
Appendix

A Setup for simulations

In this section we describe setup for simulations we conducted in this work. Notice that in contrast
to the test of Tomkins et al. [33] which operates on accept/reject decisions of SB reviewers and
scores provided by DB reviewers, the test we introduce in this work operates on decisions of both SB
and DB reviewers. Hence, to compare the tests we need to specify (i) models of DB/SB reviewers’
decisions and (ii) models of DB reviewers’ scores. All simulations are run for 5000 iterations.

A.1 Simulations in Section 3

We now provide necessary details for the simulations in Section 3.

A.1.1 Measurement error (Figure 2a)

For this simulation we consider the following model of SB and DB reviewers:

DB: log
⇡
(db)
j

1� ⇡
(db)
j

= �0 + �1q
⇤
j (4a)

SB: log
⇡
(sb)
ij

1� ⇡
(sb)
ij

= �0 + �1q
⇤
j + �2wj , (4b)

that is, model (1) is correct and reviews given by the same reviewer for different papers are indepen-
dent. Notice that under this model all reviewers are identical and hence issues with the setup do not
manifest in this case.

We set m = 2n = 1000 and µ = � = 2. At each iteration we independently sample true scores
of papers q⇤j , j 2 [n], from uniform distribution U [�2, 2] and assume that mean scores by two DB
reviewers assigned to a paper j 2 [n] estimates true score q

⇤
j with some Gaussian noise (� = 0.7).

We then sample values of wj , j 2 [n], such that correlation between q
⇤ and w equals ' for values

of ' between 0 and 0.5. To this end, we let each paper j 2 [n] with the score q
⇤
j < 0 have wj = 1

with probability 0.5 � � and wj = �1 otherwise. Similarly, each paper j 2 [n] with the score
q
⇤
j � 0 has wj = 1 with probability 0.5 + � and wj = �1 otherwise. We then vary the value of
� 2 (0, 0.5) to achieve the necessary correlation. Finally, using models (4a) and (4b) with �0 = 1,
�1 = 2 and �2 = 0 (no bias condition) we sample decisions of SB and DB reviewers and run the
DISAGREEMENT test and the test used by Tomkins et al. [33], setting the significance level to be
↵ = 0.05. We then compute a Type-I error as a fraction of iterations in which the null hypothesis
(�2 = 0) was rejected.

A.1.2 Model mismatch (Figure 2b)

For this simulation we consider a violation of model (1) and the following model of SB and DB
reviewers with �2 = 0 (no-bias condition):
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To abstract out the effect of measurement error, in this section we assume that the true scores
q
⇤
j , j 2 [n], are known, but the test used by Tomkins et al. [33] fits the model defined by equation (4b).

Besides the change of correct model and availability of true scores {q⇤j , j 2 [n]}, the simulations
follow scenario we described in Appendix A.1.1.
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A.1.3 Reviewer calibration (Figure 2c)

In this simulation we model the effect of correlations introduced by reviewer calibration. More
concretely, we construct a model of reviewer calibration under which the test by Tomkins et al. [33]
fails to control for the Type-I error rate. In this section we assume that true scores of submissions are
proportional to the clarity of the writing. We then sample clarity scores ⇣j , j 2 [n], from uniform
distribution U [�1, 1] and define q

⇤
j = ⇣j for each j 2 [n]. Eventually, we consider the following

model of reviewer. For each i 2 [m] and for each j 2 [n]:

DB: ⇡
(db)
ij = ⇡

(db)
j + `i ⇥ I [⇣j < 0.5]

SB: ⇡
(sb)
ij = ⇡

(sb)
j + `i ⇥ I [⇣j < 0.5] ,

where `i is reviewers’ leniency which equals 0.4 with probability 0.5 and �0.4 otherwise and
⇡
(db)
j ,⇡

(sb)
j are defined by equations (4a) and (4b) with �0 = 0,�1 = 0.25 and �2 = 0 (no bias

condition). Parameters are selected to ensure that 0  ⇡
(db)
ij ,⇡

(sb)
ij  1.

In words, the above model says that for papers with high quality of writing (⇣ > 0.5) reviewers
understand their content well and follow models (4a) and (4b) exactly, but for papers with lower
writing quality their leniency parameter influences their decision. Notice that under this model it is
natural to expect that estimates of the true scores provided by DB reviewers are also influenced by
their leniency and hence are noisy. However, to isolate the effect of reviewer identity we assume
that the test used by Tomkins et al. [33] knows true scores q⇤j , j 2 [n], exactly. Additionally, notice
that marginally each reviewer follows the model defined by equations (4a) and (4b), and hence when
µ = 1, the test by Tomkins et al. [33] has control over the Type-I error for any correlation between q

⇤

and w.

In this section we consider an extreme pattern of correlations between q
⇤ and w. Concretely, we

assume that for any paper j 2 [n], we have wj = 1 if and only if q⇤j > 0.5 and wj = �1 otherwise.
Notice that in practice such strong dependence is unlikely to happen, but we underscore that in
practice the test by Tomkins et al. [33] also does not have access to noiseless true scores which will
cause measurement errors and hence will exacerbate the issue.

We then perform simulations as discussed above having n = 1000 and � = 1 fixed and varying the
number of papers per reviewer and using the modification of the Wald test with factor variable for
each reviewer added (reviewer-depedent intercept).

