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Abstract

Magnetoencephalography and electroencephalography (M/EEG) can reveal neu-1

ronal dynamics non-invasively in real-time and are therefore appreciated methods in2

medicine and neuroscience. Recent advances in modeling brain-behavior relation-3

ships have highlighted the effectiveness of Riemannian geometry for summarizing4

the spatially correlated time-series from M/EEG in terms of their covariance. How-5

ever, after artefact-suppression, M/EEG data is often rank deficient which limits6

the application of Riemannian concepts. In this article, we focus on the task of7

regression with rank-reduced covariance matrices. We study two Riemannian ap-8

proaches that vectorize the M/EEG covariance between-sensors through projection9

into a tangent space. The Wasserstein distance readily applies to rank-reduced10

data but lacks affine-invariance. This can be overcome by finding a common sub-11

space in which the covariance matrices are full rank, enabling the affine-invariant12

geometric distance. We investigated the implications of these two approaches in13

synthetic generative models, which allowed us to control estimation bias of a linear14

model for prediction. We show that Wasserstein and geometric distances allow15

perfect out-of-sample prediction on the generative models. We then evaluated16

the methods on real data with regard to their effectiveness in predicting age from17

M/EEG covariance matrices. The findings suggest that the data-driven Riemannian18

methods outperform different sensor-space estimators and that they get close to19

the performance of biophysics-driven source-localization model that requires MRI20

acquisitions and tedious data processing. Our study suggests that the proposed21

Riemannian methods can serve as fundamental building-blocks for automated22

large-scale analysis of M/EEG.23

1 Introduction24

Magnetoencephalography and electroencephalography (M/EEG) measure brain activity with mil-25

lisecond precision from outside the head [20]. Both methods are non-invasive and expose rhythmic26

signals induced by coordinated neuronal firing with characteristic periodicity between minutes and27

milliseconds [9]. These so-called brain-rhythms can reveal cognitive processes as well as health28

status and are quantified in terms of the spatial distribution of the power spectrum over the sensor29

array that samples the electromagnetic fields around the head [3].30

Statistical learning from M/EEG commonly relies on covariance matrices estimated from band-pass31

filtered signals to capture the characteristic scale of the neuronal events of interest [7, 19]. However,32

covariance matrices do not live in an Euclidean space but a Riemannian manifold. Fortunately,33

Riemannian geometry offers a principled mathematical approach to use standard linear learning34

algorithms such as logistic or ridge regression that work with Euclidean geometry. This is achieved by35

projecting the covariance matrices into a vector space equipped with an Euclidean metric, the tangent36
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space. The projection is defined by the Riemannian metric, for example the geometric affine-invariant37

metric [5] or the Wasserstein metric [6]. As a result, the prediction error can be substantially reduced38

when learning from covariance matrices using Riemannian methods [39, 12].39

In practice, M/EEG data is often provided in a rank deficient form by platform operators but40

also curators of public datasets [27, 2]. Its contamination with high-amplitude environmental41

electromagnetic artefacts often render aggressive offline-processing mandatory to yield intelligible42

signals. Commonly used tools for artefact-suppression project the signal linearly into a lower43

dimensional subspace that is hoped to predominantly contain brain signals [34, 36, 29]. But this44

necessarily leads to inherently rank-deficient covariance matrices for which no affine-invariant45

distance is defined. One remedy may consist in using anatomically informed source localization46

techniques that can typically deal with rank deficiencies [14] and can be combined with source-level47

estimators of neuronal interactions [26]. However, such approaches require domain-specific expert48

knowledge, imply processing steps that are hard to automate (e.g. anatomical coregistration) and49

yields pipelines in which excessive amounts of preprocessing are not under control of the predictive50

model.51

In this work, we focus on regression with rank-reduced covariance matrices. We propose two52

Riemannian methods for this problem. A first approach uses a Wasserstein metric that can handle53

rank-reduced matrices, yet is not affine-invariant. In a second approach, matrices are projected into a54

common subspace in which affine-invariance can be provided. We show that both metrics can achieve55

perfect out-of-sample predictions in a synthetic generative model. Based on the SPoC method [13],56

we then present a supervised and computationally efficient approach to learn subspace projections57

informed by the target variable. Finally, we apply these models to the problem of inferring age58

from brain data [28, 26] on 595 MEG recordings from the Cambridge Center of Aging (Cam-CAN,59

http://cam-can.org) covering an age range from 18 to 88 years [35]. We compare the data-driven60

Riemannian approaches to simpler methods that extract power estimates from the diagonal of the61

sensor-level covariance as well as the cortically constrained minimum norm estimates (MNE) which62

we use to project the covariance into a subspace defined by anatomical prior knowledge.63

Notations We denote scalars s ∈ R with regular lowercase font, vectors s = [s1, . . . , sN ] ∈ RN64

with bold lowercase font and matrices S ∈ RN×M with bold uppercase fonts. IN is the identity65

matrix of size N . [·]> represents vector or matrix transposition. The Frobenius norm of a matrix66

will be denoted by ||M ||2F = Tr(MM>) =
∑
|Mij |2 with Tr(·) the trace operator. rank(M) is67

the rank of a matrix. The l2 norm of a vector x is denoted by ||x||22 =
∑
x2
i . We denote byMP68

the space of P × P square real-valued matrices, SP = {M ∈ MP ,M
> = M} the subspace of69

symmetric matrices, S++
P = {S ∈ SP ,x>Sx > 0,∀x ∈ RP } the subspace of P × P symmetric70

positive definite matrices, S+
P = {S ∈ SP ,x>Sx ≥ 0,∀x ∈ RP } the subspace of P ×P symmetric71

semi-definite positive (SPD) matrices, S+
P,R = {S ∈ S+

P , rank(S) = R} the subspace of SPD72

matrices of fixed rank R. All matrices S ∈ S++
P are full rank, invertible (with S−1 ∈ S++

