass as α→∞.

Our strategy is as follows: we first “extend” ν to a distribution νsh over subsets of size |n| of [n+ d]
to obtain a homogeneous distribution. If we can sample from νsh, then we can extract a sample
S ⊆ [n] of a scaled version of ν by simply restricting a sample T ∼ νsh to T ∩ [n]. If ν was SR, then
νsh would also be SR, and a fast sampler follows from this observation [42]. But, for general SLC
distributions (and their powers), νsh is not SLC, and deriving a sampler is more challenging.

To still enable the homogenization strategy, we instead derive a carefully scaled version of a homoge-
neous version of ν that, as we prove, is homogeneneous and SLC and hence tractable. We use this
rescaled version as a proposal distribution in a sampler for νsh. To obtain an appropriately scaled
extended, homogeneous variant ν, we first translate Corollary 5 into probabilistic language.
Theorem 6. Suppose that the support of the sum in the generating polynomial of ν is the collection
of independent sets of a rank d matroid. Then for any k ≤ d the following probability distribution on
2[n+k] is SLC:

Hkν(S) ∝


(

k
|S∩[n]|

)−1 ν(S∩[n])
(k−|S∩[n]|)! , for all S ⊆ [n+ k] such that|S| = k

0, otherwise.

Proof. Observe that the generating polynomial ofHkν is Π(Hkf) where f denotes the generating
polynomial of ν. The result follows immediately from Corollary 5.

The ultimate proposal that we use is notHkν, but a modified version µ that better aligns with ν:

µ(S) ∝
(
d

e

)d−|S∩[n]|
Hdν(S).

Proposition 7. If ν is SLC, then µ is SLC.

Proof. Lemma 39 in the Appendix says that strong log-concavity is preserved under linear transforma-
tions of the coordinates. This implies that µ is SLC since its generating polynomial is Π((Hdf) ◦ T )
where f is the generating polynomial of ν and T is the linear transform defined by: y 7→ d

ey and
zi 7→ zi for i = 1 . . . , n.

Importantly, since µ is homogeneous and SLC, the Base Exchange Walk for µ mixes rapidly.
Let Q denote the Markov transition kernel for Base Exchange Walk on 2[n+d] for µ. We use Q as
a proposal, and then compute the appropriate acceptance probability to obtain a chain that mixes to
the symmetric homogenization νsh of ν. The target νsh is a d-homogenous distribution on 2[n+d]:

νsh(S) ∝
(

d∣∣S ∩ [n]
∣∣)−1ν(S ∩ [n]), for all S ⊆ [n+ d] such that|S| = d.

A crucial property of νsh is that its marginalization over the “dummy” variables yields ν, i.e.,∑
T :T∩[n]=S νsh(T ) = ν(S). Therefore, after obtaining a sample T ∼ νsh one then obtains a sample

from ν by computing T ∩ [n].
It is a simple computation to show that the acceptance probabilities in Algorithm 1 are indeed the
Metropolis-Hastings acceptance probabilities for sampling from νsh using the proposal Q. Therefore
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Algorithm 1 Metropolis-Hastings sampler for νsh with proposal Q

1: Initialize S ⊆ [n+ d]
2: while not mixed do
3: Set k ←

∣∣S ∩ [n]
∣∣

4: Propose move T ∼ Q(S, ·)
5: if

∣∣T ∩ [n]
∣∣ = k − 1 then

6: R← T with probability min{1, ed (d− k + 1)}, otherwise stay at S
7: if

∣∣T ∩ [n]
∣∣ = k then

8: R← T
9: if

∣∣T ∩ [n]
∣∣ = k + 1 then

10: R← T with probability min{1, de
1

(d−k)}, otherwise stay at S

the chain mixes to νsh. We obtain the following mixing time bound, recalling that the mixing time of
(Q, νsh) is tS0(ε) = min{t ∈ N |

∥∥Qt(S0, ·)− νsh
∥∥
1
≤ ε}.

Theorem 8. For d ≥ 8 the mixing time of the chain in Algorithm 1 started at S0 satisfies the bound

tS0
(ε) ≤ 1

e
√

2π
d5/22d

(
log log

{(
d

|S0|

)
1

ν(S0)

}
+ log

1

2ε2

)
.

A similar bound holds for d < 8. We note that although the mixing time bound scales poorly in d, the
bound has the interesting property of being independent of the ground set size n. Furthermore, the
bound is meaningful since the total number of subsets of n objects of size d is

∑d
j=0

(
n
j

)
= Ω(2n)

if d ≥ n/2 −
√
n and equal to Ω(2n/2) if d ≤ n/2 −

√
n, [36]. So the mixing time bound is

exponentially better than brute force. Later we will detail experiments that suggest that this bound is
loose in d.