A.1.4 Non-blind bidding (Figure 2d)

We consider a setting with n = 1000,m = 2000,� = µ = 1 and consider a property of interest
“paper has a famous author”. Suppose that during the bidding procedure each reviewer i 2 [m] gives a
score bij 2 {�1, 0, 1} to each paper j 2 [n], where bij = 1 means that reviewer wants to review the
paper, bij = �1 means that reviewer does not want to review the paper and bij = 0 is an intermediate
between bij = 1 and bij = �1. Given the bids, the assignment is computed maximizing the total
sum of the bids. Namely, for all (i, j) 2 [m] ⇥ [n] let a binary indicator Aij equal 1 if reviewer i
is assigned to paper j and 0 otherwise and let RSB ⇢ [m] be the set of reviewers allocated to SB
condition. Then the assignment of SB reviewers to papers is computed maximizing the following
objective subject to the standard (�, µ)-load constraints.

X

i2RSB

X

j2[n]

Aijbij .

The same objective is used to assign DB reviewers to papers. Next, we suppose that for each paper
j 2 [n] there is a true score q

⇤
j 2 [0, 0.9] and that all reviewers belong to one of the following

personality types:

• Type A: Lenient reviewers who accept each paper j 2 [n] assigned to them with probability
q
⇤
j + 0.1 and want to read papers from top authors. If bidding is blind, they do not have any

information about author identity and bid 0 on each paper, but if bidding is non-blind, then for each
paper j 2 J reviewer i of type A places a bid bij = 1 and for each paper j 2 J she/he places a
bid bij = �1.
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• Type B: Accurate reviewers who accept each paper j 2 [n] assigned to them with probability q
⇤
j

and do not mind reviewing any paper. Independent of whether bidding is blind or not, reviewer i
of type B places a bid bij = 0 on each paper j 2 [n].

Notice that evaluations of reviewers of both types are unbiased — the probability of acceptance is not
determined by author identities. The type of each reviewer is determined independently: reviewer
i 2 [m] is of type A with probability 0.3 and of type B with probability 0.7. Independently, each
paper j 2 [n] belongs to J with probability 0.3 and to J with probability 0.7.

Having defined the setup, in each iteration we independently sample true scores of submissions
from U [0, 0.9] (no correlation with indicator w) and compute two bidding matrices: (i) when SB
reviewers observe author identities during bidding and (ii) when bidding is blind for both SB and DB
reviewers. For each bidding matrix we compute assignments of SB and DB reviewers to papers and
pass observed decisions to the DISAGREEMENT test and the test used by Tomkins et al. [33]. For the
test of Tomkins et al., we assume that true scores q⇤j , j 2 [n], are known exactly.

A.1.5 Non-random assignment (Figure 2e)

In this section we construct a similarity matrix S and formalize the dependence of reviewer’s
perception of a paper on similarity between paper and reviewer that leads to the effect demonstrated
in Figure 2e. We notice that the construction we provide here is artificial and serves as a proof of
concept for our claim that non-random assignment may violate some key independence assumptions
of statistical tests even if it is not based on reviewers’ bids. While in practice we do not expect to
observe such specific similarity matrices, we can still observe some more subtle manifestations of
issues caused by non-randomness of the assignment.

First, in this section we assume that assignment is performed using the TPMS algorithms [9], that is,
given similarity matrix S between reviewers and papers, each paper is assigned to � reviewers in a
way that each reviewer is assigned to at most µ papers such that total sum similarity of the assignment
is maximized.

Second, consider a similarity matrix S, defined as follows. For each reviewer i 2 [m] and for each
paper j 2 [n]:

Sij = (m+ 1� i)⇥ (n+ 1� j). (5)

Given that reviewers are allocated to conditions at random, similarity matrices SSB (SB condition)
and SDB (DB condition) are constructed by random division of rows of S into two groups of equal
size and stacking them into SSB and SDB correspondingly.

Third, we assume that each reviewer i 2 [m] has some value of threshold zi such that if reviewer i is
assigned to paper j 2 [n] in either of setups, reviewer accepts the paper with probability ⇡ij given by:

⇡ij =

⇢
0.9 if Sij � zi

q
⇤
j if Sij < zi,

(6)

where q⇤j 2 [0, 0.9] is a true score of paper j. We also assume that reviewer i in DB condition returns
⇡ij as an estimate of q⇤j .

Fourth, for every reviewer i we set a value of threshold as follows:

zi = (m+ 1� i)⇥ (n� [(i�1)/2]), (7)

where [x] is the integral part of x.

Fifth and finally, we assume that true scores q⇤ are independently sampled from U [0, 0.9] and sample
indicators w such that they are correlated with q

⇤, fixing the value of correlation ' = 0.45. We also
set µ = � = 1 and m = 2n = 1000. Now we allocate half of reviewers to SB condition and half
to DB condition uniformly at random. We then compare the performance of the DISAGREEMENT
test and the test by Tomkins et al. using (i) TPMS assignment algorithm and (ii) random assignment
algorithm.

The intuition behind our construction of matrix S in equation (5) is that for any square submatrix of
S, the TPMS algorithm with parameters µ = � = 1 will compute an assignment that corresponds
to the diagonal of this submatrix. Coupled with specific choice of thresholds (7), probabilities of
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acceptance (6) and correlation between q
⇤ and w at the level of 0.45, this choice of similarity matrix

ensures that under the setup of Tomkins et al., with non-zero probability most of SB reviewers will
receive papers with similarities above the corresponding threshold and most of DB reviewers will
receive papers with similarities below the corresponding threshold or vice versa. Hence, the assign-
ments will be structurally different and, as demonstrated by Figure 2e, this difference will be confused
with bias by both Tomkins et al. [33] and DISAGREEMENT tests. In contrast, when the assignment is
chosen uniformly at random from the set of all feasible assignments, our DISAGREEMENT test is
guaranteed to control for the Type-I error rate.