P ) and73

diagonalizable with real strictly positive eigenvalues: S = UΛU> with U an orthogonal matrix of74

eigenvectors of S (UU> = IP ) and Λ = diag(λ1, . . . , λn) the diagonal matrix of its eigenvalues75

λ1 ≥ . . . ≥ λn > 0. For a matrixM , diag(M) ∈ RP is its diagonal. We also define the exponential76

and logarithm of a matrix: ∀S ∈ S++
P , log(S) = U diag(log(λ1), . . . , log(λn)) U> ∈ SP , and77

∀M ∈ SP , exp(M) = U diag(exp(λ1), . . . , exp(λn)) U> ∈ S++
P . N (µ, σ2) denotes the normal78

(Gaussian) distribution of mean µ and variance σ2. Finally, Es[x] represents the expectation and79

Vars[x] the variance of any random variable x w.r.t. their subscript s when needed.80

Background and M/EEG generative model MEG or EEG data measured on P channels are81

multivariate signals x(t) ∈ RP . For each subject i = 1 . . . N , the data are a matrix Xi ∈ RP×T82

where T is the number of time samples. For the sake of simplicity, we assume that T is the same for83

each subject, although it is not required by the following method. The linear instantaneous mixing84

model is a valid generative model for M/EEG data due to the linearity of Maxwell’s equations [20].85

Assuming the signal originates from Q locations in the brain, at any time t, the measured signal86

vector of subject i = 1 . . . N is a linear combination of the Q source patterns asj ∈ RP , j = 1 . . . Q:87

xi(t) = As si(t) + ni(t) , (1)
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where the patterns form the time and subject-independent source mixing matrixAs = [as1, . . . ,a
s
Q] ∈88

RP×Q, si(t) ∈ RQ is the source vector formed by the Q time-dependent sources amplitude, ni(t) ∈89

RP is a contamination due to noise. Note that the mixing matrixAs and sources si are not known.90

Following numerous learning models on M/EEG [7, 13, 19], we consider a regression setting where91

the target yi is a function of the power of the sources, denoted pi,j = Et[s2
i,j(t)]. Here we consider92

the linear model:93

yi =

Q∑
j=1

αjf(pi,j) , (2)

where α ∈ RQ and f : R+ → R is increasing. A first approach consists in estimating the94

sources before fitting such a linear model, for example using the Minimum Norm Estimator (MNE)95

approach [21]. This boils down to solving the so-called M/EEG inverse problem which requires96

costly MRI acquisitions and tedious processing [3]. A second approach is to work directly with97

the signals Xi. To do so, models that enjoy some invariance property are desirable: these models98

are blind to the mixing As and working with the signals x is similar to working directly with the99

sources s. Riemannian geometry is a natural setting where such invariance properties are found [15].100

Besides, under Gaussian assumptions, model (1) is fully described by second order statistics. This101

amounts to working with covariance matrices, Ci = XiX
>
i /T , for which Riemannian geometry is102

well developed. One specificity of M/EEG data is however that signals used for learning have been103

rank-reduced, leading to rank-deficient covariance matrices, Ci ∈ S+
P,R, for which specific matrix104

manifolds need to be considered.105

2 Theoretical background to model invariances on S+
P,R manifold106

2.1 Riemannian matrix manifolds107

Figure 1: Tangent Space, exponential
and logarithm on Riemannian manifold
illustration.

Endowing a continuous setM of square matrices with a108

metric, that defines a local Euclidean structure, gives a109

Riemannian manifold with a solid theoretical framework.110

LetM ∈M, aK-dimensional Riemannian manifold. For111

any matrix M ′ ∈ M, as M ′ → M , ξM = M ′ −M112

belongs to a vector space TM of dimension K called the113

tangent space atM .114

The Riemannian metric defines an inner product 〈·, ·〉M :115

TM × TM → R for each tangent space TM , and as a con-116

sequence a norm in the tangent space ‖ξ‖M =
√
〈ξ, ξ〉M .117

Integrating this metric between two points gives a geodesic118

distance d :M×M→ R+. It allows to define means on119

the manifold:120

Meand(M1, . . . ,MN ) = arg min
M∈M

N∑
i=1

d(Mi,M)2 . (3)

The manifold exponential at M ∈ M, denoted ExpM , is a smooth mapping from TM toM that121

preserves local properties. In particular, d(ExpM (ξM ),M) = ‖ξM‖M +o(‖ξM‖M ). Its inverse is122

the manifold logarithm LogM fromM to TM , with ‖LogM (M ′)‖M = d(M ,M ′)+o(d(M ,M ′))123

forM ,M ′ ∈M. Finally, since TM is Euclidean, there is a linear invertible mapping φM : TM →124

RK such that for all ξM ∈ TM , ‖ξM‖M = ‖φM (ξM )‖2. This allows to define the vectorization125

operator at M ∈ M, PM : M → RK , defined by PM (M ′) = φM (LogM (M ′)). Fig. 1126

illustrates these concepts.127

The vectorization explicitly captures the local Euclidean properties of the Riemannian manifold:128

d(M ,M ′) = ‖PM (M ′)‖2 + o(‖PM (M ′)‖2) (4)
Hence, if a set of matrices M1, . . . ,MN is located in a small portion of the manifold, denoting129