Efficient implementation. It is sufficient to only maintain R = S ∩ [n] since νsh is exchangeable
in the variables {n + 1, . . . , n + d}. Sampling T ∼ Q(S, ·) involves dropping i ∈ S uniformly at
random, then computing the probability of µ((S \ i)∪j) for each j not in S \ i. However again, by the
exchangeability of µ in {n+1, . . . , n+d} this probability is the same for each j in {n+1, . . . , n+d}
and so only needs to be performed for one such j.

5 Maximization of weakly log-submodular functions

In this section we explore the negative dependence properties of SLC functions (unnormalized SLC
distributions) through the lens of submodularity: a well known negative dependence property [8].
In an earlier version of this paper we conjectured that SLC functions have the strong property of
log-submodularity. This conjecture has been disproved in a recent note [28].
Proposition 9 (Propositions 1 and 2 [28]). The the distribution with generating polynomial

f(x, y, z) =
1

22

(
4 + 3(x+ y + z) + 3(xy + xz + yz)

)
is SLC but not log-submodular.

In response, we introduce a new notion of weak submodularity and show that any function ν such
thatHdν is SLC is weakly log-submodular. Finally, we prove that a distorted greedy optimization
procedure leads to optimization guarantees for weak (log-)submodular functions for the cardinality
constrained problem OPT ∈ arg max|S|≤k ν(S). Appendix C contains similar results for constrained
greedy optimization of increasing weak (log-)submodular functions and unconstrained double greedy
optimization of non-negative (log-)submodular functions.

Definition 10. We call a function ρ : 2[n] → R γ-weakly submodular if for any S ⊆ [n] and
i, j ∈ [n] \ S with i and j not equal, we have

ρ(S) + ρ(S ∪ {i, j}) ≤ γ + ρ(S ∪ i) + ρ(S ∪ j).
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We say ν : 2[n] → R+ is γ-weakly log-submodular if log ν is (log γ)-weakly submodular.
When γ = 0 this reduces to the classic notion of submodularity. Note carefully that our notion of
weak submodularity differs from a notion of weak submodularity that already appears in the literature
[16, 31, 37]. Building on a result by Brändén and Huh [10], we prove the following result.
Theorem 11. Any non-negative function ρ : 2[n] → R+ with support contained in {S ⊆ [n] : |S| ≤
d} and generating polynomial f such thatHdf is strongly log-concave is γ-weakly log-submodular
for γ = 4

(
1− 1

d

)
.

Next we show how weak log-submodularity gives a path to optimizing strongly log-concave functions.
Consider ρ : 2[n] → R, assumed to be γ-weakly submodular. Note in particular we do not assume
that ρ is non-negative. This is important since we are interested in applying this procedure to the
logarithm of a distribution, which need not be non-negative. Define ce = max{ρ([n]\e)−ρ([n]), 0},
and c(S) =

∑
e∈S ce. We use the convention that c(∅) = 0. Then we may decompose ρ = η − c

where η = ρ+ c. Note that η is γ-weakly submodular and c is a non-negative function.

We will extend the distorted greedy algorithm by [25, 31] to our notion of weak submodularity. To
do so, we introduce the distorted objective Φi(S) = (1 − 1/k)k−iη(S) − c(S) for i = 0, . . . k.
The distorted greedy algorithm greedily builds a set R of size at most d by forming a sequence
∅ = S0, S1, . . . , Sk−1, Sk = R such that Si+1 is formed by adding the element ei ∈ [n] to Si that
maximizes Φi+1(Si ∪ ei)− Φi+1(Si) so long as the increment is positive.

Algorithm 2 Distorted greedy weak submodular constrained maximization of ν = η − c
1: Let S0 = ∅
2: for i = 0, . . . , k − 1 do
3: Set ei = arg maxe∈[n] Φi+1(Si ∪ e)− Φi+1(Si)
4: if Φi+1(Si ∪ ei)− Φi+1(Si) > 0 then
5: Si+1 ← Si ∪ ei
6: else Si+1 ← Si
7: return R = Sk

Theorem 12. Suppose ρ : 2[n] → R is γ-weakly submodular and ρ(∅) = 0. Then the solution
R = Sk obtained by the distorted greedy algorithm satisfies

ρ(R) = η(R)− c(R) ≥
(

1− 1

e

)(
η(OPT)− 1

2
`(`− 1)γ

)
− c(OPT),

where OPT ∈ arg max|S|≤k ρ(S) and ` := |OPT| ≤ k.