A.2 Simulations in Section 1

The simulations in Section 1 were performed under the model of reviewers in (4a) and (4b) following
the setup described in Appendix A.1.1 with small differences. Instead of varying the value of
correlation ' between q

⇤ and w, we fix the value of ' and vary the number of papers n. Moreover, we
independently assign papers to the sets J and J as follows: each paper j such that q⇤j < 0 belongs
to the set J with probability 0.5� � and otherwise belongs to the set J , similarly, each paper j with
q
⇤
j > 0 belongs to the set J with probability 0.5 + � and otherwise belongs to the set J . The value

of � is selected to achieve the required level of correlation ' between q
⇤ and w.

• For Figure 1a we set ' = 0.4 and perform simulations under �0 = 1,�1 = 2,�2 = 0 (no
bias), � = 2, µ = 1, where true scores are sampled from U [�1, 1]. We see that for the test used
by Tomkins et al. [33] a violation of Type-I error guarantees caused by measurement error coupled
with correlations (see Appendix A.1.1 for details) exacerbates as sample size grows.

• For Figure 1b we set ' = 0.6 and perform simulations under �0 = 1,�1 = 2,�2 = �0.35
(bias against papers that satisfy the property), � = 2, µ = 1, where true scores are sampled from
U [�0.5, 0.5]. We see that in this case measurement error has strong harmful impact on the power
of the test used by Tomkins et al. [33].

• For Figure 1c we set ' = 0 and additionally assume that DB reviewers estimate true scores with
no noise. In this case all parametric assumptions made by Tomkins et al. [33] are satisfied. We
then perform simulations under �0 = 1,�1 = 2,�2 = 0.35 (bias in favour of papers that satisfy
the property), � = 2, µ = 1, where true scores are sampled from U [�1, 1].

B Causal inference viewpoint

In this section we provide an equivalent viewpoint on the formulation of the bias testing problem we
consider in this paper. Recall that a decision of reviewer i for paper j if this reviewer is assigned to
this paper in SB setup is denoted as Yij and is a Bernoulli random variable with expectation ⇡

(sb)
ij .

Our ultimate goal is to see whether the indicator variable wj 2 {�1, 1} which encodes the property
satisfaction has causal impact on decisions of SB reviewers. To this end, we assume that for each
reviewer i 2 [m] and for each paper j 2 [n] probability ⇡

(sb)
ij can be expressed as:

⇡
(sb)
ij = ⇠(ri, qj , wj), (8)

for some unknown function ⇠ with co-domain [0, 1], where qj is an anonymized content of a paper
and ri is an arbitrary complex representation of a reviewer. That is, we assume that decisions
of SB reviewers are determined by the paper content, reviewer identity and, possibly, authorship
information.

Similarly, we assume that the probability of reviewer i recommending acceptance for paper j in DB
condition is given by:

⇡
(db)
ij = ⇠(ri, qj , 0), (9)

where the last argument of the function ⇠ is censored, indicating that DB reviewers do not have access
to the authorship information.

In this notation, the bias testing problem (Problem 1) can be equivalently formulated as follows:
Problem 1’ (Equivalent formulation of the bias testing problem). Given significance level ↵ 2 (0, 1),
and decisions of SB and DB reviewers that are distributed according to equations (8) and (9), the goal
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is to test the following hypotheses:

H0 : 8i 2 [m] 8j 2 [n] ⇠(ri, qj , 1) = ⇠(ri, qj , 0) = ⇠(ri, qj ,�1)

H1 : 8i 2 [m] 8j 2 [n]

⇢
⇠(ri, qj , 1) � ⇠(ri, qj , 0)
⇠(ri, qj ,�1)  ⇠(ri, qj , 0)

(10)

where at least one inequality in the alternative hypothesis (10) is strict.

Observe that Theorem 1 ensures that the DISAGREEMENT test is guaranteed to be reliable for any
(unknown) choice of function ⇠ that falls under the definition of Problem 1’.

C Matching

Given assignment of papers to reviewers in both SB and DB conditions, we discuss two choices of
matching algorithms depending on the relationship between parameters � and µ. Notice that our goal
is not to maximize a size of T , but instead maximize a minimum of the number of papers from J and
the number of papers from J included in the T , because the DISAGREEMENT test needs decisions
for papers from both J and J to maximize its power. Depending on relationship between � and µ

we can solve this problem exactly or approximately.

Case 1 (� � µ). In this case, each paper can be matched to 1 SB reviewer and 1 DB reviewer by
finding two separate maximum matchings (papers to SB reviewers and papers to DB reviewers) using
the Hungarian matching algorithm. We formally present the matching procedure as Algorithm 1.

Algorithm 1 Exact matching algorithm
Input: Assignments ASB, ADB of SB and DB reviewers to papers, respectively.

1. Construct a graph G that consists of 3 layers:
• Layer 1. One node for each SB reviewer
• Layer 2. One node for each paper
• Layer 3. One node for each DB reviewer
and add edges between reviewers and papers according to assignments ASB and ADB. Set T = ;.

2. Using the Hungarian matching algorithm with uniform tie-breaking find matchings MSB and
MDB where MSB (respectively MDB) is a maximum 1-1 matching between SB (respectively DB)
reviewers and papers (each reviewer is matched to at most 1 paper and each paper is matched to at
most 1 reviewer).