M = Meand(M1, . . . ,MN ), it holds:130

d(Mi,Mj) ' ‖PM (Mi)− PM (Mj)‖2 (5)

For additional details on matrix manifolds, see [1], chap. 3.131
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Regression on matrix manifolds The vectorization operator is key for machine learning ap-132

plications: it projects points in M on RK , and the distance d on M is approximated by the133

distance `2 on RK . Therefore, those vectors can be used as input for any standard regression134

technique, which often assumes a Euclidean structure of the data. More specifically, through-135

out the article, we consider the following regression pipeline. Given a training set of samples136

M1, . . . ,MN ∈ M and target continuous variables y1, . . . , yN ∈ R, we first compute the mean137

of the samples M = Meand(M1, . . . ,MN ). This mean is taken as the reference to compute the138

vectorization. After computing v1, . . . ,vN ∈ RK as vi = PM (Mi), a linear regression technique139

(e.g. ridge regression) with parameters β ∈ RK can be employed assuming that yi ' v>i β.140

2.2 Distances and invariances on positive matrices manifolds141

We will now introduce two important distances: the geometric distance on the manifold S++
P (also142

known as affine-invariant distance), and the Wasserstein distance on the manifold S+
P,R.143

The geometric distance Seeking properties of covariance matrices that are invariant by linear144

transformation of the signal, leads to endow the positive definite manifold S++
P with the geometric145

distance [15]:146

dG(S,S′) = ‖ log(S−1S′)‖F =

[
P∑
i=1

log2 λk

] 1
2

(6)

where λk, k = 1 . . . P are the real eigenvalues of S−1S′. The affine invariance property writes:147

ForW invertible, dG(W>SW ,W>S′W ) = dG(S,S′) . (7)

This distance gives a Riemannian-manifold structure to S++
P with the inner product 〈P ,Q〉S =148

Tr(PS−1QS−1) [15]. The corresponding manifold logarithm at S is LogS(S′) =149

S
1
2 log

(
S−

1
2S′S−

1
2

)
S

1
2 and the vectorization operator PS(S′) of S′ w.r.t. S: PS(S′) =150

Upper(S−
1
2 LogS(S′)S−

1
2 ) = Upper(log(S−

1
2S′S−

1
2 )), where Upper(M) ∈ RK is the vector-151

ized upper-triangular part ofM , with unit weights on the diagonal and
√

2 weights on the off-diagonal,152

and K = P (P + 1)/2.153

The Wasserstein distance Unlike S++
P , it is hard to endow the S+

P,R manifold with a distance154

that yields tractable or cheap-to-compute logarithms [37]. This manifold is classically viewed as155

S+
P,R = {YY>|Y ∈ RP×R∗ }, where RP×R∗ is the set P × R matrices of rank R [25]. This view156

allows to write S+
P,R as a quotient manifold RP×R∗ /OR, where OR is the orthogonal group of size R.157

This means that each matrix YY> ∈ S+
P,R is identified with the set {YQ|Q ∈ OR}.158

It has recently been proposed [30] to use the standard Frobenius metric on the total space RP×R∗ .159

This metric in the total space is equivalent to the Wasserstein distance [6] on S+
P,R:160

dW (S,S′) =
[
Tr(S) + Tr(S′)− 2Tr((S

1
2S′S

1
2 )

1
2 )
] 1

2

(8)

This provides cheap-to-compute logarithms:161

LogY Y >(Y ′Y ′>) = Y ′Q∗ − Y ∈ RP×R∗ , (9)

where UΣV > = Y >Y ′ is a singular value decomposition and Q∗ = V U>. The vectorization162

operator is then given by PY Y >(Y ′Y ′>) = vect(Y ′Q∗ − Y ) ∈ RPR, where the vect of a matrix163

is the vector containing all its coefficients.164

This framework offers closed form projections in the tangent space for the Wasserstein distance,165

which can be used to perform regression. Importantly, since S++
P = S+

P,P , we can also use this166

distance on the positive definite matrices. This distance possesses the orthogonal invariance property:167

168

ForW orthogonal, dW (W>SW ,W>S′W ) = dW (S,S′) . (10)
This property is weaker than the affine invariance of the geometric distance (7). A natural question169

is whether such an affine invariant distance also exists on this manifold. Unfortunately, it is shown170

in [8] that the answer is negative for R < P (proof in appendix 6.3).171
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3 Manifold-regression models for M/EEG172

3.1 Generative model and consistency of linear regression in the tangent space of S++
P173

Here, we consider a more specific generative model than (1) by assuming a specific struc-174

ture on the noise. We assume that the additive noise ni(t) = Anνi(t) with An =175

[an1 , . . . ,a
n
P−Q] ∈ RP×(P−Q) and νi(t) ∈ RP−Q. This amounts to assuming that the noise176

is of rank P − Q and that the noise spans the same subspace for all subjects. Denoting A =177

[as1, . . . ,a
s
Q,a

n
1 , . . . ,a

n
P−Q] ∈ RP×P and ηi(t) = [si,1(t), . . . si,Q(t), νi,1(t), . . . , νi,P−Q(t)] ∈178