Note any weakly submodular function can be brought into the required form by subtracting ρ(∅) if it
is non-zero. If ν is weakly log-submodular, we can decompose ν = η/c such that log η and log c
perform the same role as η and c did in the weakly submodular setting. Then by applying Theorem
12 to log ν we obtain the following corollary.

Corollary 13. Suppose ν : 2[n] → R+ is γ-weakly log-submodular and ν(∅) = 1. Then the solution
R = Sk obtained by the distorted greedy algorithm satisfies

ν(R) =
η(R)

c(R)
≥ γ−

1
2 `(`−1)(1−1/e)

η(OPT)1−1/e

c(OPT)
.

6 Experiments

In this section we empirically evaluate the mixing time of Algorithm 1. We use the standard potential
scale reduction factor metric to measure convergence to the stationary distribution [11]. The method
involves running several chains in parallel and computing the average variance within each chain and
between the chains. The PSRF score is the ratio of the between variance over the within variance and
is usually above 1. When the PSRF score is close to 1 then the chains are considered to be mixed. In
all of our experiments we run three chains in parallel and declare them to be mixed once the PSRF
score drops below 1.05.

Figure 1 considers the results of running the Metropolis-Hastings algorithm on a sequence of
problems with different cardinality constraints d. In each case we considered the distribution
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Figure 1: Empirical mixing time analysis for sampling a ground set of size n = 250 and various
cardinality constraints d, (a) the PSRF score for each set of chains, (b) the approximate mixing time
obtained by thresholding at PSRF equal to 1.05.
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Figure 2: (a,b) Empirical mixing time analysis for sampling a set of size at most d = 40 for varying
ground set sizes, (a) the PSRF score for each set of chains, (b) the approximate mixing time obtained
by thresholding at PSRF equal to 1.05, (c) comparison of Algorithm 1 and a M-H algorithm where
the proposal is built usingHdν: d = 100 and n = 250.

ν(S) ∝
√

det(LS)1{|S| ≤ d} where L is a randomly generated 250× 250 PSD matrix. Here LS
denotes the|S| ×|S| submatrix of L whose indices belong to S. These simulations suggest that the
mixing time grows linearly in d for a fixed n.

Figure 2 considers the results of running the Metropolis-Hastings algorithm on a sequence of
problems with different ground set sizes. In each case we considered the distribution ν(S) ∝√

det(LS)1{|S| ≤ 40} where L is a randomly generated PSD matrix where of appropriate size n.
These simulations suggest that the mixing time grows sublinearly in n for a fixed d.

It is important to know whether the mixing time is robust to different spectra σL of L. We consider
three cases, (i) smooth decay σL = [n], (ii) a single large eigenvalue σL = {n, (n − 1)/2, (n −
2)/2, . . . , 2/2, 1/2}, and (iii) one fifth of the eigenvalues are equal to n, the rest equal to 1/n. Note
that due to normalization, multiplying the spectrum by a constant does not affect the resulting
distribution. The results for (i) are the content of Figures 1 and 2 (a,b). Figures 3 and 4 show the
results for (ii) and figures 5 and 6 show the results for (iii). Figures 3-6 can be found in Appendix D.

Finally, we address the question of why the proposal distribution was built using the particular choice
of µ we made. Indeed one may use Base Exchange Walk for any homogenous distribution on
2[n] to build a sampler, one simply needs to compute the appropriate acceptance probabilities. We
restrict our attention to SLC distributions so as to be able to build on the recent mixing time results
for homogenous SLC distributions. An obvious alternative to using µ to build the proposal is to use
Hdν. Figure 2(c) compares the empirical mixing time of these two chains. The strong empirical
improvement justifies our choice of adding the extra rescaling factor d/e.
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7 Discussion

In this paper we introduced strongly log-concave distributions as a promising class of models for
diversity. They have flexibility beyond that of strongly Rayleigh distributions, e.g., via exponentiated
and cardinality constrained distributions (which do not preserve the SR property). We derived a
suite of MCMC samplers for general SLC distributions and associated mixing time bounds. For
optimization, we showed that SLC distributions satisfy a weak submodularity property and used this
to prove mode finding guarantees.

Still, many open problems remain. Although the mixing time bound has the interesting property of not
directly depending on n, the O(2d) dependence seems quite conservative compared to the empirical
mixing time results. An important future direction would be to close this gap. More fundamentally,
the negative dependence properties of SLC distributions need to be explored in greater detail. Finally,
in order for SLC models to be deployed in practice the user needs a way to learn a good SLC model
from data, a non-trivial task in general since SLC distribution are non-parametric. However, both
exponentiation and cardinality constraint add a single parameter that must be learned. We leave the
question of how best to learn these parameters as an important topic for future work.
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