3. Leave in graph G only those edges that correspond to matched pairs in MSB and MDB.
4. For any triple of (SB reviewer i1, paper j, DB reviewer i2) such that there is a path from a node

that corresponds to reviewer i1 to a node that corresponds to reviewer i2 through a node that
corresponds to paper j, add t = (j, Yi1j , Xi2j , wj) to T .

5. Return T .

Lemma 1. For any assignments of SB and DB referees to papers that satisfy (�, µ)-load constraints
with � � µ, the matching procedure in Algorithm 1 is guaranteed to construct a set of tuples T such
that for each paper j 2 [n] there is one tuple that corresponds to this paper.

Case 2 (� < µ). In this case we cannot use the above idea, because there does not exist a matching
such that each paper is matched to one SB and one DB reviewer, subject to a constraint that each
reviewer is matched with at most one paper. While solving the exact optimization problem in
this case might be hard, a simple greedy procedure constructs a sufficiently large matching for the
DISAGREEMENT test to satisfy the non-trivial power requirement. The iterative greedy procedure
in each iteration matches one paper from J and one paper from J to 1 SB and 1 DB reviewer and
removes those reviewers from subsequent interations to maintain the constraint that each reviewer
contributes at most one decision to the set T . We formally introduce the greedy procedure as
Algorithm 2.
Lemma 2. For any assignments of SB and DB referees to papers that satisfy (�, µ)-load constraints,
the matching procedure in Algorithm 2 is guaranteed to construct a set of tuples T that for large
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enough min{|J |, |J |} contains at least cmin{|J |, |J |} tuples corresponding to papers from J
and at least cmin{|J |, |J |} tuples corresponding to papers from J , where c is a constant that may
depend only on � and µ.
Remark. 1. If the set T constructed by the Algorithm 1 is such that there exist reviewers who do
not contribute any of their decisions to this set, then one can run Algorithm 2 on assignments of these
reviewers to papers and obtain the set T 0. Next, consider the updated set T ⇤ = T [ T 0 and observe
that each reviewer contributes at most one decision to this set.

2. By construction both matching algorithms introduced in this section include at most one decision
per reviewer in a set of tuples T .

Algorithm 2 Greedy matching algorithm
Input: Assignments ASB, ADB of SB and DB reviewers to papers, respectively.

1. Construct a graph G that cosists of 3 layers:
• Layer 1. One node for each SB reviewer
• Layer 2. One node for each paper
• Layer 3. One node for each DB reviewer
and add edges between reviewers and papers according to assignments ASB and ADB. Set T = ;.

2. Find a triple (SB reviewer i1, paper j 2 J , DB reviewer i2) such that there is a path in graph G

from a node corresponding to SB reviewer to a node corresponding to DB reviewer through a
node corresponding to a paper. If there are many such triples, break ties uniformly at random. If
such a triple exists, define t1 = (j, Yi1j , Xi2j , wj), otherwise set t1 = ;.

3. Find a triple (SB reviewer i01 6= i1, paper j0 2 J , DB reviewer i02 6= i2) such that there is a
path in graph G from a node corresponding to the SB reviewer to a node corresponding to the
DB reviewer through a node corresponding to the paper. If there are many such triples, break
ties uniformly at random. If such a triple exists, define t2 = (j0, Yi01j

0 , Xi02j
0 , wj0), otherwise set

t2 = ;.
4. Update T = T [ {t1, t2}. If both t1 and t2 are empty, return T . Otherwise delete reviewers

i1, i
0
1, i2, i

0
2 from the graph G together with the corresponding edges and go to Step 2.

Overall, let A denote a procedure that takes assignments ASB and ADB as input and depending on the
relationship between � and µ calls Algorithm 1 or Algorithm 2 to construct the set T .

We give proofs of lemmas in Appendix E.

D Proofs of main results

In this section we give proofs of our main results.

D.1 Proof of Theorem 1

The proof of Theorem 1 consists of two parts. First, we show that the DISAGREEMENT test controls
for the Type-I error rate. Second, we show that it also satisfies the requirement of non-trivial power.
To abstract out the impact of the non-random assignment (issue e discussed in Section 3), in the proof
below we assume that the assignment of papers to reviewers is performed at random. Before we
delve into the proof, let us introduce a construction that we will use in this section.

Consider any set of triples C such that (i) each triple c 2 C is of the form (j, i1, i2) (one paper and two
reviewers) and (ii) each reviewer i 2 [m] appears in at most one triple. Let C denote a collection of all
such sets of triples. Then any set of tuples T passed to the DISAGREEMENT test as input corresponds
to one member of C which is constructed as follows: for each t 2 T let (jt, it, i0t) be a corresponding
paper, SB reviewer and DB reviewer assigned to this paper, then C =

S
t2T

(jt, it, i0t). Conversely, each

member C 2 C gives rise to a family of sets of tuples T(C) which contains 2|C| elements and each
element corresponds to a different allocation of reviewers in each triple (j, i1, i2) 2 C to SB and DB
conditions. For example, let C = {(j, i1, i2), (j0, i01, i02)}, then the family T(C) consists of four sets
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of tuples:
T1 = {(j, Yi1j , Xi2j , wj), (j

0
, Yi01j

0 , Xi02j
0 , wj0)}

T2 = {(j, Yi2j , Xi1j , wj), (j
0
, Yi01j

0 , Xi02j
0 , wj0)}

T3 = {(j, Yi1j , Xi2j , wj), (j
0
, Yi02j

0 , Xi01j
0 , wj0)}

T4 = {(j, Yi2j , Xi1j , wj), (j
0
, Yi02j

0 , Xi01j
0 , wj0)}

For a moment, assume that � � µ, that is, Algorithm 1 is used to construct an input T for the
DISAGREEMENT test. Then conditioned on the fact that the set of tuples T constructed by the
algorithm belongs to T(C), the randomness of the allocation of reviewers to conditions, the random3

assignment procedure used to assign reviewers to papers in each condition and randomness in the
tie-breaking in the matching algorithm ensure that T 2 U [T(C)], that is, all elements of T(C) are
equally likely to be constructed and no other set of tuples can be constructed.