RP , this generative model can be compactly rewritten as xi(t) = Aηi(t).179

We assume that the sources si are decorrelated and independent from νi: with pi,j = Et[s2
i,j(t)]180

the powers, i.e. the variance over time, of the j-th source of subject i, we suppose Et[si(t)s>i (t)] =181

diag((pi,j)j=1...Q) and Et[si(t)νi(t)>] = 0. The covariances are then given by:182

Ci = AEiA
> , (11)

where Ei = Et[ηi(t)ηi(t)>] is a block diagonal matrix, whose upper Q × Q block is183

diag(pi,1, . . . , pi,Q).184

In the following, we show that different functions f from (2) yield a linear relationship between the185

yi’s and the vectorization of the Ci’s for different Riemannian metrics.186

Proposition 1 (Euclidean vectorization). Assume f(pi,j) = pi,j . Then, the relationship between yi187

and Upper(Ci) is linear.188

Proof. Indeed, if f(p) = p, the relationship between yi and the pi,j is linear. Rewritting eq. (11) as189

Ei = A−1CiA
−>, and since the pi,j are on the diagonal of the upper block of Ei, the relationship190

between the pi,j and the coefficients of Ci is also linear. This means that there is a linear relationship191

between the coefficients ofCi and the variable of interest yi. In other words, yi is a linear combination192

of the vectorization of Ci w.r.t. the standard Euclidean distance.193

Proposition 2 (Geometric vectorization). Assume f(pi,j) = log(pi,j). Denote C =194

MeanG(C1, . . . ,CN ) the geometric mean of the dataset, and vi = PC(Ci) the vectorization of Ci195

w.r.t. the geometric distance. Then, the relationship between yi and vi is linear.196

The proof is given in appendix 6.1. It relies crucially on the affine invariance property that means that197

using Riemannian embeddings of the Ci’s, is equivalent to working directly with the Ei’s.198

Proposition 3 (Wasserstein vectorization). Assume f(pi,j) =
√
pi,j . Assume thatA is orthogonal.199

Denote C = MeanW (C1, . . . ,CN ) the Wasserstein mean of the dataset, and vi = PC(Ci) the200

vectorization of Ci w.r.t. the Wasserstein distance. Then, the relationship between yi and vi is linear.201

The proof is given in appendix 6.2. The restriction to the case where A is orthogonal stems from the202

orthogonal invariance of the Wasserstein distance.203

These propositions show that the relationship between the samples and the variable y is linear in204

the tangent space, motivating the use of linear regression methods (see simulation study in Sec. 4).205

The argumentation of this section relies on the assumption that the covariance matrices are full rank.206

However, this is rarely the case in practice.207

3.2 Learning projections on S++
R208

In order to use the geometric distance on the Ci ∈ S+
P,R, we have to project them on S++

R to make209

them full rank. In the following, we consider a linear operator W ∈ RP×R of rank R which is210

common to all samples (i.e. subjects). For consistency with the M/EEG literature we will refer to rows211

of W as spatial filters. The covariance matrices of ‘spatially filtered’ signals W>xi are obtained212

as: Σi = W>CiW ∈ RR×R. With probability one, rank(Σi) = min(rank(W ), rank(Ci)) = R,213

hence Σi ∈ S++
R . Since theCi’s do not span the same image, applyingW destroys some information.214

We consider two approaches to estimateW .215
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Unsupervised spatial filtering A first strategy is to project the data into a subspace that captures216

most of its variance. This is achieved by Principal Component Analysis (PCA) applied to the averaged217

covariance matrice computed across subjects: WUNSUP = U , where U contains the eigenvectors218

corresponding to the top R eigenvalues of the average covariance matrixC = 1
N

∑N
i=1Ci. This step219

is blind to the values of y and is therefore unsupervised. Note that under the assumption that the time220

series across subjects are independent, the average covariance C is the covariance of the data over221

the full population.222

Supervised spatial filtering We use a supervised spatial filtering algorithm [13] originally de-
veloped for intra-subject Brain Computer Interfaces applications, and adapt it to our cross-person
prediction problem. The filtersW are chosen to maximize the covariance between the power of the
filtered signals and y. Denoting by Cy = 1

N

∑N
i=1 yiCi the weighted average covariance matrix, the

first filter wSUP is given by:

wSUP = arg max
w

w>Cyw

w>Cw
.

In practice, all the other filters inWSUP are obtained by solving a generalized eigenvalue decomposi-223

tion problem (see the proof in Appendix 6.4).224

4 Experiments225

4.1 Simulations226

We start by illustrating Prop. 2. Independent identically distributed covariance matricesS1, . . . ,SN ∈227

S++
P and variables y1, . . . , yN are generated following the above generative model. The matrixA is228

taken as exp(µB) with B ∈ RP×P a random matrix, and µ ∈ R a scalar controlling the distance229

from A to identity (µ = 0 yieldsA = IP ). We use the log function for f to link the source powers230