The same argument applies to the case when � < µ and Algorithm 2 is employed. Hence, we
conclude that conditioned of the fact the set of tuples T constructed by the meta-procedure A belongs
to T(C), we have

T 2 U [T(C)] . (11)

For each member C 2 C, let P [C] be probability that the meta-procedure A defined in Appenix C
constructs a set of tuples that belongs to T(C). Notice that for some C 2 C we have P [C] = 0
which happens for example when for any triple (j, i1, i2) 2 C, one of the reviewers has a conflict of
interests with the paper. The rest of the proof is performed conditioned on the C with P [C] > 0. The
unconditional statement of the theorem then follows from the law of total probability.

D.1.1 Control over Type-I error

Let ⇧db and ⇧sb(= ⇧db) be arbitrary matrices that fall under the definition of the null hypothesis in
Problem 1. Consider arrays U and V constructed in Step 2 of the DISAGREEMENT test. If any of
them is empty, the test keeps the null and hence does not commit the Type-I error. Now without loss
of generality assume that both U and V are non-empty.

The idea of the proof is to show that under the null hypothesis, entries of arrays U and V are mutually
independent and identically distributed. Assume for a moment that it is indeed the case. Then entries
of arrays U and V are exchangeable random variables and hence the permutation test with statistics
⌧ defined in Step 3 of Test 1 is guaranteed to provide control over Type-I error rate for any given
significance level ↵ 2 (0, 1) and hence the result for Type-I error control follows.

Consider any entry u of array U . Then u is a decision of SB reviewer for some paper jt 2 J , where t
is a tuple that corresponds to u. Corresponding SB and DB reviewers disagree in their decisions, that
is, Yjt 6= Xjt . Given that our goal is to prove the result conditioned on the set C, observation (11)
guarantees that

Yjt | (Yjt 6= Xjt) ⇠ Bernoulli(0.5). (12)
Indeed, given that both Yjt and Xjt are Bernoulli random variables, one can verify that

P [Yjt = 1, Xjt = 0] = P [Yjt = 0, Xjt = 1] ,

where probability is measured over the randomness in T as well as in reviewers decisions.

Hence, entries of U are Bernoulli random variables with expectation 0.5. Provided that each reviewer
contributes at most one decision to T , entries of U are also independent. Notice that independence
holds even if some paper appears in T multiple times (each time with different reviewers), because
conditioning on disagreement in equation (12) eliminates papers’ signal.

The same argument applies to entries of array V and hence we have shown that under the null
hypothesis entries of V and U are independent Bernoulli random variables with probability of success
0.5 and thus are exchangeable.

3From theoretical standpoint, randomness in the assignment is equivalent to the independence of reviewers’
evaluations from factors that determine the assignment if it is non-random. Hence, our proof works if the
assignment procedure is non-random, but reviewers’ evaluations are independent of bids, similarities, etc. For
brevity, we only consider the case of the random assignment here.
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D.1.2 Non-trivial power

Consider any fixed choice of � > 0 and " > 0 in definition of non-trivial power. The goal now
is to show that there exists n0 > 0 such that if min{|J |, |J |} > n0, then for any matrices ⇧db

and ⇧sb that satisfy alternative hypothesis in Problem 1 with margin �, the DISAGREEMENT test
coupled with matching Algorithms 1 and 2 is guaranteed to reject the null with probability at least
1� ". Throughout the proof we use c to denote a universal constant and allow its value to change
from line to line due to multiplications by some other universal constants. Lemma 1 and Lemma 2
guarantee that for large enough n0, there exists a universal constant c > 0 such that set T provided to
DISAGREEMENT test contains at least cn0 tuples that correspond to papers from J and at least cn0

tuples that correspond to papers from J . Recall that problem parameters �, µ and ↵ are treated as
constants. For concreteness, throughout the proof we assume that the bias is in favor of papers from
J . The same argument can be repeated in case of bias against papers from J .

Step 1. Cardinality of U and V .

Let us first show that arrays U and V will with high probability contain order n0 elements. To this
end, recall that for tuple t 2 T we add Yjt to U if (i) wjt = 1 and (ii) Yjt 6= Xjt . Consider any
of at least cn0 tuples in set T which correspond to papers from J , then equation (11) ensures that
P [Yjt 6= Xjt ] is lower bounded by:

P [Yjt 6= Xjt ] =
1

2

⇣
⇡
(sb)
i1jt

(1� ⇡
(db)
i2jt

) + ⇡
(db)
i2jt

(1� ⇡
(sb)
i1jt

)
⌘
+

1

2

⇣
⇡
(sb)
i2jt

(1� ⇡
(db)
i1jt

) + ⇡
(db)
i1j

(1� ⇡
(sb)
i2jt

)
⌘

�1

2

⇣
⇡
(sb)
i1jt

(1� ⇡
(db)
i2jt

)
⌘
+

1

2

⇣
⇡
(sb)
i2jt

(1� ⇡
(db)
i1jt

)
⌘

(i)
� 1

2

�
�
2 + �

2
�
= �

2
,

where two terms in the RHS of the first line correspond to two equiprobable allocations of reviewers
(i1, i2) to SB/DB conditions and inequality (i) follows from the fact that for any reviewer i 2 [m] and
for any paper j 2 [n] we have �  ⇡

(sb)
ij  1 and 0  ⇡

(db)
ij  1� � by the definition of non-trivial

power requirement.

The same argument applies for tuples t 2 T that correspond to papers from J . Hence, we conclude
that for any tuple t 2 T we are guaranteed that Yjt 6= Xjt with probability at least �2.

Now notice that |U | =
P

t2T :wjt=1
I [Yjt 6= Xjt ] and hence E [|U |] � cn0�

2. Applying Hoeffding’s

inequality, we can also derive that for large enough n0 with probability at least 1� "
4 we have

|U | > cn0�
2
. (13)

The same argument applies to V and hence we conclude that with probability at least 1� "
2 we have

|U | > cn0�
2 and |V | > cn0�

2
.

Step 2. Distribution.

Now we describe the distribution of components of U and V . By construction, the entries of these
arrays are independent, so it suffices to study a single component. Consider an entry u of array U

and let (j, i1, i2) be a corresponding triple from the set C. For compactness, let p = ⇡
(sb)
i1j

2 (�, 1],
q = ⇡

(db)
i2j

2 [0, 1� �), �1 = p�⇡
(db)
i1j

and �2 = ⇡
(sb)
i2j

� q, where �1 > � and �2 > � by the definition
of non-trivial power requirement. Then, we can derive the following chain of bounds:

2P [u = 1]� 1 = 2P [Yj = 1|Yj 6= Xj ]� 1

=
p(1� q)

p(1� q) + q(1� p)
+

(q + �2)(1� p+ �1)

(q + �2)(1� p+ �1) + (p� �1)(1� q � �2)
� 1

(i)
� p(1� q)

p(1� q) + q(1� p)
+

(q + �)(1� p+ �)

(q + �)(1� p+ �) + (p� �)(1� q � �)
� 1

=
1

2

✓
p� q

p+ q � 2pq
� p� q � 2�

p+ q � 2pq + 2�(� + q � p)

◆
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where inequality (i) holds due to monotonicity of the expression over �1 and �2 and lower bounds
�1 > �, �2 > �.

Optimizing the last expression over p 2 (�, 1] and q 2 [0, 1� �), we obtain

2P [u = 1]� 1 � �
2

�2 + (1� �)2
,

and hence P [u = 1] � 1
2 + 1

2
�2

�2+(1��)2 = 1
2 + �. Similarly, we can show that P [v = 1] 

1
2 � 1

2
�2

�2+(1��)2 = 1
2 � �, where � > 0 is a constant that depends on �.

Step 3. Permutation.

At this point we are guaranteed that vectors V and U constructed in Step 2 of the DISAGREEMENT
test, with probability 1� "

2 , contain at least cn0�
2 elements and their entries are independent Bernoulli

random variables. Moreover, the entries of U have expectations larger than 1/2 + � and entries of V
have expectations smaller than 1/2 � �, where � is independent of n0.

Conditioned on min{|V |, |U |} > cn0�
2, notice that as n0 grows, the permutation test for exchange-

ablility of entries of V and U has power growing to 1. Hence, there exists n⇤
0 such that if n0 > n

⇤
0,

then the permutation test rejects the null with probability at least 1� "
2 .

Finally, taking union bound over (i) probability that either of U and V has cardinality smaller than
cn0�

2 and (ii) probability that the permutation test fails to reject the null given min{|V |, |U |} >

cn0�
2, we deduce that conditioned on C, the requirement of non-trivial power is satisfied. It now

remains to notice that the established fact holds for any C with P [C] > 0 and hence and hence
Theorem 1 holds.

D.2 Proof of Theorem 2

The proof consists of two parts. We first show that the DISAGREEMENT test guarantees a control over
the Type-I error and satisfy the requirement of non-trivial power when only intercepts are allowed to
be different. We then conclude the proof with impossibility result in case not only intercepts, but also
coefficients in front of q⇤ are allowed to be different.

D.2.1 Positive result

Again, the proof is presented in two parts: control over Type-I error and non-trivial power. The
conceptual difference from the proof of the corresponding result for absolute bias problem is that
now the parametric relationships (3) allow us to avoid the conditioning on C which was necessary to
prove Theorem 1.

Control over Type-I error

Let ⇧db and ⇧sb be arbitrary matrices generated from the generalized logistic model under the absence
of bias (�(sb)

2 = 0). Consider arrays U and V constructed in Step 2 of the DISAGREEMENT test from
the set of tuples T passed to the test by procedure A defined in Appendix C. If any of them is empty,
the test keeps the null and hence does not commit the Type-I error. Now without loss of generality
assume that both arrays U and V are non-empty. Following the idea of the proof of Theorem 1, we
need to show that entries of arrays U and V are exchangeable random variables. First, the mutual
independence follows from construction of the set T . Second, using equation (3), we deduce that for
any paper j 2 [n] and for any reviewer i 2 [m]:

log
⇡
(sb)
ij (1� ⇡

(db)
ij )

⇡
(db)
ij (1� ⇡

(sb)
ij )

= �
(sb)
0 � �

(db)
0 .