(i.e. the variance) to the yi’s. Model reads yi =
∑
j αj log(pij) + εi, with εi ∼ N (0, σ2) a small231

additive random perturbation.232

We compare three methods of vectorization: the geometric distance, the Wasserstein distance and233

the non-Riemannian method “log-diag” extracting the log of the diagonals of Ci as features. Note234

that the diagonal of Ci contains the powers of each sensor for subject i. A linear regression model235

is used following the procedure presented in Sec. 2. We take P = 5, N = 100 and Q = 2. We236

measure the score of each method as the average mean absolute error (MAE) obtained with 10-fold237

cross-validation. Fig. 2 displays the scores of each method when the parameters σ controlling the238

noise level and µ controlling the distance from A to Ip are changed. The same experiment with239

f(p) =
√
p yields comparable results, yet with Wasserstein distance performing best and achieving240

perfect out-of-sample prediction when σ → 0 and A is orthogonal.241

4.2 MEG data242

Predicting biological age from MEG on the Cambridge center of ageing dataset In the follow-243

ing, we apply our methods to infer age from brain signals. Age is a dominant driver of cross-person244

variance in neuroscience data and a serious confounder [33]. As a consequence of the globally245

increased average lifespan, ageing has become a central topic in public health that has stimulated246

neuropsychiatric research at large scales. The link between age and brain function is therefore of247

utmost practical interest in neuroscientific research.248

To predict age from brain signals, here we use the currently largest publicly available MEG dataset249

provided by the Cam-CAN [32]. We only considered the signals from magnetometer sensors250

(P = 102) as it turns out that once SSS is applied (detailed in Appendix 6.6), magnetometers and251

gradiometers are linear combination of approximately 70 signals (65 ≤ Ri ≤ 73), which become252

redundant in practice [16]. We considered task-free recordings during which participants were asked253

to sit still with eyes closed in the absence of systematic stimulation. We then drew T ' 520, 000 time254

samples from N = 595 subjects. To capture age-related changes in cortical brain rhythms [4, 38, 10],255

we filtered the data into 9 frequency bands: low frequencies [0.1−1.5], δ[1.5−4], θ[4−8], α[8−15],256

βlow[15− 26], βhigh[26− 35], γlow[35− 50], γmid[50− 74] and γhigh[76− 120] (Hz unit). These257

frequencies are compatible with conventional definitions used in the Human Connectome Project258
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Figure 2: Illustration of Prop.2. Data is generated following the generative model with f = log.
Random noise with variance σ2 is added to the variables yi. The regression pipeline consists in
projecting the data in the tangent space, and then use a linear model. The left plot shows the evolution
of the score when σ changes, and the right one when the parameter µ controlling the distance between
A and IP changes. The MAE of the geometric distance pipeline goes to 0 in the limit of no noise,
indicating perfect out-of-sample prediction. This illustrates the linearity in the tangent space for
the geometric distance (Prop. 2). We also see that this method is not affected by µ due to its affine
invariance property. Although the Wasserstein distance is not affine invariant, its performance does
not change much with µ. On the contrary, the log-diag method is sensitive to changes in A.

[27]. We verify that the covariance matrices all lie on a small portion of the manifold, justifying259

projection in a common tangent space. Then we applied the covariance pipeline independently in260

each frequency band and concatenated the ensuing features.261

Data-driven covariance projection for age prediction Three types of approaches are here com-262

pared: Riemannian methods (Wasserstein or geometric), methods extracting log-diagonal of matrices263

(with or without supervised spatial filtering, see Sec. 3.2) and a biophysics-informed method based264

on the MNE source imaging technique [21]. The MNE method essentially consists in a standard265

Tikhonov regularized inverse solution and is therefore linear (See Appendix 6.5 for details). Here it266

serves as gold-standard informed by the individual anatomy of each subject. It requires a T1-weighted267

MRI and the precise measure of the head in the MEG device coordinate system [3] and the coordinate268

alignment is hard to automate. We configured MNE with Q = 8196 candidate dipoles. To obtain269

spatial smoothing and reduce dimensionality, we averaged the MNE solution using a cortical parcel-270

lation encompassing 448 regions of interest from [26, 18]. We then used ridge regression and tuned271

its regularization parameter by generalized cross-validation [17] on a logarithmic grid of 100 values272

in [10−5, 103] on each training fold of a 10-fold cross-validation loop. All numerical experiments273

were run using the Scikit-Learn software [31], the MNE software for processing M/EEG data [18]274

and the PyRiemann package [11]. The proposed method, including all data preprocessing, applied275

on the 500GB of raw MEG data from the Cam-CAN dataset, runs in approximately 12 hours on a276

regular desktop computer with at least 16GB of RAM. The preprocessing for the computation of277

the covariances is embarrassingly parallel and can therefore be significantly accelerated by using278

multiple CPUs. The actual predictive modeling can be performed in less than a minute on standard279

laptop.280

Riemannian projections are the leading data-driven methods Fig. 3 displays the scores for each281

method. The biophysically motivated MNE projection yielded the best performance (7.4y MAE),282

closely followed by the purely data-driven Riemannian methods (8.1y MAE). The chance level283

was 16y MAE. Interestingly, the Riemannian methods give similar results, and outperformed the284

non-Riemannian methods. When Riemannian geometry was not applied, the projection strategy285

turned out to be decisive. Here, the supervised method performed best: it reduced the dimension of286

the problem while preserving the age-related variance.287

Importantly, the supervised spatial filters and MNE both support model inspection, which is not the288

case for the two Riemannian methods. Fig. 4 depicts the marginal patterns [23] from the supervised289

filters and the source-level ridge model, respectively. The sensor-level results suggest predictive290

dipolar patterns in the theta to beta range roughly compatible with generators in visual, auditory291
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biophysics

unsupervised

identity

supervised

identity

6 7 8 9 10 11
mean absolute error (years)

log−diag Wasserstein geometric MNE
Figure 3: Age prediction on Cam-CAN
MEG dataset for different methods, or-
dered by out-of-sample MAE. The y-
axis depicts the projection method, with
identity denoting the absence of projec-
tion. Colors indicate the subsequent em-
bedding. The biophysics-driven MNE
method (blue) performs best. The
Riemannian methods (orange) follow
closely and their performance depends
little on the projection method. The non-
Riemannian methods log-diag (green)
perform worse, although the supervised
projection clearly helps.