Noticing that ⇡(sb)
ij and ⇡

(db)
ij under the generalized logistic model are independent of reviewer’s

identity, we drop index i from the above equation. Now we consider any entry u of array U together
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with a corresponding tuple t = (jt, Yjt , Xjt , wjt) and conclude that:

P [u = 1] = P [Yjt = 1|Yjt 6= Xjt ]

=
⇡
(sb)
jt

(1� ⇡
(db)
jt

)

⇡
(sb)
jt

(1� ⇡
(db)
jt

) + ⇡
(db)
jt

(1� ⇡
(sb)
jt

)

=
1

1 +
⇡(db)
jt

(1�⇡(sb)
jt

)

⇡(sb)
jt

(1�⇡(db)
jt

)

=
1

1 + e�(�(sb)
0 ��(db)

0 )
. (14)

Importantly, the value of the paper representation qj does not appear in equation (14), implying that
entries of array U are identically distributed. Applying the same argument to entries of array V we
deduce that entries of arrays U and V are exchangeable random variables and hence the permutation
test with the test statistic ⌧ defined in Step 3 of Test 1 is guaranteed to control for the Type-I error
rate at any given significance level ↵ 2 (0, 1) which concludes the proof.

Non-trivial power

Consider any fixed choice of � > 0 and " > 0 in the definition of non-trivial power. The goal now is
to show that there exists n0 = n0(", �) such that if min{|J |, |J |} > n0, then for any matrices ⇧db

and ⇧sb generated from the generalized logistic model that fall under the definition of the non-trivial
power requirement, the DISAGREEMENT test coupled with matching procedure A is guaranteed to
reject the null hypothesis with probability at least 1� ". Throughout the proof we use c to denote
a universal constant and allow its value to change from line to line due to multiplications by some
other universal constants. Recall that problem parameters �, µ and ↵ are treated as constants. For
concreteness, throughout the proof we assume that the bias is in favor of papers from J . The same
argument can be repeated in case of bias against papers from J .

Step 1. Cardinality of U and V .

Consider any matrices ⇧sb and ⇧db generated from the generalized logistic model with �
(sb)
2 6= 0 that

fall under the definition of the non-trivial power requirement with margin �. First, we notice that
scores qj , j 2 [n], and model coefficients are bounded in absolute value by some constant B, and
hence using equation (3) we conclude that for all (i, j) 2 [n]⇥ [m]

⇡
(db)
ij 2 (`, b) 8j 2 [n], (15)

where 0 < ` < b < 1 and values of ` and b are determined by B. Now consider any tuple
t = (jt, Yi1jt , Xi2jt , wjt) from the set of tuples T . Then

P [Yi1jt 6= Xi2jt ] = ⇡
(sb)
i1jt

(1� ⇡
(db)
i2jt

) + ⇡
(db)
i2jt

(1� ⇡
(sb)
i1jt

)

� min{⇡(db)
i2jt

, 1� ⇡
(db)
i2jt

}
⇣
⇡
(sb)
i1jt

+ 1� ⇡
(sb)
i1jt

⌘

= min{⇡(db)
i2jt

, 1� ⇡
(db)
i2jt

}
� min{`, 1� b},

where the last inequality follows from equation (15). Applying Hoeffding’s inequality in the same
way as we did in the proof of Theorem 1 to get the bound (13), we deduce that with probability at
least 1� "

2 , cardinalities of arrays U and V are at least cn0 for some constant c that may depend on �

and B.
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Step 2. Distribution

Under the generalized logistic model defined by equation (3), for any tuple t = (jt, Yi1jt , Xi2jt , wjt)
that belongs to the tuple set T we are guaranteed that

P [Yi1jt = 1|Yi1jt 6= Xi2jt ] =
1

1 + e
�(�(sb)

0 ��(db)
0 +�(sb)

2 wjt )
.

Hence, we are guaranteed that entries of array U and V are independent Bernoulli random variables
such that for any u 2 U we have

P [u = 1] � 1

1 + e�(�(sb)
0 ��(db)

0 )
+ �,

and for any entry v of V we have

P [v = 1]  1

1 + e�(�(sb)
0 ��(db)

0 )
� �,

where � > 0 is a constant that may depend on � and B.

Step 3. Permutation.

At this point we are guaranteed that vectors V and U constructed in Step 2 of the DISAGREEMENT
test, with probability 1� "

2 , contain at least cn0 elements and their entries are independent Bernoulli
random variables. Moreover, the entries of U have expectations larger than 1

1+e�(�(sb)
0 ��(db)

0 )
+ � and

entries of V have expectations smaller than 1

1+e�(�(sb)
0 ��(db)

0 )
� �, where � is independent of n0, but

depends on � and B.

Conditioned on min{|V |, |U |} > cn0, notice that as n0 grows, the permutation test for exchange-
ablility of entries of V and U has power growing to 1. Hence, there exists n⇤

0 such that if n0 > n
⇤
0,

then the permutation test rejects the null with probability at least 1� "
2 .

Finally, taking union bound over (i) probability that either of U and V has cardinality smaller than
cn0 and (ii) probability that the permutation test fails to reject the null given min{|V |, |U |} > cn0,
we deduce that the requirement of non-trivial power is satisfied.

D.2.2 Negative result

Now we show that if not only intercepts, but also coefficients �(sb)
1 and �

(db)
1 in model (3) are allowed

to be different, then no test can satisfy the requirement of non-trivial power while having reliable
control over Type-I error. The high-level idea of the proof is to construct similarity matrices ⇧db

and ⇧sb that simultaneously (for different choices of (�(sb)
0 ,�

(sb)
1 )) satisfy the null and alternative

hypotheses under the model (3).

We begin our construction from specifying values of qj , j 2 [n]. For each paper j 2 [n], let

qj =

⇢
�1 if wj = 1
0 if wj = �1.

Then ⇧db is generated from the model of DB reviewer (3) with �
(db)
0 = 0 and �

(db)
1 = 1. In this way,

for any reviewer i 2 [m] and for any paper j 2 [n], probability of acceprance ⇡
(db)
ij satisfies:

M0 : log
⇡
(db)
ij

1� ⇡
(db)
ij

= qj .

That is, for any reviewer i 2 [m] and for any paper j 2 [n] we have

⇡
(db)
ij =

⇢ 1
1+e if wj = 1

0.5 if wj = �1.
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We now consider two different choices of coefficients for SB reviewers. Namely, for any reviewer
i 2 [m] and for any paper j 2 [n], we consider two models – one corresponding to the null hypothesis
of no bias (M1) and another to the alternative (M2):

M1 (�
(sb)
0 = 1,�(sb)

1 = 1,�(sb)
2 = 0) : log

⇡
(sb)
ij

1� ⇡
(sb)
ij

= 1 + qj ,

M2 (�
(sb)
0 = 3/2,�

(sb)
1 = 2,�(sb)

2 = 1/2) : log
⇡
(sb)
ij

1� ⇡
(sb)
ij

=
3

2
+ 2qj +

1

2
wj .

Consider a matrix ⇧sb whose components for each i 2 [m] and j 2 [n] are defined as follows:

⇡
(sb)
ij =

⇢
0.5 if wj = 1

1
1+e�1 if wj = �1.

Then a pair of matrices (⇧db
,⇧sb) satisfies the null hypothesis given by models (M0,M1) that can

be described by the function f0 2 F⇤ which is defined as follows:

log
f0(⇡

(db)
ij )

1� f0(⇡
(db)
ij )

= 1 + log
⇡
(db)
ij

1� ⇡
(db)
ij

Moreover, ⇧db and ⇧sb not only satisfy the alternative (M0,M2), but also fall under the definition of
non-trivial power with margin � > 0 for function f

0
0 2 F⇤ that satisfies:

log
f
0
0(⇡

(db)
ij )

1� f
0
0(⇡

(db)
ij )

=
3

2
+ 2 log

⇡
(db)
ij

1� ⇡
(db)
ij

.

Indeed, one can verify that for all (i, j) 2 [n]⇥ [m] we have |⇡(sb)
ij � f

0
0(⇡

(db)
ij )| > � for some � > 0

and that sign of ⇡(sb)
ij � f

0
0(⇡

(db)
ij ) is determined by whether j 2 J or j 2 J .

Given that matrices ⇧db and ⇧sb solely determine the distribution of reviewers’ decisions, we have
shown that reviewers’ decisions are identically distributed under both null and alternative and hence
any algorithm that operates on reviewers’ decision and keeps Type-I error below ↵ must have power
at most ↵ under alternative (M0,M2). Noticing that model (M0,M2) falls under conditions of
the non-trivial power requirement, we conclude that no algorithm can satisfy the requirement of
non-trivial power without sacrificing control over Type-I error.

E Proof of auxiliary results

In this section we give proofs for auxiliary results stated in appendix.

E.1 Proof of Lemma 1

Consider any assignment of papers to SB reviewers that satisfy (�, µ)�constraint with � > µ. Then
pick any subset of papers P ✓ [n] and denote a set of SB reviewers who are assigned to at least one
paper from P as RSB. Then one can notice that

|RSB| �
�|P|
µ

� |P|,

and hence by Hall’s theorem there exists a matching that maps each paper to one reviewer such that
each reviewer is matched to at most one paper. This matching is computed in Step 2 of Algorithm 1.

The same argument applies to DB reviewers and hence, joining these two matchings, the algorithm in
Step 4 constructs a set of tuples T where for each paper j 2 [n] there exists a tuple that corresponds
to this paper.
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E.2 Proof of Lemma 2

Consider any assignments of papers to SB and DB reviewers that satisfy (�, µ)�constranints. Let �
be a maximum integer that satisfies inequality

�  min

⇢
|J |
4µ

,
|J |
4µ

�
.

Without loss of generality, assume that � > 1. Given that µ and � are treated as constants and
that we only need to proof the result for large enough min{|J |, |J |}, we ignore the cases when
min{|J |, |J |} is small.

Consider a graph G before the first iteration of Steps 2 - 4 of Algorithm 2. Each paper in this graph is
connected to � SB and � DB reviewers such that each reviewer is connected to at most µ papers.

Now let (i1, j, i2) and (i01, j
0
, i

0
2) be triples found in the first iteration of the algorithm. These triples

exists provided that � > 1. Then in Step 4 we remove reviewers i1, i01, i2, i02 and corresponding edges
from graph G. One can see that these reviewers are connected to at most 4µ papers in total and hence
before the second iteration of Steps 2 - 4 graph G will have at least |J |� 4µ � 4µ(� � 1) papers
from J and |J |� 4µ � 4µ(� � 1) papers from J that are connected to � SB and � DB remaining
reviewers and each of the remaining reviewers (there must be at least 8�(� � 1) SB and 8�(� � 1)
DB reviewers) will be connected to at most µ papers.

By induction we can show that in the first � iterations of Steps 2 - 4 the greedy algorithm will be able
to find non-empty triples in Steps 2 and 3. Hence the resulting set of tuples T will contain at least �
tuples that correspond to papers from J and at least � tuples that correspond to papers from J . We
then conclude the proof noticing that � = cmin{|J |, |J |}, where c is a constant that depends only
on µ.
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