and motor cortices. Note that differences in head-position can make the sources appear deeper than292

they are (distance between the red positive and the blue negative poles). Similarly, the MNE-based293

model suggests localized predictive differences between frequency bands highlighting auditory, visual294

and premotor cortices. While the MNE model supports more exhaustive inspection, the supervised295

patterns are still physiologically informative. For example, one can notice that the pattern is more296

anterior in the β-band than the α-band, potentially revealing sources in the motor cortex.297

Figure 4: Model inspection.
Upper panel: sensor-level pat-
terns from supervised projec-
tion. One can notice dipolar
configurations varying across
frequencies. Lower panel:
standard deviation of patterns
over frequencies from MNE
projection highlighting bilat-
eral visual, auditory and pre-
motor cortices.

5 Discussion298

In this contribution, we proposed a mathematically principled approach for regression on rank-reduced299

covariance matrices from M/EEG data. We applied this framework to the problem of inferring age300

from neuroimaging data, for which we made use of the currently largest publicly available MEG301

dataset. To the best of our knowledge, this is the first study to apply a covariance-based approach302

to regression problem in which the target is defined across persons and not within persons (as in303

brain-computer interfaces). Moreover, this study reports the first benchmark of age prediction from304

MEG resting state data on the Cam-CAN. Our results demonstrate that Riemannian data-driven305

methods do not fall far behind the gold-standard methods with biophysical priors, which depend on306

manual data processing. Finally, we report models that are explainable as they allow to uncover brain-307

region and frequency-band specific effects. These results suggest a trade-off between performance308

and explainability. Our study suggests that the Riemannian methods have the potential to support309

automated large-scale analysis of M/EEG data in the absence of MRI scans. Taken together, this310

potentially opens new avenues for biomarker development.311
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6 Appendix434

6.1 Proof of proposition 2435

First, we note that by invariance, C = MeanG(C1, . . . ,CN ) = AMeanG(E1, . . . ,EN )A> =436

AEA>, where E has the same block diagonal structure as the Ei’s, and Ejj = (
∏N
i=1 pi,j)

1
N for437

j ≤ Q. Denote U = C
1
2A−>E

− 1
2 . By simple verification, we obtain U

>
U = IP , i.e. U is438

orthogonal.439

Furthermore, we have:
U
>
C
− 1

2CiC
− 1

2U = E
− 1

2EiE
− 1

2 .

It follows that for all i,

U
>

log(C
− 1

2CiC
− 1

2 )U = log(E
− 1

2EiE
− 1

2 )

Note that log(E
− 1

2EiE
− 1

2 ) shares the same structure as the Ei’s, and that log(E
− 1

2EiE
− 1

2 )jj =440

log(
pi,j
p̄j

). for j ≤ Q.441

Therefore, the relationship between log(C
− 1

2CiC
− 1

2 ) and the log(pi,j) is linear.442

Finally, since vi = Upper(log(C
− 1

2CiC
− 1

2 )), the relationship between the vi’s and the log(pi,j) is443

linear, and the result holds.444

6.2 Proof of proposition 3445

First, we note that Ci = AEiA
> ∈ S++

P = S+
P,P so it can be decomposed as Ci = YiY

>
i with446

Yi = AE
1
2
i .447

By orthogonal invariance, C = MeanW (C1, . . . ,CN ) = AMeanW (E1, . . . ,EN )A> = AEA>,448

where E so has the same block diagonal structure as the Ei’s, and Ejj = (
∑
i

√
pij)

2 for j ≤ Q. C449

is also decomposed as C = Y Y
>

with Y = AE
1
2 .450

Further, Q∗i = ViU
>
i with Ui and Vi coming from the SVD of Y

>
Yi = E

1
2E

1
2
i which has the451

same structure as the Ei’s. ThereforeQ∗i has also the same structure with the identity matrix as its452

upper block.453

Finally we have vi = PC(Ci) = vect(YiQ
∗
i − Y ) so it is linear in

√
(pi,j) for j ≤ Q.454

6.3 Proof that there is no continuous affine invariant distance on S+
P,R if R < P455

We show the result for P = 2 and R = 1; the demonstration can straightforwardly be extended to the456

other cases. The proof, from [8], is by contradiction.457

Assume that d is a continuous invariant distance on S+
2,1. ConsiderA =

(
1 0
0 0

)
andB =

(
1 1
1 1

)
,458

both in S+
2,1. For ε > 0, consider the invertible matrixWε =

(
1 0
0 ε

)
.459

We have: WεAW
>
ε = A, andWεBW

>
ε =

(
1 ε
ε ε2

)
.460

Hence, as ε goes to 0, we haveWεBW
>
ε → A461

Using affine invariance, we have:

d(A,B) = d(WεAW
>
ε ,WεBW

>
ε )

Letting ε → 0 and using continuity of d yields d(A,B) = d(A,A) = 0, which is absurd since462

A 6= B.463
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6.4 Supervised Spatial Filtering464

We assume that the signal x(t) is band-pass filtered in one of frequency band of interest, so that for465

each subject the band power of signal is approximated by the variance over time of the signal. We466

denote the expectation E and the variance Var over time t or subject i by a corresponding subscript.467

The source extracted by a spatial filter w for subject i is ŝi = w>xi(t). Its power reads:468

Φwi = Vart[w>xi(t)] = Et[w>xi(t)x>i (t)w] = w>Ciw

and its expectation across subjects is given by:469

Ei[Φwi ] = w>Ei[Ci]w = w>Cw ,

where C = 1
N

∑
iCi is the average covariance matrix across subjects. Note that here, Ci refers to470

the covariance of the xi and not its estimate as in Sec. 3.2.471

We aim to maximize the covariance between the target y and the power of the sources, Covi[Φwi , yi].
This quantity is affected by the scaling of its arguments. To address this, the target variable y is
normalized:

Ei[yi] = 0 Vari[yi] = 1 .

Following [13], to also scale Φwi we constrain its expectation to be 1:

Ei[Φwi ] = w>Cw = 1

The quantity one aims to maximize reads:472

Covi[Φwi , yi] = Ei[ (Φwi − Ei[Φwi ]) (yi − Ei[yi]) ]

= w>Ei[Ciyi]w −w>CwEi[yi]
= w>Cyw

where Cy = 1
N

∑
i yiCi.473

474

Taking into account the normalization constraint we obtain:475

ŵ = arg max
w>Cw=1

w>Cyw . (12)

The Lagrangian of (12) reads F (w, λ) = w>Cyw + λ(1−w>Cw). Setting its gradient w.r.t. w476

to 0 yields a generalized eigenvalue problem:477

∇wF (w, λ) = 0 =⇒ Σyw = λΣxw (13)
Note that (12) can be also written as a generalized Rayleigh quotient:478

ŵ = arg max
w

w>Cyw

w>Cw
.

Equation (13) has a unique closed-form solution called the generalized eigenvectors of (Cy,C). The479

second derivative gives:480

∇λF (w, λ) = 0 =⇒ λ = w>Σyw = Covi[Φwi , yi] (14)
Equation (14) leads to an interpretation of λ as the covariance between Φw and y, which should be481

maximal. As a consequence,WSUP is built from the generalized eigenvectors of Eq.(13), sorted by482

decreasing eigenvalues.483

6.5 MNE-based spatial filtering484

Let us denote G ∈ RP×Q the instantaneous mixing matrix that relates the sources in the brain to
the MEG/EEG measurements. This forward operator matrix is obtained by solving numerically
Maxwell’s equations after specifying a geometrical model of the head, typically obtained using an
anatomical MRI image [22]. Here Q ≥ P corresponds to the number of candidate sources in the
brain. The MNE approach [21] offers a way to solve the inverse problem. MNE can be seen as
Tikhonov regularized estimation, also similar to a ridge regression in statistics. Using such problem
formulation the sources are obtained from the measurements with a linear operator which is given by:

WMNE = G>(GG> + λIP )−1 ∈ RQ×P .

The rows of this linear operatorWMNE can be seen also as spatial filters that are mapped to specific485

locations in the brain. These are the filters used in Fig. 3, using the implementation from [18].486
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6.6 Preprocessing487

Typical brain’s magnetic fields detected by MEG are in the order of 100 femtotesla (1fT = 10−15 T)488

which is ~10−8 times the strength of the earth’s steady magnetic field. That is why MEG recordings489

are carried out inside special magnetically shielded rooms (MSR) that eliminate or at least dampen490

external ambient magnetic disturbances.491

To pick up such tiny magnetic fields sensitive sensors have to be used [22]. Their extreme sensitivity is492

challenged by many electromagnetic nuisance sources (any moving metal objects like cars or elevators)493

or electrically powered instruments generating magnetic induction that is orders of magnitude stronger494

than the brain’s. Their influence can be reduced by combining magnetometers coils (that directly495

record the magnetic field) with gradiometers coils (that record the gradient of the magnetic field496

in certain directions). Those gradiometers, arranged either in a radial or tangential (planar) way,497

record the gradient of the magnetic field towards 2 perpendicular directions hence inherently greatly498

emphasize brain signals with respect to environmental noise.499

Even though the magnetic shielded room and gradiometer coils can help to reduce the effects of500

external interference signals the problem mainly remains and further reduction is needed. Also501

additional artifact signals can be caused by movement of the subject during recording if the subject502

has small magnetic particles on his body or head. The Signal Space Separation (SSS) method can503

help mitigate those problems [34].504

Signal Space Separation (SSS) The Signal Space Separation (SSS) method [34], also called505

Maxwell Filtering, is a biophysical spatial filtering method that aim to produce signals cleaned from506

external interference signals and from movement distortions and artifacts.507

A MEG device records the neuromagnetic field distribution by sampling the field simultaneously at P508

distinct locations around the subject’s head. At each moment of time the measurement is a vector509

x ∈ RP is the total number of recording channels.510

In theory, any direction of this vector in the signal space represents a valid measurement of a magnetic511

field, however the knowledge of the location of possible sources of magnetic field, the geometry of512

the sensor array and electromagnetic theory (Maxwell’s equations and the quasistatic approximation)513

considerably constrain the relevant signal space and allow us to differentiate between signal space514

directions consistent with a brain’s field and those that are not.515

To be more precise, it has been shown that the recorded magnetic field is a gradient of a harmonic516

scalar potential. A harmonic potential V (r) is a solution of the Laplacian differential equation517

∇2V = 0, where r is represented by its spherical coordinates (r, θ, ψ). It has been shown that any518

harmonic function in a three-dimensional space can be represented as a series expansion of spherical519

harmonic functions Ylm(θ, φ):520

V (r) =
∞∑
l=1

l∑
m=−l

αlm
Ylm(θ, φ)

rl+1
+
∞∑
l=1

l∑
m=−l

βlmr
lYlm(θ, φ) (15)

We can separate this expansion into two sets of functions: those proportional to inverse powers of r521

and those proportional to powers of r. From a given array of sensors and a coordinate system with its522

origin somewhere inside of the helmet, we can compute the signal vectors corresponding to each of523

the terms in 15.524

Following notations of [34], let alm be the signal vector corresponding to term Ylm(θ,φ)
rl+1 and blm the525

signal vector corresponding to rlYlm(θ, φ). A set of P such signal vectors forms a basis in the P526

dimensional signal space, and hence, the signal vector is given as527

x =

∞∑
l=1

l∑
m=−l

αlmalm +

∞∑
l=1

l∑
m=−l

βlmblm (16)

This basis is not orthogonal, but linearly independent so any measured signal vector has a unique528

representation in this basis:529

x = [Sin Sout]

[
xin
xout

]
(17)
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where the sub-bases Sin and Sout contain the basis vectors alm and blm, and vectors xin and xout530

contain the corresponding αlm and βlm values.531

It can be shown that the spherical harmonic functions contain increasingly higher spatial frequencies532

when going to higher index values (l,m) so that the signals from real magnetic sources are mostly533

contained in the low l,m end of the spectrum. By discarding the high l,m end of the spectrum we534

thus reduce the noise. Then we can do signal space separation. It can be shown that the basis vectors535

corresponding to the terms in the second sum in expansion (15) represent the perturbating sources536

external to the helmet. We can than separate the components of field arising from sources inside and537

outside of the helmet. By discarding them we are left with the part of the signal coming from inside538

of the helmet only. The signal vector x is then decomposed into 2 components φin and φout with539

φin = Sinxin reproducing in all the MEG channels the signals that would be seen if no interference540

from sources external to the helmet existed.541

The real data from the Cam-CAN dataset have been measured with an Elekta Neuromag 306-channel542

device, the only one that has been extensively tested on Maxwell Filtering. For this device we543

included components up to l = Lin = 8 for the Sin basis, and up to l = Lout = 3 for the Sout basis.544

SSS requires a comprehensive sampling (more than about 150 channels) and a relatively high545

calibration accuracy that is machine/site-specific. For this purpose we used the fine-calibration546

coefficients and the cross-talk correction information provided in the Can-CAM repository for the547

306-channels Neuromag system used in this study.548

For this study we used the temporal SSS (tSSS) extension [34], where both temporal and spatial549

projection are applied to the MEG data. We used an order 8 (resp. 3) of internal (resp. external)550

component of spherical expansion, a 10s sliding window, a correlation threshold of 98% (limit551

between inner and outer subspaces used to reject overlapping intersecting inner/outer signals), basis552

regularization, no movement compensation.553

The origin of internal and external multipolar moment space is fitted via head-digitization hence554

specified in the ’head’ coordinate frame and the median head position during the 10s window is used.555

After projection in the lower-dimensional SSS basis we project back the signal in its original space556

producing a signalXclean = S>inSinX ∈ RP×T with a much better SNR (reduced noise variance)557

but with a rank R ≤ P . As a result each reconstructed sensor is then a linear combination of558

R synthetic source signals, which modifies the inter-channel correlation structure, rendering the559

covariance matrix rank-deficient.560

Signal Space Projection (SSP) Recalling the MEG generative model (1) if one knows, or
can estimate, K linearly independent source patterns a1, . . . ,aK that span the space S =
span(a1, . . . ,aK) ⊂ RP that contains the brain signal, one can estimate an orthonormal basis
UK ∈ RP×K of S by singular value decomposition (SVD). One can then project any sensor space
signal x ∈ RP onto S to improve the SNR. The projection reads:

UKU
>
Kx .

This is the idea behind the Signal Space Projections (SSP) method [36]. In practice SSP is used561

to reduce physiological artifacts (eye blinks and heart beats) that cause prominent artifacts in the562

recording. In the Cam-CAN dataset eye blinks are monitored by 2 electro-oculogram (EOG channels),563

and heart beats by an electro-cardiogram (ECG channel).564

SSP projections are computed from time segments contaminated by the artifacts and the first compo-565

nent (per artifact and sensor type) are projected out. More precisely, the EOG and ECG channels are566

used to identify the artifact events (after a first band-pass filter to remove DC offset and an additional567

[1-10]Hz filter applied only to EOG channels to remove saccades vs blinks). After filtering the raw568

signal in [1-35]Hz band, data segments (called epochs) are created around those events, rejecting569

those whose peak-to-peak amplitude exceeds a certain global threshold (see section below). For each570

artifact and sensor type those epochs are then averaged and the first component of maximum variance571

is extracted via PCA. Signal is then projected in the orthogonal space. This follows the guidelines of572

the MNE software [18].573

Marking bad data segments We epoch the resulting data in 30s non overlapping windows and574

identify bad data segments (i.e. trials containing transient jumps in isolated channels) that have a575
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peak-to-peak amplitude exceeding a certain global threshold, learnt automatically from the data using576

the autoreject (global) algorithm [24].577
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